Alternative Uses of Luminescent Solar Concentrators
Abstract
:1. Introduction—The Luminescent Solar Concentrator Device
2. LSC Devices as Photochemical Reactors
3. LSC Devices for Applications in Agriculture
3.1. LSC for Controlled Environment Agriculture
3.2. LSC for Microalgal Production
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Debije, M.G.; Verbunt, P.P. Thirty years of luminescent solar concentrator research: Solar energy for the built environment. Adv. Energy Mater. 2012, 2, 12–35. [Google Scholar] [CrossRef]
- McKenna, B.; Evans, R.C. Towards efficient spectral converters through materials design for luminescent solar devices. Adv. Mater. 2017, 29, 1606491. [Google Scholar] [CrossRef] [PubMed]
- Shurcliff, W.A. Radiance Amplification by Multi-Stage Fluorescence System. J. Opt. Soc. Am. 1951, 41, 209. [Google Scholar] [CrossRef]
- Weber, W.; Lambe, J. Luminescent greenhouse collector for solar radiation. Appl. Opt. 1976, 15, 2299–2300. [Google Scholar] [CrossRef]
- Levitt, J.A.; Weber, W.H. Materials for luminescent greenhouse solar collectors. Appl. Opt. 1977, 16, 2684–2689. [Google Scholar] [CrossRef]
- Van Sark, W.G.; Barnham, K.W.; Slooff, L.H.; Chatten, A.J.; Büchtemann, A.; Meyer, A.; McCormack, S.J.; Koole, R.; Farrell, D.J.; Bose, R. Luminescent Solar Concentrators-A review of recent results. Opt. Express 2008, 16, 21773–21792. [Google Scholar] [CrossRef]
- Currie, M.J.; Mapel, J.K.; Heidel, T.D.; Goffri, S.; Baldo, M.A. High-efficiency organic solar concentrators for photovoltaics. Science 2008, 321, 226–228. [Google Scholar] [CrossRef]
- Roncali, J. Luminescent solar collectors: Quo vadis? Adv. Energy Mater. 2020, 10, 2001907. [Google Scholar] [CrossRef]
- Yablonovitch, E. Thermodynamics of the fluorescent planar concentrator. JOSA 1980, 70, 1362–1363. [Google Scholar] [CrossRef]
- Bronstein, N.D.; Yao, Y.; Xu, L.; O’Brien, E.; Powers, A.S.; Ferry, V.E.; Alivisatos, A.P.; Nuzzo, R.G. Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration. ACS Photonics 2015, 2, 1576–1583. [Google Scholar] [CrossRef]
- Meinardi, F.; Bruni, F.; Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2017, 2, 17072. [Google Scholar] [CrossRef]
- Zhao, Y.; Meek, G.A.; Levine, B.G.; Lunt, R.R. Near-infrared harvesting transparent luminescent solar concentrators. Adv. Opt. Mater. 2014, 2, 606–611. [Google Scholar] [CrossRef]
- Debije, M.G.; Verbunt, P.P.; Nadkarni, P.J.; Velate, S.; Bhaumik, K.; Nedumbamana, S.; Rowan, B.C.; Richards, B.S.; Hoeks, T.L. Promising fluorescent dye for solar energy conversion based on a perylene perinone. Appl. Opt. 2011, 50, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhao, P.; Wilson, L.J.; Subbiah, J.; Yang, H.; Mulvaney, P.; Jones, D.J.; Ghiggino, K.P.; Wong, W.W. High-performance large-area luminescence solar concentrator incorporating a donor–emitter fluorophore system. ACS Energy Lett. 2019, 4, 1839–1844. [Google Scholar] [CrossRef]
- Zhao, Y.; Lunt, R.R. Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors. Adv. Energy Mater. 2013, 3, 1143–1148. [Google Scholar] [CrossRef]
- Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 2009, 109, 4283–4374. [Google Scholar] [CrossRef] [Green Version]
