Low-Temperature Solution Combustion-Synthesized CuSNanoparticulated Functional Thin Films: Structural and Optoelectronic Characterization Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of CuS NP Films
2.3. Device Fabrication
2.4. Characterization
3. Results and Discussion
3.1. Synthesis and Characterization of CuS Nanoparticles
3.2. Blade-Coating-Processed Thin Films of CuS NPs
3.3. Device Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coughlan, C.; Ibáñez, M.; Dobrozhan, O.; Singh, A.; Cabot, A.; Ryan, K.M. Compound Copper Chalcogenide Nanocrystals. Chem. Rev. 2017, 117, 5865–6109. [Google Scholar] [CrossRef] [PubMed]
- Shamraiz, U.; Hussain, R.A.; Badshah, A. Fabrication and Applications of Copper Sulfide (CuS) Nanostructures. J. Solid State Chem. 2016, 238, 25–40. [Google Scholar] [CrossRef]
- Masar, M.; Urbanek, M.; Urbanek, P.; Machovska, Z.; Maslik, J.; Yadav, R.S.; Skoda, D.; Machovsky, M.; Kuritka, I. Synthesis, Characterization and Examination of Photocatalytic Performance of Hexagonal Covellite CuS Nanoplates. Mater. Chem. Phys. 2019, 237, 121823. [Google Scholar] [CrossRef]
- Kaur, M.; Nagaraja, C.M. Template-Free Synthesis of ZnS Nanocrystals with a New Sulfur Source and Their Photocatalytic Study. Mater. Lett. 2015, 154, 90–93. [Google Scholar] [CrossRef]
- Arunkumar, S.; Tamilselvan, S.; Ashokkumar, T.; Geetha, R.; Govindaraju, K.; Ganesh Kumar, V.; Singaravelu, G.; Vijai Anand, K. One-Pot Room Temperature Novel Synthesis of Water-Soluble CdS Nanotriangles via Green Route. Mater. Lett. 2014, 134, 225–228. [Google Scholar] [CrossRef]
- Papadas, I.T.; Ioakeimidis, A.; Vamvasakis, I.; Eleftheriou, P.; Armatas, G.S.; Choulis, S.A. All-Inorganic p−n Heterojunction Solar Cells by Solution Combustion Synthesis Using N-Type FeMnO3 Perovskite Photoactive Layer. Front. Chem. 2021, 9, 754487. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, J.; Wu, T.; Li, L.; Luo, W.; Jiang, W.; Wang, L. Nanostructured Binary Copper Chalcogenides: Synthesis Strategies and Common Applications. Nanoscale 2018, 10, 15130–15163. [Google Scholar] [CrossRef] [PubMed]
- Vamvasakis, I.; Andreou, E.K.; Armatas, G.S. Mesoporous Dual-Semiconductor ZnS/CdS Nanocomposites as Efficient Visible Light Photocatalysts for Hydrogen Generation. Nanomaterials 2023, 13, 2426. [Google Scholar] [CrossRef]
- Wang, K.; Tan, G. Synthesis and Optical Properties of CuS Nanocrystals by Mechanical Alloying Process. Curr. Nanosci. 2010, 6, 163–168. [Google Scholar] [CrossRef]
- Pejjai, B.; Reddivari, M.; Kotte, T.R.R. Phase Controllable Synthesis of CuS Nanoparticles by Chemical Co-Precipitation Method: Effect of Copper Precursors on the Properties of CuS. Mater. Chem. Phys. 2020, 239, 122030. [Google Scholar] [CrossRef]
- Zeinodin, R.; Jamali-Sheini, F. In-Doped CuS Nanostructures: Ultrasonic Synthesis, Physical Properties, and Enhanced Photocatalytic Behavior. Phys. B Condens. Matter 2019, 570, 148–156. [Google Scholar] [CrossRef]
- Safrani, T.; Jopp, J.; Golan, Y. A Comparative Study of the Structure and Optical Properties of Copper Sulfide Thin Films Chemically Deposited on Various Substrates. RSC Adv. 2013, 3, 23066–23074. [Google Scholar] [CrossRef]
- Woods-Robinson, R.; Han, Y.; Zhang, H.; Ablekim, T.; Khan, I.; Persson, K.A.; Zakutayev, A. Wide Band Gap Chalcogenide Semiconductors. Chem. Rev. 2020, 120, 4007–4055. [Google Scholar] [CrossRef]
