Assessment of Gait Following Locking Plate Fixation of a Tibial Segmental Defect and Cast Immobilization in Goats
Abstract
1. Introduction
2. Materials and Methods
2.1. Goats
2.2. Surgery
2.3. Cast Immobilization
2.4. Biomechanical Data Collection
2.5. Asymmetry Indices
2.6. Statistical Analysis
3. Results
3.1. Goats
3.2. Post-Surgical Biomechanics (Days 1–30)
3.3. Post-Immobilization Biomechanics (Days 180–360)
3.4. Asymmetry Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dias, I.R.; Camassa, J.A.; Bordelo, J.A.; Babo, P.S.; Viegas, C.A.; Dourado, N.; Reis, R.L.; Gomes, M.E. Preclinical and Translational Studies in Small Ruminants (Sheep and Goat) as Models for Osteoporosis Research. Curr. Osteoporos. Rep. 2018, 16, 182–197. [Google Scholar] [CrossRef] [PubMed]
- Christou, C.; Oliver, R.A.; Pelletier, M.H.; Walsh, W.R. Ovine model for critical-size tibial segmental defects. Comp. Med. 2014, 64, 377–385. [Google Scholar] [PubMed]
- Atarod, M.; Frank, C.B.; Shrive, N.G. Kinematic and Kinetic Interactions During Normal and ACL-Deficient Gait: A Longitudinal In Vivo Study. Ann. Biomed. Eng. 2014, 42, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Diogo, C.C.; Camassa, J.A.; Fonseca, B.; Maltez da Costa, L.; Pereira, J.E.; Filipe, V.; Couto, P.A.; Raimondo, S.; Armada-da-Silva, P.A.; Maurício, A.C.; et al. A Comparison of Two-Dimensional and Three-Dimensional Techniques for Kinematic Analysis of the Sagittal Motion of Sheep Hindlimbs During Walking on a Treadmill. Front. Vet. Sci. 2021, 8, 545708. [Google Scholar] [CrossRef] [PubMed]
- Grzeskowiak, R.M.; Rifkin, R.E.; Croy, E.G.; Steiner, R.C.; Seddighi, R.; Mulon, P.-Y.; Adair, H.S.; Anderson, D.E. Temporal Changes in Reverse Torque of Locking-Head Screws Used in the Locking Plate in Segmental Tibial Defect in Goat Model. Front. Surg. 2021, 8, 637268. [Google Scholar] [CrossRef] [PubMed]
- McKinley, T.O.; Natoli, R.M.; Fischer, J.P.; Rytlewski, J.D.; Scofield, D.C.; Usmani, R.; Kuzma, A.; Griffin, K.S.; Jewell, E.; Childress, P.; et al. Internal Fixation Construct and Defect Size Affect Healing of a Translational Porcine Diaphyseal Tibial Segmental Bone Defect. Mil. Med. 2021, 186, e1115–e1123. [Google Scholar] [CrossRef]
- Reichert, J.C.; Saifzadeh, S.; Wullschleger, M.E.; Epari, D.R.; Schütz, M.A.; Duda, G.N.; Schell, H.; Van Griensven, M.; Redl, H.; Hutmacher, D.W. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials 2009, 30, 2149–2163. [Google Scholar] [CrossRef]
- McGovern, J.A.; Griffin, M.; Hutmacher, D.W. Animal models for bone tissue engineering and modelling disease. Dis. Model. Mech. 2018, 11, dmm033084. [Google Scholar] [CrossRef]
- Zeiter, S.; Koschitzki, K.; Alini, M.; Jakob, F.; Rudert, M.; Herrmann, M. Evaluation of Preclinical Models for the Testing of Bone Tissue-Engineered Constructs. Tissue Eng. Part C Methods 2020, 26, 107–117. [Google Scholar] [CrossRef]