- Nolasco, M.M.; Vaz, P.M.; Freitas, V.T.; Lima, P.P.; André, P.S.; Ferreira, R.A.; Vaz, P.D.; Ribeiro-Claro, P.; Carlos, L.D. Engineering highly efficient Eu (III)-based tri-ureasil hybrids toward luminescent solar concentrators. J. Mater. Chem. A 2013, 1, 7339–7350. [Google Scholar] [CrossRef]
- Meinardi, F.; Colombo, A.; Velizhanin, K.A.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V.I.; Brovelli, S. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 2014, 8, 392–399. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, Y.; Benetti, D.; Ma, D.; Rosei, F. Perovskite quantum dots integrated in large-area luminescent solar concentrators. Nano Energy 2017, 37, 214–223. [Google Scholar] [CrossRef]
- Zhao, H.; Benetti, D.; Tong, X.; Zhang, H.; Zhou, Y.; Liu, G.; Ma, D.; Sun, S.; Wang, Z.M.; Wang, Y.; et al. Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots. Nano Energy 2018, 50, 756–765. [Google Scholar] [CrossRef]
- Liu, X.; Luo, B.; Liu, J.; Jing, D.; Benetti, D.; Rosei, F. Eco-friendly quantum dots for liquid luminescent solar concentrators. J. Mater. Chem. A 2020, 8, 1787–1798. [Google Scholar] [CrossRef]
- Liu, X.; Benetti, D.; Rosei, F. Semi-transparent luminescent solar concentrators based on plasmon-enhanced carbon dots. J. Mater. Chem. A 2021, 9, 23345–23352. [Google Scholar] [CrossRef]
- Wu, K.; Li, H.; Klimov, V.I. Tandem luminescent solar concentrators based on engineered quantum dots. Nat. Photonics 2018, 12, 105–110. [Google Scholar] [CrossRef]
- Zhou, Y.; Benetti, D.; Fan, Z.; Zhao, H.; Ma, D.; Govorov, A.O.; Vomiero, A.; Rosei, F. Near Infrared, Highly Efficient Luminescent Solar Concentrators. Adv. Energy Mater. 2016, 6, 1501913. [Google Scholar] [CrossRef]
- Griffini, G.; Levi, M.; Turri, S. Novel crosslinked host matrices based on fluorinated polymers for long-term durability in thin-film luminescent solar concentrators. Sol. Energy Mater. Sol. Cells 2013, 118, 36–42. [Google Scholar] [CrossRef]
- Kaniyoor, A.; McKenna, B.; Comby, S.; Evans, R.C. Design and response of high-efficiency, planar, doped luminescent solar concentrators using organic–inorganic di-ureasil waveguides. Adv. Opt. Mater. 2016, 4, 444–456. [Google Scholar] [CrossRef] [Green Version]
- Ciamician, G. The photochemistry of the future. Science 1912, 36, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Cambie, D.; Bottecchia, C.; Straathof, N.J.; Hessel, V.; Noel, T. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 2016, 116, 10276–10341. [Google Scholar] [CrossRef]
- Sambiagio, C.; Noël, T. Flow photochemistry: Shine some light on those tubes! Trends Chem. 2020, 2, 92–106. [Google Scholar] [CrossRef] [Green Version]
- Bahnemann, D. Photocatalytic water treatment: Solar energy applications. Sol. Energy 2004, 77, 445–459. [Google Scholar] [CrossRef]
- Debije, M.G.; Rajkumar, V.A. Direct versus indirect illumination of a prototype luminescent solar concentrator. Solar Energy 2015, 122, 334–340. [Google Scholar] [CrossRef]
- Cambié, D.; Zhao, F.; Hessel, V.; Debije, M.G.; Noël, T. A Leaf-Inspired Luminescent Solar Concentrator for Energy-Efficient Continuous-Flow Photochemistry. Angew. Chem. 2017, 129, 1070–1074. [Google Scholar] [CrossRef] [Green Version]
