Personalized Prediction of Total Knee Arthroplasty Mechanics Based on Sparse Input Data—Model Validation Using In Vivo Force Data
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vivo Validation Data
Patient | Height [cm] | Weight [kg] | Age [Years] | Gender | Side |
---|---|---|---|---|---|
GCC2 | 172 | 67 | 83 | Male | Right |
GCC3 | 167 | 78.4 | 68 | Female | Left |
GCC5 | 180 | 75 | 86 | Male | Left |
GCC6 | 172 | 70 | ~86 | Male | Right |
2.2. Multi-Body Simulation Model
2.3. Biomechanical Modeling Using a Priori Knowledge
2.4. Statistical Analysis and Evaluation
3. Results
4. Discussion
Study | Year | Activity | No. of Patients | RMSE Total [%BW], Mean (Range) | RMSE Medial [%BW], Mean (Range) | RMSE Lateral [%BW], Mean (Range) | Simulation Time [min] |
---|---|---|---|---|---|---|---|
Stylianou et al. [5] | 2013 | Squat | 1 | 42.3 (only superior-inferior) | / | / | n.a. |
Thelen et al. [23] | 2014 | Gait | 1 | 51.0 | 26 | 42 | 100 |
Chen et al. [4] | 2014 | Gait | 1 | 44.7 | 28.0 | 23.3 | n.a. |
Marra et al. [3] | 2015 | Gait | 1 | 26.0 | 26.0 | 35.0 | 540 |
Chen et al. [19] | 2016 | Gait | 3 | 36.3 (29–44) | 29.0 (26–34) | 27.3 (18–36) | n.a. |
Ding et al. [8] | 2016 | Squat | 3 | 77.8 (46.3–101.0) | 50.2 (25.2–66.0) | 45.8 (22.0–74.1) | n.a. |
Kebbach et al. [6] | 2020 | Gait | 1 | 39.0 | 35.0 | 10.0 | n.a. |
Present study | 2024 | Squat | 4 | 41.7 (19.9–66.1) | 32.4 (15.9–52.6) | 18.1 (8.2–26.1) | <4 |
4.1. Limitations
4.2. Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehta, S.; Tyler, A.; Hast, M. Understanding the Basics of Computational Models in Orthopaedics: A Nonnumeric Review for Surgeons. J. Am. Acad. Orthop. Surg. 2017, 25, 684–692. [Google Scholar] [CrossRef]
- Innocenti, B.; Bori, E.; Armaroli, F.; Schlager, B.; Jonas, R.; Wilke, H.-J.; Galbusera, F. The use of computational models in orthopedic biomechanical research. In Human Orthopaedic Biomechanics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 681–712. ISBN 9780128244814. [Google Scholar]
- Marra, M.A.; Vanheule, V.; Fluit, R.; Koopman, B.H.; Rasmussen, J.; Verdonschot, N.; Andersen, M.S. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty. J. Biomech. Eng. 2015, 137, 20904. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Ardestani, M.M.; Wang, L.; Liu, Y.; Lian, Q.; He, J.; Li, D.; Jin, Z. Prediction of in vivo joint mechanics of an artificial knee implant using rigid multi-body dynamics with elastic contacts. Proc. Inst. Mech. Eng. H 2014, 228, 564–575. [Google Scholar] [CrossRef]
- Stylianou, A.P.; Guess, T.M.; Kia, M. Multibody muscle driven model of an instrumented prosthetic knee during squat and toe rise motions. J. Biomech. Eng. 2013, 135, 41008. [Google Scholar] [CrossRef]
- Kebbach, M.; Darowski, M.; Krueger, S.; Schilling, C.; Grupp, T.M.; Bader, R.; Geier, A. Musculoskeletal Multibody Simulation Analysis on the Impact of Patellar Component Design and Positioning on Joint Dynamics after Unconstrained Total Knee Arthroplasty. Materials 2020, 13, 2365. [Google Scholar] [CrossRef]
- Otten, E. Inverse and forward dynamics: Models of multi-body systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 1493–1500. [Google Scholar] [CrossRef]
- Ding, Z.; Nolte, D.; Kit Tsang, C.; Cleather, D.J.; Kedgley, A.E.; Bull, A.M.J. In Vivo Knee Contact Force Prediction Using Patient-Specific Musculoskeletal Geometry in a Segment-Based Computational Model. J. Biomech. Eng. 2016, 138, 21018. [Google Scholar] [CrossRef]