- Xu, G.-H.; Liu, B.; Zhang, Q.; Wang, J.; Chen, W.; Liu, Y.-J.; Peng, A.Q.; Zhang, Y.-Z. Biomechanical comparison of gourd-shaped LCP versus LCP for fixation of comminuted tibial shaft fracture. J. Huazhong Univ. Sci. Technol. Med. Sci. 2013, 33, 250–257. [Google Scholar] [CrossRef]
- Stoffel, K.; Dieter, U.; Stachowiak, G.; Gächter, A.; Kuster, M.S. Biomechanical testing of the LCP—How can stability in locked internal fixators be controlled? Injury 2003, 34 (Suppl. 2), B11–B19. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.A.; Aithal, H.P.; Amarpal; Kinjavdekar, P.; Gope, P.C.; Madhu, D.N. Biomechanical properties of a novel locking compression plate to stabilize oblique tibial osteotomies in buffaloes. Vet. Surg. 2021, 50, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Xu, H.; Ding, H.; Qin, H.; An, Z. Comparison of the effect on bone healing process of different implants used in minimally invasive plate osteosynthesis: Limited contact dynamic compression plate versus locking compression plate. Sci. Rep. 2016, 6, 37902. [Google Scholar] [CrossRef] [PubMed]
- Henkel, J.; Medeiros Savi, F.; Berner, A.; Fountain, S.; Saifzadeh, S.; Steck, R.; Epari, D.R.; Woodruff, M.A.; Knackstedt, M.; Schuetz, M.A.; et al. Scaffold-guided bone regeneration in large volume tibial segmental defects. Bone 2021, 153, 116163. [Google Scholar] [CrossRef]
- Reichert, J.C.; Cipitria, A.; Epari, D.R.; Saifzadeh, S.; Krishnakanth, P.; Berner, A.; Woodruff, M.A.; Schell, H.; Mehta, M.; Schuetz, M.A.; et al. A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci. Transl. Med. 2012, 4, 141ra93. [Google Scholar] [CrossRef]
- Marcondes, G.D.M.; Paretsis, N.F.; Souza, A.F.D.; Ruivo, M.R.B.A.; Rego, M.A.F.; Nóbrega, F.S.; Cortopassi, S.R.G.; De Zoppa, A.L.D.V. Locking compression plate fixation of critical-sized bone defects in sheep. Development of a model for veterinary bone tissue engineering. Acta Cirúrgica Bras. 2021, 36, e360601. [Google Scholar] [CrossRef]
- Seebeck, P.; Thompson, M.S.; Parwani, A.; Taylor, W.R.; Schell, H.; Duda, G.N. Gait evaluation: A tool to monitor bone healing? Clin. Biomech. 2005, 20, 883–891. [Google Scholar] [CrossRef]
- Schell, H.; Thompson, M.S.; Bail, H.J.; Hoffmann, J.-E.; Schill, A.; Duda, G.N.; Lienau, J. Mechanical induction of critically delayed bone healing in sheep: Radiological and biomechanical results. J. Biomech. 2008, 41, 3066–3072. [Google Scholar] [CrossRef]
- Stewart, H.L.; Werpy, N.M.; McIlwraith, C.W.; Kawcak, C.E. Physiologic effects of long-term immobilization of the equine distal limb. Vet. Surg. 2020, 49, 840–851. [Google Scholar] [CrossRef]
- Oliveira Milani, J.G.P.; Matheus, J.P.C.; Gomide, L.B.; Volpon, J.B.; Shimano, A.C. Biomechanical Effects of Immobilization and Rehabilitation on the Skeletal Muscle of Trained and Sedentary Rats. Ann. Biomed. Eng. 2008, 36, 1641–1648. [Google Scholar] [CrossRef]