- Romero, N.A.; Nicewicz, D.A. Organic photoredox catalysis. Chem. Rev. 2016, 116, 10075–10166. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Cambié, D.; Hessel, V.; Debije, M.G.; Noël, T. Real-time reaction control for solar production of chemicals under fluctuating irradiance. Green Chem. 2018, 20, 2459–2464. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, G.X.; Lira, J.O.; Cambié, D.; Noël, T.; Riella, H.G.; Padoin, N.; Soares, C. CFD analysis of a luminescent solar concentrator-based photomicroreactor (LSC-PM) with feedforward control applied to the synthesis of chemicals under fluctuating light intensity. Chem. Eng. Res. Des. 2020, 153, 626–634. [Google Scholar] [CrossRef]
- Cambié, D.; Zhao, F.; Hessel, V.; Debije, M.G.; Noël, T. Every photon counts: Understanding and optimizing photon paths in luminescent solar concentrator-based photomicroreactors (LSC-PMs). React. Chem. Eng. 2017, 2, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Cambie, D.; Janse, J.; Wieland, E.W.; Kuijpers, K.P.L.; Hessel, V.; Debije, M.G.; Noel, T. Scale-up of a Luminescent Solar Concentrator-Based Photomicroreactor via Numbering-up. ACS Sustain. Chem. Eng. 2018, 6, 422–429. [Google Scholar] [CrossRef]
- Lee, J.N.; Park, C.; Whitesides, G.M. Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Anal. Chem. 2003, 75, 6544–6554. [Google Scholar] [CrossRef]
- Cambié, D.; Dobbelaar, J.; Riente, P.; Vanderspikken, J.; Shen, C.; Seeberger, P.H.; Gilmore, K.; Debije, M.G.; Noël, T. Energy-efficient solar photochemistry with luminescent solar concentrator based photomicroreactors. Angew. Chem. 2019, 131, 14512–14516. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhu, Z.; Liu, B.; Li, C.; Yu, Y.; Tao, S.; Li, T. Fluorescent Fluid in 3D-Printed Microreactors for the Acceleration of Photocatalytic Reactions. Adv. Sci. 2019, 6, 1900583. [Google Scholar] [CrossRef]
- Shcherbatyuk, G.; Inman, R.; Wang, C.; Winston, R.; Ghosh, S. Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators. Appl. Phys. Lett. 2010, 96, 191901. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Yang, L.; Yu, Y.; Zhang, L.; Tao, S. Scale-up design of a fluorescent fluid photochemical microreactor by 3D printing. ACS Omega 2020, 5, 7666–7674. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Zheng, Y.; Li, Y.; Du, L.; Liu, W. Photochemical microfluidic synthesis of vitamin D3 by improved light sources with photoluminescent substrates. Chin. J. Chem. Eng. 2021, 29, 204–211. [Google Scholar] [CrossRef]
- Fan, J.; Zheng, Y.; Yang, Y.; Du, L.; Wang, Y. Enhancement of ultraviolet B irradiation with a photoluminescent composite film and its application in photochemical microfluidic synthesis. Ind. Eng. Chem. Res. 2020, 59, 12870–12878. [Google Scholar] [CrossRef]
- Buzzetti, L.; Crisenza, G.E.; Melchiorre, P. Mechanistic studies in photocatalysis. Angew. Chem. Int. Ed. 2019, 58, 3730–3747. [Google Scholar] [CrossRef] [Green Version]
- OECD/FAO. OECD-FAO Agricultural Outlook 2021–2030; OECD Publishing Paris: Paris, France, 2021. [Google Scholar]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef] [Green Version]
- McCree, K.J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 1971, 9, 191–216. [Google Scholar] [CrossRef]
- Kozai, T. Why LED lighting for urban agriculture? In LED Lighting for Urban Agriculture; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–18. [Google Scholar]