- Krueger, C.A.; Austin, M.S.; Levicoff, E.A.; Saxena, A.; Nazarian, D.G.; Courtney, P.M. Substantial Preoperative Work Is Unaccounted for in Total Hip and Knee Arthroplasty. J. Arthroplast. 2020, 35, 2318–2322. [Google Scholar] [CrossRef]
- Tzanetis, P.; Fluit, R.; de Souza, K.; Robertson, S.; Koopman, B.; Verdonschot, N. Pre-Planning the Surgical Target for Optimal Implant Positioning in Robotic-Assisted Total Knee Arthroplasty. Bioengineering 2023, 10, 543. [Google Scholar] [CrossRef]
- Grosso, M.J.; Courtney, P.M.; Kerr, J.M.; Della Valle, C.J.; Huddleston, J.I. Surgeons’ Preoperative Work Burden Has Increased Before Total Joint Arthroplasty: A Survey of AAHKS Members. J. Arthroplast. 2020, 35, 1453–1457. [Google Scholar] [CrossRef]
- Wasterlain, A.S.; Courtney, P.M.; Yayac, M.F.; Nazarian, D.G.; Austin, M.S. Quantifying the Perioperative Work Associated with Total Hip and Knee Arthroplasty: The Burden Has Increased with Contemporary Care Pathways. J. Arthroplast. 2019, 34, 2528–2531. [Google Scholar] [CrossRef] [PubMed]
- Fregly, B.J.; Besier, T.F.; Lloyd, D.G.; Delp, S.L.; Banks, S.A.; Pandy, M.G.; D’Lima, D.D. Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 2012, 30, 503–513. [Google Scholar] [CrossRef]
- D’Lima, D.D.; Patil, S.; Steklov, N.; Slamin, J.E.; Colwell, C.W. Tibial forces measured in vivo after total knee arthroplasty. J. Arthroplast. 2006, 21, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.D.; Callewaert, B.; Desloovere, K.; Labey, L.; Innocenti, B. Determination of In Vivo Three-Dimensional Lower Limb Kinematics for Simulation of High-Flexion Squats. In XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010, Chalkidiki, Greece, 27–30 May 2010; Magjarevic, R., Bamidis, P.D., Pallikarakis, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 483–486. ISBN 978-3-642-13038-0. [Google Scholar]
- Asseln, M.; Hänisch, C.; Quack, V.; Radermacher, K. A Mesh Morphing Based Method to Estimate Cruciate Ligament Attachments Based on CT-Data. In Proceedings of the 15th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery, Vancouver, BC, Canada, 17–20 June 2015. [Google Scholar]
- Amberg, B.; Romdhani, S.; Vetter, T. Optimal Step Nonrigid ICP Algorithms for Surface Registration. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1–8, ISBN 1-4244-1179-3. [Google Scholar]
- Zavatsky, A.B. A kinematic-freedom analysis of a flexed-knee-stance testing rig. J. Biomech. 1997, 30, 277–280. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Wang, L.; Li, D.; Zhang, Y.; Jin, Z. Evaluation of a subject-specific musculoskeletal modelling framework for load prediction in total knee arthroplasty. Med. Eng. Phys. 2016, 38, 708–716. [Google Scholar] [CrossRef]
- Raikova, R.T.; Prilutsky, B.I. Sensitivity of predicted muscle forces to parameters of the optimization-based human leg model revealed by analytical and numerical analyses. J. Biomech. 2001, 34, 1243–1255. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Cockburn, R.A.; Hemmerich, A.; Li, R.M.; Wyss, U.P. Tibiofemoral joint contact forces and knee kinematics during squatting. Gait Posture 2008, 27, 376–386. [Google Scholar] [CrossRef]
- Hsu, A.T.; Perry, J.; Gronley, J.K.; Hislop, H.J. Quadriceps force and myoelectric activity during flexed knee stance. Clin. Orthop. Relat. Res. 1993, 288, 254–262. [Google Scholar] [CrossRef]
- Thelen, D.G.; Won Choi, K.; Schmitz, A.M. Co-simulation of neuromuscular dynamics and knee mechanics during human walking. J. Biomech. Eng. 2014, 136, 21033. [Google Scholar] [CrossRef] [PubMed]