- Ramamoorthy, C.; Rajendran, V. Synthesis and Characterization of CuS Nanostructures: Structural, Optical, Electrochemical and Photocatalytic Activity by the Hydro/Solvothermal Process. Int. J. Hydrogen Energy 2017, 42, 26454–26463. [Google Scholar] [CrossRef]
- Thongtem, S.; Wichasilp, C.; Thongtem, T. Transient Solid-State Production of Nanostructured CuS Flowers. Mater. Lett. 2009, 63, 2409–2412. [Google Scholar] [CrossRef]
- Justin Raj, C.; Kim, B.C.; Cho, W.J.; Lee, W.G.; Seo, Y.; Yu, K.H. Electrochemical Capacitor Behavior of Copper Sulfide (CuS) Nanoplatelets. J. Alloys Compd. 2014, 586, 191–196. [Google Scholar] [CrossRef]
- Thongtem, T.; Pilapong, C.; Thongtem, S. Large-Scale Synthesis of CuSHexaplates in Mixed Solvents Using a Solvothermal Method. Mater. Lett. 2010, 64, 111–114. [Google Scholar] [CrossRef]
- Salavati-Niasari, M.; Alizadeh, S.; Mousavi-Kamazani, M.; Mir, N.; Rezaei, O.; Ahmadi, E. Surfactant-Free Fabrication of Copper Sulfides (CuS, Cu2S) via Hydrothermal Method. J. Clust. Sci. 2013, 24, 1181–1191. [Google Scholar] [CrossRef]
- Grozdanov, I.; Najdoski, M. Optical and Electrical Properties of Copper Sulfide Films of Variable Composition. J. Solid State Chem. 1995, 114, 469–475. [Google Scholar] [CrossRef]
- Isac, L.; Popovici, I.; Enesca, A.; Duta, A. Copper Sulfide (CuxS) Thin Films as Possible p-Type Absorbers in 3D Solar Cells. Energy Procedia 2010, 2, 71–78. [Google Scholar] [CrossRef]
- Goel, S.; Chen, F.; Cai, W. Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics. Small 2014, 10, 631–645. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Ge, X.; Hu, H.; Yao, L.; Han, C.; Zhao, D. Template-Free and Green Sonochemical Synthesis of Hierarchically Structured CuS Hollow Microspheres Displaying Excellent Fenton-like Catalytic Activities. CrystEngComm 2014, 16, 2738–2745. [Google Scholar] [CrossRef]
- Tanveer, M.; Cao, C.; Ali, Z.; Aslam, I.; Idrees, F.; Khan, W.S.; But, F.K.; Tahir, M.; Mahmood, N. Template Free Synthesis of CuS Nanosheet-Based Hierarchical Microspheres: An Efficient Natural Light Driven Photocatalyst. CrystEngComm 2014, 16, 5290–5300. [Google Scholar] [CrossRef]
- Zhao, B.; Shao, G.; Fan, B.; Zhao, W.; Xie, Y.; Zhang, R. Synthesis of Flower-like CuS Hollow Microspheres Based on Nanoflakes Self-Assembly and Their Microwave Absorption Properties. J. Mater. Chem. A 2015, 3, 10345–10352. [Google Scholar] [CrossRef]
- Zhang, W.; Wen, X.; Yang, S. Synthesis and Characterization of Uniform Arrays of Copper Sulfide Nanorods Coated with Nanolayers of Polypyrrole. Langmuir 2003, 19, 4420–4426. [Google Scholar] [CrossRef]
- Tanveer, M.; Cao, C.; Aslam, I.; Ali, Z.; Idrees, F.; Tahir, M.; Khan, W.S.; Butt, F.K.; Mahmood, A. Effect of the Morphology of CuS upon the Photocatalytic Degradation of Organic Dyes. RSC Adv. 2014, 4, 63447–63456. [Google Scholar] [CrossRef]
- Prakash, A.; Dan, M.; Yu, S.; Wei, S.; Li, Y.; Wang, F.; Zhou, Y. In2S3/CuS Nanosheet Composite: An Excellent Visible Light Photocatalyst for H2 Production from H2S. Sol. Energy Mater. Sol. Cells 2018, 180, 205–212. [Google Scholar] [CrossRef]
- Sagade, A.A.; Sharma, R. Copper Sulphide (CuxS) as an Ammonia Gas Sensor Working at Room Temperature. Sens. Actuators B Chem. 2008, 133, 135–143. [Google Scholar] [CrossRef]