- Kaneguchi, A.; Ozawa, J.; Minamimoto, K.; Yamaoka, K. Morphological and biomechanical adaptations of skeletal muscle in the recovery phase after immobilization in a rat. Clin. Biomech. 2020, 75, 104992. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.C.; Taylor, J.L.; Hoffman, R.L.; Dearth, D.J.; Thomas, J.S. Cast immobilization increases long-interval intracortical inhibition. Muscle Nerve 2010, 42, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Kannus, R.; Jòzsa, L.; Renström, R.; Järvtoen, M.; Kvist, M.; Lento, M.; Oja, P.; Vuorl, I. The effects of training, immobilization and remobilization on musculoskeletal tissue. Scand. J. Med. Sci. Sport. 1992, 2, 100–118. [Google Scholar] [CrossRef]
- Aufwerber, S.; Heijne, A.; Edman, G.; Grävare Silbernagel, K.; Ackermann, P.W. Early mobilization does not reduce the risk of deep venous thrombosis after Achilles tendon rupture: A randomized controlled trial. Knee Surg. Sport. Traumatol. Arthrosc. 2020, 28, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Oga, S.; Goto, K.; Sakamoto, J.; Sasaki, R.; Honda, Y.; Kataoka, H.; Okita, M. Voluntary Forelimbs Exercise Reduces Immobilization-Induced Mechanical Hyperalgesia in the Rat Hind Paw. Pain Res. Manag. 2021, 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Caplan, N.; Forbes, A.; Radha, S.; Stewart, S.; Ewen, A.; Gibson, A.S.C.; Kader, D. Effects of 1 Week of Unilateral Ankle Immobilization on Plantar-Flexor Strength, Balance, and Walking Speed: A Pilot Study in Asymptomatic Volunteers. J. Sport Rehabil. 2015, 24, 156–162. [Google Scholar] [CrossRef]
- Nahm, N.; Bey, M.J.; Liu, S.; Guthrie, S.T. Ankle Motion and Offloading in Short Leg Cast and Low and High Fracture Boots. Foot Ankle Int. 2019, 40, 1416–1423. [Google Scholar] [CrossRef]
- Zhang, S.; Clowers, K.G.; Powell, D. Ground reaction force and 3D biomechanical characteristics of walking in short-leg walkers. Gait Posture 2006, 24, 487–492. [Google Scholar] [CrossRef]
- Kadel, N.J.; Segal, A.; Orendurff, M.; Shofer, J.; Sangeorzan, B. The Efficacy of Two Methods of Ankle Immobilization in Reducing Gastrocnemius, Soleus, and Peroneal Muscle Activity during Stance Phase of Gait. Foot Ankle Int. 2004, 25, 406–409. [Google Scholar] [CrossRef]
- Rifkin, R.E.; Grzeskowiak, R.M.; Mulon, P.-Y.; Adair, H.S.; Biris, A.S.; Dhar, M.; Anderson, D.E. Use of a pressure-sensing walkway system for biometric assessment of gait characteristics in goats. PLoS ONE 2019, 14, e0223771. [Google Scholar] [CrossRef]
- Reppert, E.J.; Kleinhenz, M.D.; Viscardi, A.; Montgomery, S.R.; Crane, A.R.; Coetzee, J.F. Development and evaluation of two different lameness models in meat goats, a pilot study. Transl. Anim. Sci. 2020, 4, txaa193. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.; Oliveira, M.D.; Nunes, T.; Stilwell, G. Making the case for developing alternative lameness scoring systems for dairy goats. Appl. Anim. Behav. Sci. 2015, 171, 94–100. [Google Scholar] [CrossRef]
