Sex Impact on Knee and Ankle Muscle Extensor Forces during Loaded Running
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Load Configurations
2.3. Over-Ground Walk Task
2.4. Biomechanical Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andersen, K.A.; Grimshaw, P.N.; Kelso, R.M.; Bentley, D.J. Musculoskeletal Lower Limb Injury Risk in Army Populations. Sports Med.-Open 2016, 2, 22. [Google Scholar] [CrossRef] [PubMed]
- Hauret, K.G.; Jones, B.H.; Bullock, S.H.; Canham-Chervak, M.; Canada, S. Musculoskeletal injuries: Description of an under-recognized injury problem among military personnel. Am. J. Prev. Med. 2010, 38, S61–S70. [Google Scholar] [CrossRef] [PubMed]
- Department of the Army. Prevention and Control of Musculoskeletal Injuries Associated with Physical Training; Department of the Army: Washington, DC, USA, 2011. [Google Scholar]
- Bullock, S.H.; Jones, B.H.; Gilchrist, J.; Marshall, S.W. Prevention of Physical Training–Related Injuries. Am. J. Prev. Med. 2010, 38, S156–S181. [Google Scholar] [CrossRef] [PubMed]
- Bulzacchelli, M.; Brandt, S.; Sulsky, S.; Barenberg, A.; Zhu, L.; Hill, O.; Kardouni, J. 102 Medical costs of injuries during u.s. army basic combat training. Inj. Prev. 2017, 23, A38. [Google Scholar] [CrossRef]
- Knapik, J.; Canham-Chervak, M.; Hauret, K.; Hoedebecke, E.; Laurin, M.; Cuthie, J. Discharges during US Army basic training: Injury rates and risk factors. Mil. Med. 2001, 166, 641–647. [Google Scholar]
- Bell, N.; Mangione, T.W.; Hemenway, D.; Amoroso, P.J.; Jones, B.H. High injury rates among female Army trainees A function of gender? Am. J. Prev. Med. 2000, 18, 141–146. [Google Scholar] [CrossRef]
- Zambraski, E.J.; Yancosek, K.E. Prevention and rehabilitation of musculoskeletal injuries during military operations and training. J. Strength Cond. Res. 2012, 26, S101–S106. [Google Scholar] [CrossRef]
- Brown, T.N.; Fain, A.L.C.; Seymore, K.D.; Lobb, N.J. Sex and stride impact joint stiffness during loaded running. J. Appl. Biomech. 2021, 37, 95–101. [Google Scholar] [CrossRef]
- Lobb, N.J.; Fain, A.L.C.; Seymore, K.D.; Brown, T.N. Sex and stride length impact leg stiffness and ground reaction forces when running with body borne load. J. Biomech. 2019, 86, 96–101. [Google Scholar] [CrossRef]
- Farley, C.T.; Houdijk, H.H.; van Strien, C.; Louie, M. Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. J. Appl. Physiol. 1998, 85, 1044–1055. [Google Scholar] [CrossRef]
- Zadpoor, A.A.; Nikooyan, A.A. The relationship between lower-extremity stress fractures and the ground reaction force: A systematic review. Clin. Biomech. 2011, 26, 23–28. [Google Scholar] [CrossRef]
- Kulas, A.; Zalewski, P.; Hortobagyi, T.; DeVita, P. Effects of added trunk load and corresponding trunk position adaptations on lower extremity biomechanics during drop-landings. J. Biomech. 2008, 41, 180–185. [Google Scholar] [CrossRef]
- Devita, P.; Skelly, W.A. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med. Sci. Sports Exerc. 1992, 24, 108–115. [Google Scholar] [CrossRef]
- Brown, T.N.; O’Donovan, M.; Hasselquist, L.; Corner, B.; Schiffman, J.M. Lower limb flexion posture relates to energy absorption during drop landings with soldier-relevant body borne loads. Appl. Ergon. 2016, 52, 54–61. [Google Scholar] [CrossRef]