- Ding, C.; Wang, Z.; Zhong, H.; Zhang, S. Ultrasensitive Chemiluminescence Quantification of Single-Nucleotide Polymorphisms by Using Monobase-Modified Au and CuS Nanoparticles. Biosens. Bioelectron. 2010, 25, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, G.; Gu, A.; Wei, Y.; Fang, B. CuS Nanotubes for Ultrasensitive Nonenzymatic Glucose Sensors. Chem. Commun. 2008, 45, 5945–5947. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, F.; Ji, Y.; Yang, M.; Liu, W.; Wang, W.; Sun, Q.; Zhang, Z.; Zhao, X.; Liu, X. Controllable Synthesis of Various Kinds of Copper Sulfides (CuS, Cu7S4, Cu9S5) for High-Performance Supercapacitors. Dalt. Trans. 2015, 44, 10431–10437. [Google Scholar] [CrossRef] [PubMed]
- Myung, Y.; Jang, D.M.; Cho, Y.J.; Kim, H.S.; Park, J.; Kim, J.U.; Choi, Y.; Lee, C.J. Nonenzymatic Amperometric Glucose Sensing of Platinum, Copper Sulfide, and Tin Oxide Nanoparticle-Carbon Nanotube Hybrid Nanostructures. J. Phys. Chem. C 2009, 113, 1251–1259. [Google Scholar] [CrossRef]
- Bo, X.; Bai, J.; Wang, L.; Guo, L. In Situ Growth of Copper Sulfide Nanoparticles on Ordered Mesoporous Carbon and Their Application as Nonenzymatic Amperometric Sensor of Hydrogen Peroxide. Talanta 2010, 81, 339–345. [Google Scholar] [CrossRef]
- Liu, J.; Xue, D. Rapid and Scalable Route to CuS Biosensors: A Microwave-Assisted Cu-Complex Transformation into CuS Nanotubes for Ultrasensitive Nonenzymatic Glucose Sensor. J. Mater. Chem. 2011, 21, 223–228. [Google Scholar] [CrossRef]
- Qiana, L.; Maoa, J.; Tiana, X.; Yuanb, H.; Xiaoa, D. In Situ Synthesis of CuS Nanotubes on Cu Electrode for Sensitive Nonenzymatic Glucose Sensor. Sens. Actuators B Chem. 2013, 176, 952–959. [Google Scholar] [CrossRef]
- Ku, G.; Zhou, M.; Song, S.; Huang, Q.; Hazle, J.; Li, C. Copper Sulfide Nanoparticles as a New Class of Photoacoustic Contrast Agent for Deep Tissue Imaging at 1064 nm. ACS Nano 2012, 6, 7489–7496. [Google Scholar] [CrossRef]
- Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic Flower-like Cus Superstructures as an Efficient 980 nm Laser-Driven Photothermal Agent for Ablation of Cancer Cells. Adv. Mater. 2011, 23, 3542–3547. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Jiang, F.; Zou, R.; Liu, Q.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic Cu9S5 Nanocrystals: A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells in Vivo. ACS Nano 2011, 5, 9761–9771. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, S.B.; Zou, X.; Hossu, M.; Ma, L.; Yang, C.; Chen, W. Local Field Enhanced Au/CuS Nanocomposites as Efficient Photothermal Transducer Agents for Cancer Treatment. J. Biomed. Nanotechnol. 2012, 8, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Jeon, H.J.; Yang, S.W.; Choi, M.; Vidyasagar, D.; Kim, J.H.; Shim, R.B.; Yun, Υ.; Han, S.; Cho, I.S.; et al. Cost-effective Synthesis of Copper Sulfide Nanoparticles and Flexible Films for Photocatalytic and Antibiotic Applications. J. Mater. Res. Technol. 2024, 28, 1875–1882. [Google Scholar] [CrossRef]
- Al-Hammadi, A.H.; Al-Adhreai, A.A.; Abdulwahab, A.M. An Investigation on the Structural, Morphological, Optical, and Antibacterial Activity of Sr:CuS Nanostructures. Sci. Rep. 2024, 14, 25169. [Google Scholar] [CrossRef] [PubMed]
- Dhasade, S.S.; Patil, J.S.; Kim, J.H.; Han, S.H.; Rath, M.C.; Fulari, V.J. Synthesis of CuS Nanorods Grown at Room Temperature by Electrodeposition Method. Mater. Chem. Phys. 2012, 137, 353–358. [Google Scholar] [CrossRef]