- Battini, M.; Renna, M.; Giammarino, M.; Battaglini, L.; Mattiello, S. Feasibility and Reliability of the AWIN Welfare Assessment Protocol for Dairy Goats in Semi-extensive Farming Conditions. Front. Vet. Sci. 2021, 8, 731927. [Google Scholar] [CrossRef]
- Coetzee, J.F.; Mosher, R.A.; Anderson, D.E.; Robert, B.; Kohake, L.E.; Gehring, R.; White, B.J.; Kukanich, B.; Wang, C. Impact of oral meloxicam administered alone or in combination with gabapentin on experimentally induced lameness in beef calves1. J. Anim. Sci. 2014, 92, 816–829. [Google Scholar] [CrossRef] [PubMed]
- Netukova, S.; Duspivova, T.; Tesar, J.; Bejtic, M.; Baxa, M.; Ellederova, Z.; Szabo, Z.; Krupicka, R. Instrumented pig gait analysis: State-of-the-art. J. Vet. Behav. 2021, 45, 51–59. [Google Scholar] [CrossRef]
- Egenvall, A.; Marr, C.M.; Byström, A. Study design synopsis: How to conduct, prepare, analyse and report equine biomechanical studies. Equine Vet. J. 2021, 53, 645–648. [Google Scholar] [CrossRef]
- Connor, P.; Ross, A. Biometric recognition by gait: A survey of modalities and features. Comput. Vis. Image Underst. 2018, 167, 1–27. [Google Scholar] [CrossRef]
- Meijer, E.; Bertholle, C.P.; Oosterlinck, M.; Van Der Staay, F.; Back, W.; Van Nes, A. Pressure mat analysis of the longitudinal development of pig locomotion in growing pigs after weaning. BMC Vet. Res. 2014, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Meijer, E.; Oosterlinck, M.; Van Nes, A.; Back, W.; Van Der Staay, F.J. Pressure mat analysis of naturally occurring lameness in young pigs after weaning. BMC Vet. Res. 2014, 10, 193. [Google Scholar] [CrossRef]
- Fanchon, L.; Grandjean, D. Accuracy of asymmetry indices of ground reaction forces for diagnosis of hind limb lameness in dogs. Am. J. Vet. Res. 2007, 68, 1089–1094. [Google Scholar] [CrossRef]
- Kano, W.T.; Rahal, S.C.; Agostinho, F.S.; Mesquita, L.R.; Santos, R.R.; Monteiro, F.O.B.; Castilho, M.S.; Melchert, A. Kinetic and temporospatial gait parameters in a heterogeneous group of dogs. BMC Vet. Res. 2016, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- National Research Council Committee for the Update of the Guide for the Care and Use of Laboratory Animals. The National Academies Collection: Reports Funded by National Institutes of Health. In Guide for the Care and Use of Laboratory Animals; National Academies Press (US): Washington, DC, USA; National Academy of Sciences: Washington, DC, USA, 2011. [Google Scholar]