- Hamner, S.R.; Seth, A.; Delp, S.L. Muscle contributions to propulsion and support during running. J. Biomech. 2010, 43, 2709–2716. [Google Scholar] [CrossRef]
- Pandy, M.G.; Andriacchi, T.P. Muscle and joint function in human locomotion. Annu. Rev. Biomed. Eng. 2010, 12, 401–433. [Google Scholar] [CrossRef]
- Biewener, A.A.; Farley, C.T.; Roberts, T.J.; Temaner, M. Muscle mechanical advantage of human walking and running: Implications for energy cost. J. Appl. Physiol. 2004, 97, 2266–2274. [Google Scholar] [CrossRef]
- Alexander, N.; Schwameder, H.; Baker, R.; Trinler, U. Effect of different walking speeds on joint and muscle force estimation using AnyBody and OpenSim. Gait Posture 2021, 90, 197–203. [Google Scholar] [CrossRef]
- Kulmala, J.-P.; Korhonen, M.T.; Ruggiero, L.; Kuitunen, S.; Suominen, H.; Heinonen, A.; Avela, J. Walking and Running Require Greater Effort from the Ankle than the Knee Extensor Muscles. Med. Sci. Sports Exerc. 2016, 48, 2181–2189. [Google Scholar] [CrossRef]
- Kulmala, J.P.; Korhonen, M.T.; Ruggiero, L.; Kuitunen, S.; Suominen, H.; Heinonen, A.; Mikkola, A.; Avela, J. Ankle and knee extensor muscle effort during locomotion in young and older athletes: Implications for understanding age-related locomotor decline. Sci. Rep. 2020, 10, 2801. [Google Scholar] [CrossRef]
- Silder, A.; Delp, S.L.; Besier, T. Men and women adopt similar walking mechanics and muscle activation patterns during load carriage. J. Biomech. 2013, 46, 2522–2528. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.N.; O’Donovan, M.; Hasselquist, L.; Corner, B.D.; Schiffman, J.M. Body borne loads impact walk-to-run and running biomechanics. Gait Posture 2014, 40, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Barbe, M.F.; Gallagher, S.; Massicotte, V.S.; Tytell, M.; Popoff, S.N.; Barr-Gillespie, A.E. The interaction of force and repetition on musculoskeletal and neural tissue responses and sensorimotor behavior in a rat model of work-related musculoskeletal disorders. BMC Musculoskelet. Disord. 2013, 14, 303. [Google Scholar] [CrossRef] [PubMed]
- Stoll, T.; Huber, E.; Seifert, B.; Michel, B.A.; Stucki, G. Maximal isometric muscle strength. Normative values and gender-specific relation to age. Clin. Rheumatol. 2000, 19, 105–113. [Google Scholar] [CrossRef]
- Seymore, K.D.; Fain, A.L.C.; Lobb, N.J.; Brown, T.N. Sex and limb impact biomechanics associated with risk of injury during drop landing with body borne load. PLoS ONE 2019, 14, e0211129. [Google Scholar] [CrossRef]
- Messier, S.P.; Martin, D.F.; Mihalko, S.L.; Ip, E.; DeVita, P.; Cannon, D.W.; Love, M.; Beringer, D.; Saldana, S.; Fellin, R.E.; et al. A 2-Year Prospective Cohort Study of Overuse Running Injuries: The Runners and Injury Longitudinal Study (TRAILS). Am. J. Sports Med. 2018, 46, 2211–2221. [Google Scholar] [CrossRef]
- Markolf, K.L.; Burchfield, D.M.; Shapiro, M.M.; Shepard, M.F.; Finerman, G.A.M.; Slauterbeck, J.L. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 1995, 13, 930–935. [Google Scholar] [CrossRef]
- Adams, R. Revised physical activity readiness questionnaire. Can. Fam. Physician 1999, 45, 992. [Google Scholar]
- Brown, T.N.; Kaplan, J.T.; Cameron, S.E.; Seymore, K.D.; Ramsay, J.W. Individuals with varus thrust do not increase knee adduction when running with body borne load. J. Biomech. 2018, 69, 97–102. [Google Scholar] [CrossRef]