- Mageshwari, K.; Mali, S.S.; Hemalatha, T.; Sathyamoorthy, R.; Patil, P.S. Low Temperature Growth of CuS Nanoparticles by Reflux Condensation Method. Prog. Solid State Chem. 2011, 39, 108–113. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Gu, C.; Zhai, M. Large Scale Synthesis of Uniform CuS Nanotubes by a Sacrificial Templating Method and Their Application as an Efficient Photocatalyst. Mater. Lett. 2013, 99, 31–34. [Google Scholar] [CrossRef]
- Chen, Y.C.; Shi, J.B.; Wu, C.; Chen, C.J.; Lin, Y.T.; Wu, P.F. Fabrication and Optical Properties of CuS Nanowires by Sulfuring Method. Mater. Lett. 2008, 62, 1421–1423. [Google Scholar] [CrossRef]
- Basu, M.; Nazir, R.; Fageria, P.; Pande, S. Construction of CuS/Au Heterostructure through a Simple Photoreduction Route for Enhanced Electrochemical Hydrogen Evolution and Photocatalysis. Sci. Rep. 2016, 6, 34738. [Google Scholar] [CrossRef]
- Basu, M.; Sinha, A.K.; Pradhan, M.; Sarkar, S.; Negishi, Y.; Govind; Pal, T. Evolution of Hierarchical Hexagonal Stacked Plates of CuS from Liquid-Liquid Interface and Its Photocatalytic Application for Oxidative Degradation of Different Dyes under Indoor Lighting. Environ. Sci. Technol. 2010, 44, 6313–6318. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, V.; Gajendiran, J. Nonionic Surfactant Poly(ethane 1,2-Diol)-400 Assisted Solvothermal Synthesis of Copper Monosulfide (CuS) Nanoplates and Their Structural, Topographical, Optical and Luminescent Properties. Mater. Sci. Semicond. Process. 2015, 36, 92–95. [Google Scholar] [CrossRef]
- Mousavi-Kamazani, M.; Zarghami, Z.; Salavati-Niasari, M. Facile and Novel Chemical Synthesis, Characterization, and Formation Mechanism of Copper Sulfide (Cu2S, Cu2S/CuS, CuS) Nanostructures for Increasing the Efficiency of Solar Cells. J. Phys. Chem. C 2016, 120, 2096–2108. [Google Scholar] [CrossRef]
- Ain, Ν.; Nasir, J.A.; Khan, Ζ.; Butlerb, I.S.; Rehman, Z. Copper sulfide nanostructures: Synthesis and biological applications. RSC Adv. 2022, 12, 7550–7567. [Google Scholar] [CrossRef]
- Kumar, P.; Agrawal, N.; Choudhary, S.D.; Gautam, A.K. Highly-Efficient Solution Processed Yellow Organic Light Emitting Diode with Tungsten Trioxide Hole Injection/Transport Layer. IEEE Trans. Nanotechnol. 2020, 19, 61–66. [Google Scholar] [CrossRef]
- Guo, K.; Tang, Z.; Chou, X.; Pan, S.; Wan, C.; Xue, T.; Ding, L.; Wang, X.; Huang, J.; Zhang, F.; et al. Printable Organic Light-Emitting Diodes for next-Generation Visible Light Communications: A Review. Adv. Photonics Nexus 2023, 2, 044001. [Google Scholar] [CrossRef]
- Mohan, V.; Gautam, A.K.; Choudhary, S.D.; Mariam Bee, M.K.; Puviarasi, R.; Saranya, S.; Agrawal, N. Enhanced Performance Organic Light Emitting Diode with CuI:CuPC Composite Hole Transport Layer. IEEE Trans. Nanotechnol. 2020, 19, 699–703. [Google Scholar] [CrossRef]
- Liu, B.; Altintas, Y.; Wang, L.; Shendre, S.; Sharma, M.; Sun, H.; Mutlugun, E.; Demir, H.V. Record High External Quantum Efficiency of 19.2% Achieved in Light-Emitting Diodes of Colloidal Quantum Wells Enabled by Hot-Injection Shell Growth. Adv. Mater. 2020, 32, 9–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Jang, G.P.; Kim, S.Y.; Chae, Y.B.; Lee, K.H.; Moon, D.G.; Kim, C.K. Highly Efficient All-Solution-Processed Quantum Dot Light-Emitting Diodes Using MoOx Nanoparticle Hole Injection Layer. Nanomaterials 2023, 13, 2324. [Google Scholar] [CrossRef]