- Johnson, N.A.; Fairhurst, C.; Brealey, S.D.; Cook, E.; Stirling, E.; Costa, M.; Divall, P.; Hodgson, S.; Rangan, A.; Dias, J.J. One-year outcome of surgery compared with immobilization in a cast for adults with an undisplaced or minimally displaced scaphoid fracture: A meta-analysis of randomized controlled trials. Bone Jt. J. 2022, 104, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Schilling, B.K.; Falvo, M.J.; Chiu, L.Z.F. Force-velocity, impulse-momentum relationships: Implications for efficacy of purposefully slow resistance training. J. Sports Sci. Med. 2008, 7, 299–304. [Google Scholar] [PubMed]
Timepoint | N | Stance Time (s) | Swing Time (s) | Stride Time (s) | Stride Length (cm) | Stride Velocity (cm/s) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Forelimb | LF | RF | LF | RF | LF | RF | LF | RF | LF | RF | |
Preop | 13 | 0.46 ± 0.13 | 0.47 ± 0.14 | 0.44 ± 0.19 | 0.39 ± 0.08 | 0.85 ± 0.29 | 0.84 ± 0.21 | 92.62 ± 7.65 | 91.54 ± 13.30 | 114.55 ± 27.55 | 117.91 ± 34.47 |
Day 1 | 12 | 0.55 ± 0.16 | 0.53 ± 0.21 | 0.35 ± 0.07 | 0.37 ± 0.08 | 0.84 ± 0.22 | 0.88 ± 0.30 | 74.17 ± 15.15 a | 70.97 ± 19.23 a | 96.96 ± 38.51 | 94.30 ± 34.29 |
Day 7 | 12 | 0.53 ± 0.30 | 0.50 ± 0.27 | 0.40 ± 0.14 | 0.41 ± 0.13 | 0.87 ± 0.26 | 0.88 ± 0.30 | 86.21 ± 12.26 | 76.59 ± 13.42 | 109.17 ± 39.45 | 98.14 ± 38.33 |
Day 30 | 10 | 0.49 ± 0.39 | 0.48 ± 0.36 | 0.34 ± 0.09 | 0.35 ± 0.08 | 0.84 ± 0.57 | 0.81 ± 0.45 | 86.79 ± 13.17 | 84.02 ± 13.29 | 136.28 ± 55.33 | 129.42 ± 56.47 |
Day 180 | 13 | 0.59 ± 0.19 | 0.49 ± 0.11 | 0.39 ± 0.12 | 0.44 ± 0.23 | 0.95 ± 0.23 | 0.85 ± 0.24 | 67.79 ± 16.85 a,b,c | 69.28 ± 10.57 a | 74.98 ± 21.87 c | 89.92 ± 25.17 |
Day 240 | 13 | 0.55 ± 0.12 | 0.59 ± 0.23 | 0.37 ± 0.08 | 0.43 ± 0.15 | 0.85 ± 0.17 | 0.90 ± 0.32 | 64.86 ± 13.85 a,b,c | 63.21 ± 14.79 a,c | 83.50 ± 25.52 c | 80.81 ± 33.17 c |
Day 300 | 13 | 0.53 ± 0.09 | 0.50 ± 0.11 | 0.37 ± 0.06 | 0.41 ± 0.09 | 0.86 ± 0.20 | 0.88 ± 0.18 | 71.23 ± 12.28 a | 68.68 ± 8.18 a,c | 87.51 ± 19.74 c | 83.68 ± 15.96 c |
Day 360 | 13 | 0.54 ± 0.19 | 0.51 ± 0.18 | 0.42 ± 0.19 | 0.45 ± 0.16 | 0.96 ± 0.48 | 0.93 ± 0.36 | 66.95 ± 12.75 a,b,c | 65.68 ± 10.66 a,c | 84.74 ± 35.48 c | 81.72 ± 29.46 c |
Timepoint | N | Stance Time (s) | Swing Time (s) | Stride Time (s) | Stride Length (cm) | Stride Velocity (cm/s) | |||||
Hindlimb | LF | RF | LF | RF | LF | RF | LF | RF | LF | RF | |
Preop | 13 | 0.43 ± 0.15 | 0.45 ± 0.13 | 0.48 ± 0.18 | 0.44 ± 0.10 | 0.87 ± 0.21 | 0.85 ± 0.18 | 84.90 ± 20.54 | 84.72 ± 7.52 | 103.31 ± 28.14 | 104.98 ± 23.52 |
Day 1 | 12 | 0.55 ± 0.16 | 0.34 ± 0.14 | 0.46 ± 0.21 | 0.58 ± 0.23 | 0.88 ± 0.30 | 0.95 ± 0.31 | 70.71 ± 19.23 | 70.60 ± 22.58 | 87.38 ± 45.34 | 84.39 ± 40.59 |
Day 7 | 12 | 0.52 ± 0.23 | 0.45 ± 0.25 | 0.41 ± 0.08 | 0.52 ± 0.16 | 0.88 ± 0.30 | 1.10 ± 0.75 | 76.59 ± 13.42 | 74.73 ± 15.52 | 90.89 ± 42.54 | 90.34 ± 42.41 |
Day 30 | 10 | 0.47 ± 0.24 | 0.41 ± 0.26 | 0.40 ± 0.12 | 0.54 ± 0.20 | 0.81 ± 0.45 | 0.98 ± 0.44 | 84.02 ± 13.29 | 74.56 ± 13.72 | 121.86 ± 42.49 | 90.29 ± 41.60 |
Day 180 | 13 | 0.72 ± 0.33 a | 0.36 ± 0.10 | 0.34 ± 0.06 | 0.62 ± 0.31 | 0.93 ± 0.15 | 1.01 ± 0.37 | 69.28 ± 10.57 a,c | 62.01 ± 16.78 a | 71.35 ± 18.23 c | 68.50 ± 25.79 |