- Neo, D.C.J.; Ong, M.M.X.; Lee, Y.Y.; Teo, E.J.; Ong, Q.; Tanoto, H.; Xu, J.; Ong, K.S.; Suresh, V. Shaping and Tuning Lighting Conditions in Controlled Environment Agriculture: A Review. ACS Agric. Sci. Technol. 2022, 2, 3–16. [Google Scholar] [CrossRef]
- Zarka, Y.; Zarka, A. New PVC fluorescent film for cladding greenhouses, the results from three years’ trials. Plasticulture 1990, 85, 6–16. [Google Scholar]
- Pearson, S.; Wheldon, A.; Hadley, P. Radiation transmission and fluorescence of nine greenhouse cladding materials. J. Agric. Eng. Res. 1995, 62, 61–69. [Google Scholar] [CrossRef]
- Hammam, M.; El-Mansy, M.; El-Bashir, S.; El-Shaarawy, M. Performance evaluation of thin-film solar concentrators for greenhouse applications. Desalination 2007, 209, 244–250. [Google Scholar] [CrossRef]
- Kittas, C.; Baille, A. Determination of the spectral properties of several greenhouse cover materials and evaluation of specific parameters related to plant response. J. Agric. Eng. Res. 1998, 71, 193–202. [Google Scholar] [CrossRef]
- Novoplansky, A.; Sachs, T.; Cohen, D.; Bar, R.; Bodenheimer, J.; Reisfeld, R. Increasing plant productivity by changing the solar spectrum. Sol. Energy Mater. 1990, 21, 17–23. [Google Scholar] [CrossRef]
- Corrado, C.; Leow, S.W.; Osborn, M.; Carbone, I.; Hellier, K.; Short, M.; Alers, G.; Carter, S.A. Power generation study of luminescent solar concentrator greenhouse. J. Renew. Sustain. Energy 2016, 8, 043502. [Google Scholar] [CrossRef] [Green Version]
- Hemming, S.; Van Os, E.; Hemming, J.; Dieleman, J. The effect of new developed fluorescent greenhouse films on the growth of Fragaria × ananassa ‘Elsanta’. Eur. J. Hortic. Sci. 2006, 71, 145–154. [Google Scholar]
- Xia, Q.; Batentschuk, M.; Osvet, A.; Richter, P.; Häder, D.P.; Schneider, J.; Brabec, C.J.; Wondraczek, L.; Winnacker, A. Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material. Opt. Express 2013, 21, A909–A916. [Google Scholar] [CrossRef] [Green Version]
- Puoci, F.; Iemma, F.; Spizzirri, U.G.; Cirillo, G.; Curcio, M.; Picci, N. Polymer in agriculture: A review. Am. J. Agric. Biol. Sci. 2008, 3, 299–314. [Google Scholar] [CrossRef] [Green Version]
- Khramov, R.N.; Kreslavski, V.D.; Svidchenko, E.A.; Surin, N.M.; Kosobryukhov, A.A. Influence of photoluminophore-modified agro textile spunbond on growth and photosynthesis of cabbage and lettuce plants. Opt. Express 2019, 27, 31967–31977. [Google Scholar] [CrossRef]
- Talapin, D.V.; Lee, J.-S.; Kovalenko, M.V.; Shevchenko, E.V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458. [Google Scholar] [CrossRef]
- Makarov, N.S.; Ramasamy, K.; Jackson, A.; Velarde, A.; Castaneda, C.; Archuleta, N.; Hebert, D.; Bergren, M.R.; McDaniel, H. Fiber-coupled luminescent concentrators for medical diagnostics, agriculture, and telecommunications. ACS Nano 2019, 13, 9112–9121. [Google Scholar] [CrossRef]
- Parrish, C.H.; Hebert, D.; Jackson, A.; Ramasamy, K.; McDaniel, H.; Giacomelli, G.A.; Bergren, M.R. Optimizing spectral quality with quantum dots to enhance crop yield in controlled environments. Commun. Biol. 2021, 4, 124. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://ubigro.com (accessed on 24 June 2022).
- Available online: https://www.lleafgrow.com (accessed on 24 June 2022).
- Available online: http://www.soliculture.com (accessed on 24 June 2022).