- Pozov, S.M.; Ioakeimidis, A.; Papadas, I.T.; Sun, C.; Chrusou, A.Z.; Bradley, D.D.C.; Choulis, S.A. Bottom Contact Metal Oxide Interface Modification Improving the Efficiency of Organic Light Emitting Diodes. Materials 2020, 13, 5082. [Google Scholar] [CrossRef] [PubMed]
- So, F.; Kondakov, D. Degradation Mechanisms in Small-Molecule and Polymer Organic Light-Emitting Diodes. Adv. Mater. 2010, 22, 3762–3777. [Google Scholar] [CrossRef]
- De Jong, M.P.; Van Ijzendoorn, L.J.; De Voigt, M.J.A. Stability of the Interface between Indium-Tin-Oxide and Poly(3,4-ethylenedioxythiophene)/Poly(styrenesulfonate) in Polymer Light-Emitting Diodes. Appl. Phys. Lett. 2000, 77, 2255–2257. [Google Scholar] [CrossRef]
- Han, T.H.; Song, W.; Lee, T.W. Elucidating the Crucial Role of Hole Injection Layer in Degradation of Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2015, 7, 3117–3125. [Google Scholar] [CrossRef]
- Zhang, X.; You, F.; Zheng, Q.; Zhang, Z.; Cai, P.; Xue, X.; Xiong, J.; Zhang, J. Solution-Processed MoOx Hole Injection Layer towards Efficient Organic Light-Emitting Diode. Org. Electron. 2016, 39, 43–49. [Google Scholar] [CrossRef]
- Shi, S.; Sadhu, V.; Moubah, R.; Schmerber, G.; Bao, Q.; Silva, S.R.P. Solution-Processable Graphene Oxide as an Efficient Hole Injection Layer for High Luminance Organic Light-Emitting Diodes. J. Mater. Chem. C 2013, 1, 1708–1712. [Google Scholar] [CrossRef]
- Kubelka, P.; Munk, F. Ein Beitrag Zur Optik Der Farbanstriche. Z. Techn. Phys. 1931, 12, 593–601. [Google Scholar]
- Ioakeimidis, A.; Kottaras, A.; Karageorgopoulos, D.; Christia, E.; Sakkopoulos, S.; Vitoratos, E.; Choulis, S.A.; Papadas, I.T. Conductivity Transport Mechanisms of Solution-Processed Spinel Nickel Cobaltite-Based Hole Transporting Layers and Its Implementation as Charge Selective Contact in Organic Photovoltaics. Environ. Sci. Proc. 2023, 26, 63. [Google Scholar] [CrossRef]
- Papadas, I.T.; Ioakeimidis, A.; Armatas, G.S.; Choulis, S.A. Low-Temperature Combustion Synthesis of a Spinel NiCo2O4 Hole Transport Layer for Perovskite Photovoltaics. Adv. Sci. 2018, 5, 1701029. [Google Scholar] [CrossRef] [PubMed]
- Ioakeimidis, A.; Papadas, I.T.; Tsikritzis, D.; Armatas, G.S.; Kennou, S.; Choulis, S.A. Enhanced Photovoltaic Performance of Perovskite Solar Cells by Co-Doped Spinel Nickel Cobaltite Hole Transporting Layer. APL Mater. 2019, 7, 021101. [Google Scholar] [CrossRef]
- Papadas, I.T.; Kota, S.S.; Kanatzidis, M.G.; Armatas, G.S. Templated Assembly of BiFeO3 Nanocrystals into 3D Mesoporous Networks for Catalytic Applications. Nanoscale 2015, 7, 5737–5743. [Google Scholar] [CrossRef]
- Bowmaker, G.A.; Hanna, J.V.; Pakawatchai, C.; Skelton, B.W.; Thanyasirikul, Y.; White, A.H. Crystal Structures and Vibrational Spectroscopy of Copper(l) Thiourea Complexes. Inorg. Chem. 2009, 48, 350–368. [Google Scholar] [CrossRef]
- Bordwell, F.G.; Ji, G.Z. Effects of Structural Changes on Acidities and Homolytic Bond Dissociation Energies of the H–N Bonds in Amidines, Carboxamides, and Thiocarboxamides. J. Am. Chem. Soc. 1991, 113, 8398–8401. [Google Scholar] [CrossRef]