- Grood, E.S.; Suntay, W.J. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef]
- Dempster, W.T.; Gaughran, G.R.L. Properties of body segments based on size and weight. Am. J. Anat. 1967, 120, 33–54. [Google Scholar] [CrossRef]
- Self, B.P.; Paine, D. Ankle biomechanics during four landing techniques. Med. Sci. Sports Exerc. 2001, 33, 1338–1344. [Google Scholar] [CrossRef]
- Brechter, J.H.; Powers, C.M. Patellofemoral stress during walking in persons with and without patellofemoral pain. Med. Sci. Sports Exerc. 2002, 34, 1582–1593. [Google Scholar] [CrossRef]
- Teng, H.L.; MacLeod, T.D.; Link, T.M.; Majumdar, S.; Souza, R.B. Higher knee flexion moment during the second half of the stance phase of gait is associated with the progression of osteoarthritis of the patellofemoral joint on magnetic resonance imaging. J. Orthop. Sports Phys. Ther. 2015, 45, 656–664. [Google Scholar] [CrossRef]
- Decker, M.J.; Torry, M.R.; Wyland, D.J.; Sterett, W.I.; Steadman, J.R. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin. Biomech. 2003, 18, 662–669. [Google Scholar] [CrossRef]
- Kulmala, J.P.; Korhonen, M.T.; Kuitunen, S.; Suominen, H.; Heinonen, A.; Mikkola, A.; Avela, J. Which muscles compromise human locomotor performance with age? J. R. Soc. Interface 2014, 11, 20140858. [Google Scholar] [CrossRef]
- Birrell, S.A.; Haslam, R.A. The effect of military load carriage on 3-D lower limb kinematics and spatiotemporal parameters. Ergonomics 2009, 52, 1298–1304. [Google Scholar] [CrossRef]
- Harman, E.; Han, K.-H.; Frykman, P. Load-Speed Interaction Effects on the Biomechanics of Backpack Load Carriage; U.S. Army Research Institute of Environmental Medicine: Natick, MA, USA, 2000. [Google Scholar]
- Derrick, T.R.; Hamill, J.; Caldwell, G.E. Energy absorption of impacts during running at various stride lengths. Med. Sci. Sports Exerc. 1998, 30, 128–135. [Google Scholar] [CrossRef]
- Willy, R.W.; Willson, J.D.; Clowers, K.; Baggaley, M.; Murray, N. The effects of body-borne loads and cadence manipulation on patellofemoral and tibiofemoral joint kinetics during running. J. Biomech. 2016, 49, 4028–4033. [Google Scholar] [CrossRef]
- Bohm, S.; Mersmann, F.; Santuz, A.; Schroll, A.; Arampatzis, A. Muscle-specific economy of force generation and efficiency of work production during human running. Elife 2021, 10, e67182. [Google Scholar] [CrossRef]
- Knapik, J.J.; Sharp, M.A.; Canham-Chervak, M.; Hauret, K.; Patton, J.F.; Jones, B.H. Risk factors for training-related injuries among men and women in basic combat training. Med. Sci. Sports Exerc. 2001, 33, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Bedno, S.A.; Nelson, D.A.; Kurina, L.M.; Choi, Y.S. Gender differences in the associations of body mass index, physical fitness and tobacco use with lower extremity musculoskeletal injuries among new US Army soldiers. Inj. Prev. 2019, 25, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Bohm, S.; Mersmann, F.; Santuz, A.; Arampatzis, A. The force-length-velocity potential of the human soleus muscle is related to the energetic cost of running. Proc. Biol. Sci. 2019, 286, 20192560. [Google Scholar] [CrossRef] [PubMed]