Day 240 | 13 | 0.70 ± 0.18 a | 0.45 ± 0.10 | 0.34 ± 0.08 | 0.69 ± 0.13 | 1.00 ± 0.19 | 1.09 ± 0.28 | 63.21 ± 14.79 a,c | 56.65 ± 13.07 a | 60.38 ± 15.86 a | 54.71 ± 17.73 a |
Day 300 | 13 | 0.61 ± 0.11 | 0.37 ± 0.09 | 0.34 ± 0.07 | 0.59 ± 0.16 | 0.87 ± 0.14 | 0.99 ± 0.21 | 68.68 ± 8.18 | 64.36 ± 9.74 a | 81.43 ± 14.82 c | 72.13 ± 35.74 |
Day 360 | 13 | 0.64 ± 0.15 | 0.39 ± 0.07 | 0.34 ± 0.10 | 0.62 ± 0.21 | 0.90 ± 0.20 | 0.97 ± 0.28 | 65.68 ± 10.66 a,c | 58.97 ± 13.52 a | 79.14 ± 33.73 c | 69.10 ± 27.80 |
Timepoint | N | Maximum Vertical Force (%BW) | Impulse (%BW*s) | Maximum Peak Pressure (kPa) | |||
---|---|---|---|---|---|---|---|
Forelimb | LF | RF | LF | RF | LF | RF | |
Preop | 13 | 49.49 ± 9.43 | 52.48 ± 11.50 | 15.42 ± 6.41 | 15.88 ± 6.16 | 212.62 ± 61.57 | 236.15 ± 54.94 |
Day 1 | 12 | 45.49 ± 7.76 | 49.48 ± 10.57 | 17.49 ± 5.04 | 20.89 ± 7.88 | 198.25 ± 57.63 | 197.38 ± 53.92 |
Day 7 | 12 | 46.93 ± 13.76 | 47.18 ± 13.83 | 15.11 ± 11.37 | 13.50 ± 5.84 | 216.44 ± 59.55 | 194.00 ± 56.39 |
Day 30 | 10 | 48.86 ± 9.66 | 47.60 ± 8.63 | 14.84 ± 8.77 | 14.89 ± 11.29 | 234.70 ± 54.93 | 210.70 ± 36.74 |
Day 180 | 13 | 56.02 ± 10.45 | 47.54 ± 11.23 | 20.58 ± 5.55 | 15.42 ± 5.39 | 209.54 ± 43.87 | 172.38 ± 52.81 |
Day 240 | 13 | 49.23 ± 6.23 | 50.93 ± 10.20 | 18.42 ± 5.63 | 19.95 ± 9.55 | 206.31 ± 54.82 | 191.00 ± 55.90 |
Day 300 | 13 | 51.89 ± 5.43 | 48.62 ± 11.07 | 18.87 ± 4.52 | 15.40 ± 3.52 | 213.17 ± 48.92 | 205.50 ± 47.35 |
Day 360 | 13 | 49.73 ± 14.06 | 48.37 ± 8.95 | 18.42 ± 8.18 | 15.11 ± 4.70 | 193.85 ± 44.05 | 218.08 ± 39.67 |
Timepoint | N | Maximum Vertical Force (%BW) | Impulse (%BW*s) | Maximum Peak Pressure (kPa) | |||
Hindlimb | LH | RH | LH | RH | LH | RH | |
Preop | 13 | 34.02 ± 7.55 | 35.79 ± 6.52 | 9.78 ± 3.59 | 10.34 ± 3.24 | 159.08 ± 31.90 | 172.23 ± 48.61 |
Day 1 | 12 | 29.96 ± 4.71 | 25.99 ± 5.93 | 11.50 ± 3.59 | 7.11 ± 3.04 | 164.00 ± 33.65 | 150.25 ± 43.85 |
Day 7 | 12 | 34.31 ± 7.95 | 22.78 ± 8.27 | 10.89 ± 4.40 | 7.09 ± 5.04 | 159.67 ± 31.08 | 131.22 ± 32.35 |
Day 30 | 10 | 36.54 ± 7.75 | 23.03 ± 7.59 | 10.81 ± 4.20 | 6.34 ± 2.88 a | 173.40 ± 46.25 | 107.78 ± 26.60 a |
Day 180 | 13 | 33.48 ± 6.39 | 19.37 ± 5.37 a | 16.07 ± 8.54 | 5.41 ± 2.08 a | 156.46 ± 42.97 | 95.46 ± 31.85 a,b |
Day 240 | 13 | 37.44 ± 6.39 | 25.02 ± 4.33 a | 17.35 ± 6.54 a | 8.37 ± 2.77 | 161.77 ± 25.41 | 115.77 ± 29.30 a |
Day 300 | 13 | 36.63 ± 9.30 | 20.17 ± 4.44 a | 14.28 ± 4.82 | 5.80 ± 2.11 a | 158.50 ± 40.68 | 118.17 ± 34.24 a |
Day 360 | 13 | 34.38 ± 9.69 | 21.41 ± 4.86 a | 14.18 ± 5.64 | 5.86 ± 1.64 a | 155.08 ± 36.52 | 108.08 ± 25.37 a |
Forelimb Asymmetry Indices | |||||||
---|---|---|---|---|---|---|---|
Timepoint | N | Stance Time | Stride Length | Stride Velocity | Max Force | Impulse | MPP |
Preop | 13 | 2.39 ± 0.52 | 2.44 ± 0.85 | 3.65 ± 1.11 | 6.10 ± 1.40 | 5.90 ± 1.68 | 7.78 ± 1.32 |