- Loik, M.E.; Carter, S.A.; Alers, G.; Wade, C.E.; Shugar, D.; Corrado, C.; Jokerst, D.; Kitayama, C. Wavelength-selective solar photovoltaic systems: Powering greenhouses for plant growth at the food-energy-water nexus. Earth’s Future 2017, 5, 1044–1053. [Google Scholar] [CrossRef]
- Chavan, S.G.; Maier, C.; Alagoz, Y.; Filipe, J.C.; Warren, C.R.; Lin, H.; Jia, B.; Loik, M.E.; Cazzonelli, C.I.; Chen, Z.H.; et al. Light-limited photosynthesis under energy-saving film decreases eggplant yield. Food Energy Secur. 2020, 9, e245. [Google Scholar] [CrossRef]
- Shen, L.; Lou, R.; Park, Y.; Guo, Y.; Stallknecht, E.J.; Xiao, Y.; Rieder, D.; Yang, R.; Runkle, E.S.; Yin, X. Increasing greenhouse production by spectral-shifting and unidirectional light-extracting photonics. Nat. Food 2021, 2, 434–441. [Google Scholar] [CrossRef]
- He, X.; Maier, C.; Chavan, S.G.; Zhao, C.-C.; Alagoz, Y.; Cazzonelli, C.; Ghannoum, O.; Tissue, D.T.; Chen, Z.-H. Light-altering cover materials and sustainable greenhouse production of vegetables: A review. Plant Growth Regul. 2021, 95, 1–17. [Google Scholar] [CrossRef]
- Olaizola, M. Commercial development of microalgal biotechnology: From the test tube to the marketplace. Biomol. Eng. 2003, 20, 459–466. [Google Scholar] [CrossRef]
- Huang, G.; Chen, F.; Wei, D.; Zhang, X.; Chen, G. Biodiesel production by microalgal biotechnology. Appl. Energy 2010, 87, 38–46. [Google Scholar] [CrossRef]
- Chiu, S.-Y.; Kao, C.-Y.; Huang, T.-T.; Lin, C.-J.; Ong, S.-C.; Chen, C.-D.; Chang, J.-S.; Lin, C.-S. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour. Technol. 2011, 102, 9135–9142. [Google Scholar] [CrossRef]
- Tredici, M.R.; Zittelli, G.C. Efficiency of sunlight utilization: Tubular versus flat photobioreactors. Biotechnol. Bioeng. 1998, 57, 187–197. [Google Scholar] [CrossRef]
- Carvalho, A.P.; Silva, S.O.; Baptista, J.M.; Malcata, F.X. Light requirements in microalgal photobioreactors: An overview of biophotonic aspects. Appl. Microbiol. Biotechnol. 2011, 89, 1275–1288. [Google Scholar] [CrossRef]
- Abu-Ghosh, S.; Fixler, D.; Dubinsky, Z.; Iluz, D. Flashing light in microalgae biotechnology. Bioresour. Technol. 2016, 203, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Grobbelaar, J.U. Turbulence in mass algal cultures and the role of light/dark fluctuations. J. Appl. Phycol. 1994, 6, 331–335. [Google Scholar] [CrossRef]
- Grobbelaar, J.U.; Nedbal, L.; Tichý, V. Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J. Appl. Phycol. 1996, 8, 335–343. [Google Scholar] [CrossRef]
- Xue, S.; Zhang, Q.; Wu, X.; Yan, C.; Cong, W. A novel photobioreactor structure using optical fibers as inner light source to fulfill flashing light effects of microalgae. Bioresour. Technol. 2013, 138, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Helbling, E.W.; Villafane, V.; Ferrario, M.; Holm-Hansen, O. Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species. Mar. Ecol. Prog. Ser. 1992, 89–100. [Google Scholar] [CrossRef]
- Delavari Amrei, H.; Ranjbar, R.; Rastegar, S.; Nasernejad, B.; Nejadebrahim, A. Using fluorescent material for enhancing microalgae growth rate in photobioreactors. J. Appl. Phycol. 2015, 27, 67–74. [Google Scholar] [CrossRef]
- Prokop, A.; Quinn, M.; Fekri, M.; Murad, M.; Ahmed, S. Spectral shifting by dyes to enhance algae growth. Biotechnol. Bioeng. 1984, 26, 1313–1322. [Google Scholar] [CrossRef]
- Mohsenpour, S.F.; Richards, B.; Willoughby, N. Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresour. Technol. 2012, 125, 75–81. [Google Scholar] [CrossRef]