- Fong, C.M.; Blackburn, J.T.; Norcross, M.F.; McGrath, M.; Padua, D.A. Ankle-dorsiflexion range of motion and landing biomechanics. J. Athl. Train. 2011, 46, 5–10. [Google Scholar] [CrossRef]
- Martin, P.E.; Cavanagh, P.R. Segment interactions within the swing leg during unloaded and loaded running. J. Biomech. 1990, 23, 529–536. [Google Scholar] [CrossRef]
- Allison, K.F.; Keenan, K.A.; Sell, T.C.; Abt, J.P.; Nagai, T.; Deluzio, J.; McGrail, M.; Lephart, S.M. Musculoskeletal, biomechanical, and physiological gender differences in the US military. US Army Med. Dep. J. 2015, 22–32. [Google Scholar]
- Cohen, J. Chapter 2: The t Test for Means. 2.2 The effect size index: D. In Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Earlbaum Associates: Hillsdale, NJ, USA, 1988; pp. 20–26. [Google Scholar]
N | Age (Years) | Height (m) a | Weight (kg) a | |
---|---|---|---|---|
Males | 20 | 21.5 (2.8) | 1.8 (0.1) | 82.6 (11.6) |
Females | 16 | 21.2 (2.8) | 1.7 (0.1) | 65.0 (11.5) |
20 kg | 25 kg | 30 kg | 35 kg | ||||||
---|---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | Male | Female | ||
Extensor Force (N) | Ankle b | 2018.5 (570.1) | 1410.6 (327.2) | 1999.6 (387.0) | 1429.0 (320.5) | 2033.9 (427.7) | 1454.3 (322.9) | 2134.2 (454.8) | 1522.6 (291.0) |
Knee a,b,c | 3346.6 (843.8) | 2842.7 (625.4) | 3736.2 (900.6) | 2880.1 (820.8) | 3921.2 (888.0) | 2912.5 (731.0) | 3606.0 (843.4) | 3068.4 (691.8) | |
Extensor Force (BW) | Ankle b,c | 5.46 (0.85) | 4.77 (0.69) | 5.49 (0.64) | 4.84 (0.64) | 5.59 (0.69) | 4.90 (0.82) | 5.88 (0.77) | 5.12 (0.81) |
Knee c | 10.66 (1.88) | 10.50 (1.16) | 11.61 (1.91) | 10.53 (1.59) | 11.94 (1.39) | 10.65 (1.69) | 11.18 (1.72) | 10.86 (1.30) |
20 kg | 25 kg | 30 kg | 35 kg | ||||||
---|---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | Male | Female | ||
Joint Angle (deg) | Ankle a | 18.97 (7.62) | 24.36 (6.50) | 17.92 (7.39) | 22.65 (8.80) | 18.79 (7.86) | 24.96 (6.98) | 17.92 (6.95) | 24.99 (7.83) |
Knee a | 42.15 (5.52) | 48.83 (5.95) | 42.65 (5.65) | 48.27 (5.68) | 43.38 (5.38) | 48.24 (5.12) | 41.32 (5.76) | 47.64 (4.77) | |
Angular Velocity (rad/s) | Ankle | −23.24 (34.4) | −17.33 (37.3) | −26.72 (47.0) | −6.69 (21.62) | −21.17 (56.7) | −10.34 (25.1) | −14.86 (38.3) | −6.81 (36.0) |
Knee a | −52.93 (32.0) | −26.29 (38.6) | −67.50 (37.9) | −26.67 (45.9) | −68.79 (46.6) | −27.09 (45.6) | −62.34 (49.1) | −17.19 (27.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagers, K.D.; Lobb, N.J.; Fain, A.C.; Seymore, K.D.; Brown, T.N. Sex Impact on Knee and Ankle Muscle Extensor Forces during Loaded Running. Biomechanics 2022, 2, 421-430. https://doi.org/10.3390/biomechanics2030032
Wagers KD, Lobb NJ, Fain AC, Seymore KD, Brown TN. Sex Impact on Knee and Ankle Muscle Extensor Forces during Loaded Running. Biomechanics. 2022; 2(3):421-430. https://doi.org/10.3390/biomechanics2030032
Chicago/Turabian StyleWagers, Kade D., Nicholas J. Lobb, AuraLea C. Fain, Kayla D. Seymore, and Tyler N. Brown. 2022. "Sex Impact on Knee and Ankle Muscle Extensor Forces during Loaded Running" Biomechanics 2, no. 3: 421-430. https://doi.org/10.3390/biomechanics2030032
APA StyleWagers, K. D., Lobb, N. J., Fain, A. C., Seymore, K. D., & Brown, T. N. (2022). Sex Impact on Knee and Ankle Muscle Extensor Forces during Loaded Running. Biomechanics, 2(3), 421-430. https://doi.org/10.3390/biomechanics2030032