- Lachiewicz, P.F.; Henderson, R.A. Patient-specific instruments for total knee arthroplasty. J. Am. Acad. Orthop. Surg. 2013, 21, 513–518. [Google Scholar] [CrossRef]
- Dartus, J.; Jacques, T.; Martinot, P.; Pasquier, G.; Cotten, A.; Migaud, H.; Morel, V.; Putman, S. The advantages of cone-beam computerised tomography (CT) in pain management following total knee arthroplasty, in comparison with conventional multi-detector CT. Orthop. Traumatol. Surg. Res. 2021, 107, 102874. [Google Scholar] [CrossRef]
Subject | Trial/Mean | Medial Contact Force | Lateral Contact Force | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAD [%BW] | RMSE [%BW] | r | M | P | C | MAD [%BW] | RMSE [%BW] | r | M | P | C | ||
GCC2 | Trial 1 | 35.13 | 39.49 | 0.35 | 0.11 | 0.14 | 0.18 | 24.08 | 28.25 | 0.37 | 0.01 | 0.12 | 0.12 |
Trial 2 | 39.07 | 48.52 | 0.66 | 0.19 | 0.18 | 0.26 | 25.31 | 28.20 | 0.30 | 0.01 | 0.12 | 0.12 | |
Mean | 36.89 | 42.73 | 0.61 | 0.18 | 0.15 | 0.24 | 23.20 | 26.09 | 0.42 | 0.03 | 0.11 | 0.11 | |
GCC3 | Trial 1 | 16.68 | 20.09 | 0.84 | −0.06 | 0.06 | 0.09 | 11.41 | 14.50 | 0.94 | 0.06 | 0.05 | 0.08 |
Trial 2 | 16.38 | 19.31 | 0.85 | 0.04 | 0.06 | 0.07 | 16.61 | 20.97 | 0.85 | 0.05 | 0.07 | 0.08 | |
Trial 3 | 20.58 | 23.43 | 0.93 | 0.19 | 0.05 | 0.20 | 14.20 | 22.04 | 0.92 | 0.20 | 0.05 | 0.20 | |
Trial 4 | 25.85 | 31.94 | 0.92 | 0.21 | 0.09 | 0.23 | 25.63 | 33.13 | 0.94 | 0.42 | 0.05 | 0.43 | |
Mean | 13.68 | 15.94 | 0.95 | 0.12 | 0.04 | 0.12 | 9.97 | 16.44 | 0.94 | 0.13 | 0.05 | 0.14 | |
GCC5 | Trial 1 | 35.82 | 39.83 | 0.90 | −0.12 | 0.11 | 0.16 | 11.17 | 13.40 | 0.90 | 0.06 | 0.06 | 0.09 |
Trial 2 | 24.71 | 26.44 | 0.92 | 0.01 | 0.08 | 0.08 | 8.88 | 10.07 | 0.94 | 0.01 | 0.04 | 0.04 | |
Trial 3 | 27.56 | 36.67 | 0.14 | 0.30 | 0.10 | 0.31 | 15.15 | 16.91 | 0.77 | 0.08 | 0.07 | 0.11 | |
Trial 4 | 28.48 | 30.98 | 0.84 | 0.35 | 0.05 | 0.36 | 10.89 | 13.10 | 0.85 | 0.03 | 0.06 | 0.07 | |
Mean | 15.65 | 18.50 | 0.95 | 0.13 | 0.05 | 0.14 | 6.80 | 8.15 | 0.96 | 0.05 | 0.03 | 0.06 | |
GCC6 | Trial 1 | 36.49 | 40.60 | 0.69 | 0.53 | 0.07 | 0.53 | 25.53 | 32.42 | 0.20 | −0.15 | 0.12 | 0.19 |
Trial 2 | 53.31 | 54.96 | 0.93 | 0.76 | 0.12 | 0.77 | 17.11 | 26.45 | 0.12 | 0.16 | 0.11 | 0.19 | |
Trial 3 | 63.56 | 66.25 | 0.80 | 1.08 | 0.15 | 1.09 | 20.72 | 23.62 | 0.12 | 0.01 | 0.10 | 0.10 | |
Mean | 51.61 | 52.61 | 0.91 | 0.90 | 0.08 | 0.90 | 17.38 | 21.87 | 0.01 | −0.03 | 0.09 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehreiser, S.; Asseln, M.; Radermacher, K. Personalized Prediction of Total Knee Arthroplasty Mechanics Based on Sparse Input Data—Model Validation Using In Vivo Force Data. Biomechanics 2025, 5, 8. https://doi.org/10.3390/biomechanics5010008
Ehreiser S, Asseln M, Radermacher K. Personalized Prediction of Total Knee Arthroplasty Mechanics Based on Sparse Input Data—Model Validation Using In Vivo Force Data. Biomechanics. 2025; 5(1):8. https://doi.org/10.3390/biomechanics5010008
Chicago/Turabian StyleEhreiser, Sonja, Malte Asseln, and Klaus Radermacher. 2025. "Personalized Prediction of Total Knee Arthroplasty Mechanics Based on Sparse Input Data—Model Validation Using In Vivo Force Data" Biomechanics 5, no. 1: 8. https://doi.org/10.3390/biomechanics5010008
APA StyleEhreiser, S., Asseln, M., & Radermacher, K. (2025). Personalized Prediction of Total Knee Arthroplasty Mechanics Based on Sparse Input Data—Model Validation Using In Vivo Force Data. Biomechanics, 5(1), 8. https://doi.org/10.3390/biomechanics5010008