Day 1 | 12 | 3.76 ± 1.06 | 2.84 ± 0.88 | 3.21 ± 1.23 | 6.59 ± 1.47 | 6.90 ± 1.78 | 8.60 ± 2.41 |
Day 7 | 12 | 2.50 ± 0.96 | 3.87 ± 1.14 | 4.46 ± 1.11 | 5.10 ± 1.19 | 6.50 ± 1.65 | 6.65 ± 2.19 |
Day 30 | 10 | 3.53 ± 0.84 | 1.57 ± 0.68 | 3.98 ± 1.95 | 6.06 ± 1.33 | 7.10 ± 2.19 | 6.87 ± 1.00 |
Day 180 | 13 | 5.47 ± 0.90 | 3.13 ± 0.69 | 5.13 ± 1.44 | 6.29 ± 1.12 | 8.95 ± 1.87 | 8.36 ± 1.54 |
Day 240 | 13 | 3.39 ± 0.64 | 1.89 ± 0.61 | 5.04 ± 1.63 | 5.20 ± 1.06 | 7.39 ± 1.04 | 5.31 ± 1.22 |
Day 300 | 13 | 2.52 ± 0.46 | 2.64 ± 0.59 | 4.50 ± 1.08 | 3.96 ± 1.29 | 6.65 ± 1.35 | 5.87 ± 0.77 |
Day 360 | 13 | 3.07 ± 0.88 | 1.81 ± 0.40 | 3.03 ± 0.71 | 5.67 ± 1.37 | 7.90 ± 1.41 | 4.77 ± 1.00 |
Hindlimb Asymmetry Indices | |||||||
Timepoint | N | Stance Time | Stride Length | Stride Velocity | Max Force | Impulse | MPP |
Preop | 13 | 2.97 ± 0.67 | 3.41 ± 0.89 | 4.83 ± 1.09 | 4.30 ± 0.81 | 5.53 ± 1.06 | 5.24 ± 1.22 |
Day 1 | 12 | 12.35 ± 2.41 * | 4.72 ± 1.82 | 5.67 ± 2.02 | 8.37 ± 1.28 | 14.72 ± 2.79 | 8.16 ± 1.27 |
Day 7 | 12 | 5.91 ± 1.33 | 4.38 ± 1.30 | 7.85 ± 1.80 | 10.40 ± 3.20 | 13.16 ± 3.19 | 7.06 ± 2.33 |
Day 30 | 10 | 8.61 ± 3.34 | 3.44 ± 0.93 | 5.98 ± 2.26 | 11.38 ± 3.55 | 14.86 ± 4.36 | 12.31 ± 3.00 |
Day 180 | 13 | 15.77 ± 1.71 * | 3.15 ± 1.25 | 5.25 ± 1.48 | 13.74 ± 2.19 * | 24.23 ± 2.10 * | 12.83 ± 2.57 |
Day 240 | 13 | 10.61 ± 1.20 * | 2.83 ± 0.70 | 3.97 ± 1.19 | 9.84 ± 1.77 | 17.41 ± 2.19 * | 8.51 ± 1.53 |
Day 300 | 13 | 12.26 ± 1.64 * | 2.68 ± 0.58 | 6.71 ± 1.16 | 14.17 ± 2.13 * | 20.80 ± 2.60 * | 9.71 ± 1.66 |
Day 360 | 13 | 11.66 ± 1.38 * | 3.80 ± 0.97 | 7.20 ± 1.77 | 10.91 ± 1.98 | 19.35 ± 2.21 * | 9.35 ± 1.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bowers, K.M.; Terrones, L.D.; Croy, E.G.; Mulon, P.-Y.; Adair, H.S., III; Anderson, D.E. Assessment of Gait Following Locking Plate Fixation of a Tibial Segmental Defect and Cast Immobilization in Goats. Biomechanics 2022, 2, 575-590. https://doi.org/10.3390/biomechanics2040045
Bowers KM, Terrones LD, Croy EG, Mulon P-Y, Adair HS III, Anderson DE. Assessment of Gait Following Locking Plate Fixation of a Tibial Segmental Defect and Cast Immobilization in Goats. Biomechanics. 2022; 2(4):575-590. https://doi.org/10.3390/biomechanics2040045
Chicago/Turabian StyleBowers, Kristin M., Lori D. Terrones, Elizabeth G. Croy, Pierre-Yves Mulon, Henry S. Adair, III, and David E. Anderson. 2022. "Assessment of Gait Following Locking Plate Fixation of a Tibial Segmental Defect and Cast Immobilization in Goats" Biomechanics 2, no. 4: 575-590. https://doi.org/10.3390/biomechanics2040045
APA StyleBowers, K. M., Terrones, L. D., Croy, E. G., Mulon, P.-Y., Adair, H. S., III, & Anderson, D. E. (2022). Assessment of Gait Following Locking Plate Fixation of a Tibial Segmental Defect and Cast Immobilization in Goats. Biomechanics, 2(4), 575-590. https://doi.org/10.3390/biomechanics2040045