- Liu, F.; Shen, S.; Zhou, F.; Song, N.; Wen, X.; Stride, J.A.; Sun, K.; Yan, C.; Hao, X. Kesterite Cu2ZnSnS4 Thin Film Solar Cells by a Facile DMF-Based Solution Coating Process. J. Mater. Chem. C 2015, 3, 10783–10792. [Google Scholar] [CrossRef]
- Ki, W.; Hillhouse, H.W. Earth-Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non-Toxic Solvent. Adv. Energy Mater. 2011, 1, 732–735. [Google Scholar] [CrossRef]
- Todorov, T.; Hillhouse, H.W.; Aazou, S.; Sekkat, Z.; Vigil-Galán, O.; Deshmukh, S.D.; Agrawal, R.; Bourdais, S.; Valdés, M.; Arnou, P.; et al. Solution-Based Synthesis of Kesterite Thin Film Semiconductors. J. Phys. Energy 2020, 2, 012003. [Google Scholar] [CrossRef]
- Wu, H.; Or, V.W.; Gonzalez-Calzada, S.; Grassian, V.H. CuS Nanoparticles in Humid Environments: Adsorbed Water Enhances the Transformation of CuS to CuSO4. Nanoscale 2020, 12, 19350–19358. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, H.; Lou, Y.; Qiu, X.; Zhu, J.; Burda, C. Plasmonic Cu2−XS Nanocrystals: Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides. J. Am. Chem. Soc. 2009, 131, 4253–4261. [Google Scholar] [CrossRef]
- Ravele, M.P.; Oyewo, O.A.; Onwudiwe, D.C. Controlled Synthesis of CuS and Cu9S5 and Their Application in the Photocatalytic Mineralization of Tetracycline. Catalysts 2021, 11, 899. [Google Scholar] [CrossRef]
- Ayodhya1, D.; Veerabhadram, G. Preparation, Characterization, Photocatalytic, Sensing and Antimicrobial Studies of Calotropis gigantea Leaf Extract Capped CuS NPs by a Green Approach. J. Inorg. Organomet. Polym. 2017, 27, 215–230. [Google Scholar] [CrossRef]
- Lei, H.; Fang, G.; Cheng, F.; Ke, W.; Qin, P.; Song, Z.; Zheng, Q.; Fan, X.; Huang, H.; Zhao, X. Enhanced Efficiency in Organic Solar Cells via in situ Fabricated P-Type Copper Sulfide as the Hole Transporting Layer. Sol. Energy Mater. Sol. Cells 2014, 128, 77–84. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadas, I.T.; Pozov, S.M.; Hamilton, I.; Sims, M.; Vamvasakis, I.; Ioakeimidis, A.; Armatas, G.S.; Bradley, D.D.C.; Choulis, S.A. Low-Temperature Solution Combustion-Synthesized CuSNanoparticulated Functional Thin Films: Structural and Optoelectronic Characterization Studies. Nanoenergy Adv. 2025, 5, 3. https://doi.org/10.3390/nanoenergyadv5010003
Papadas IT, Pozov SM, Hamilton I, Sims M, Vamvasakis I, Ioakeimidis A, Armatas GS, Bradley DDC, Choulis SA. Low-Temperature Solution Combustion-Synthesized CuSNanoparticulated Functional Thin Films: Structural and Optoelectronic Characterization Studies. Nanoenergy Advances. 2025; 5(1):3. https://doi.org/10.3390/nanoenergyadv5010003
Chicago/Turabian StylePapadas, Ioannis T., Sergey M. Pozov, Iain Hamilton, Marc Sims, Ioannis Vamvasakis, Apostolos Ioakeimidis, Gerasimos S. Armatas, Donal D. C. Bradley, and Stelios A. Choulis. 2025. "Low-Temperature Solution Combustion-Synthesized CuSNanoparticulated Functional Thin Films: Structural and Optoelectronic Characterization Studies" Nanoenergy Advances 5, no. 1: 3. https://doi.org/10.3390/nanoenergyadv5010003
APA StylePapadas, I. T., Pozov, S. M., Hamilton, I., Sims, M., Vamvasakis, I., Ioakeimidis, A., Armatas, G. S., Bradley, D. D. C., & Choulis, S. A. (2025). Low-Temperature Solution Combustion-Synthesized CuSNanoparticulated Functional Thin Films: Structural and Optoelectronic Characterization Studies. Nanoenergy Advances, 5(1), 3. https://doi.org/10.3390/nanoenergyadv5010003