- Detweiler, A.M.; Mioni, C.E.; Hellier, K.L.; Allen, J.J.; Carter, S.A.; Bebout, B.M.; Fleming, E.E.; Corrado, C.; Prufert-Bebout, L.E. Evaluation of wavelength selective photovoltaic panels on microalgae growth and photosynthetic efficiency. Algal Res. 2015, 9, 170–177. [Google Scholar] [CrossRef]
- Delavari Amrei, H.; Nasernejad, B.; Ranjbar, R.; Rastegar, S. Spectral shifting of UV-A wavelengths to blue light for enhancing growth rate of cyanobacteria. J. Appl. Phycol. 2014, 26, 1493–1500. [Google Scholar] [CrossRef]
- Raeisossadati, M.; Moheimani, N.R. Can luminescent solar concentrators increase microalgal growth on anaerobically digested food effluent? J. Appl. Phycol. 2020, 32, 3703–3710. [Google Scholar] [CrossRef]
- Sforza, E.; Barbera, E.; Bertucco, A. Improving the photoconversion efficiency: An integrated photovoltaic-photobioreactor system for microalgal cultivation. Algal Res. 2015, 10, 202–209. [Google Scholar] [CrossRef]
- Banal, J.L.; White, J.M.; Ghiggino, K.P.; Wong, W.W. Concentrating aggregation-induced fluorescence in planar waveguides: A proof-of-principle. Sci. Rep. 2014, 4, 4635. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Li, J.; Chua, M.H.; Yan, H.; Tang, B.Z.; Xu, J. Poly (acrylate) with a tetraphenylethene pendant with aggregation-induced emission (AIE) characteristics: Highly stable AIE-active polymer nanoparticles for effective detection of nitro compounds. Polym. Chem. 2014, 5, 5628–5637. [Google Scholar] [CrossRef]
- Mei, J.; Hong, Y.; Lam, J.W.; Qin, A.; Tang, Y.; Tang, B.Z. Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429–5479. [Google Scholar] [CrossRef]
- Banal, J.L.; Ghiggino, K.P.; Wong, W.W. Efficient light harvesting of a luminescent solar concentrator using excitation energy transfer from an aggregation-induced emitter. Phys. Chem. Chem. Phys. 2014, 16, 25358–25363. [Google Scholar] [CrossRef] [Green Version]
- Lyu, G.; Kendall, J.; Meazzini, I.; Preis, E.; Bayseç, S.; Scherf, U.; Clement, S.; Evans, R.C. Luminescent solar concentrators based on energy transfer from an aggregation-induced emitter conjugated polymer. ACS Appl. Polym. Mater. 2019, 1, 3039–3047. [Google Scholar] [CrossRef] [Green Version]
- Lyu, G.; Southern, T.J.; Charles, B.L.; Roger, M.; Gerbier, P.; Clément, S.; Evans, R.C. Aggregation-induced emission from silole-based lumophores embedded in organic–inorganic hybrid hosts. J. Mater. Chem. C 2021, 9, 13914–13925. [Google Scholar] [CrossRef]
- Hwang, T.G.; Kim, G.-Y.; Han, J.-I.; Kim, S.; Kim, J.P. Enhancement of Lipid Productivity of Chlorella sp. Using Light-Converting Red Fluorescent Films Based on Aggregation-Induced Emission. ACS Sustain. Chem. Eng. 2020, 8, 15888–15897. [Google Scholar] [CrossRef]
- Hwang, T.G.; Kim, G.-Y.; Han, J.-I.; Park, J.M.; Kim, J.P. Highly efficient light-converting films based on diketopyrrolopyrrole with deep-red aggregation-induced emission for enhancing the lipid productivity of Chlorella sp. Sustain. Energy Fuels 2021, 5, 5205–5215. [Google Scholar] [CrossRef]
- Wondraczek, L.; Batentschuk, M.; Schmidt, M.A.; Borchardt, R.; Scheiner, S.; Seemann, B.; Schweizer, P.; Brabec, C.J. Solar spectral conversion for improving the photosynthetic activity in algae reactors. Nat. Commun. 2013, 4, 2047. [Google Scholar] [CrossRef] [PubMed]
- Yalçın, R.A.; Ertürk, H. Improving crop production in solar illuminated vertical farms using fluorescence coatings. Biosyst. Eng. 2020, 193, 25–36. [Google Scholar] [CrossRef]
Requirements | Advantages | Issues |
---|---|---|
|
|
|
Requirements | Advantages | Issues |
---|---|---|
|
|
|
LSC Type | Luminophore | Absorption Range | Emission Range | Overall Effect on PAR | Plant Type | Result | Ref |
---|---|---|---|---|---|---|---|
PVC Thin film | Dye | N/A | 660 nm | N/A | maize, melons, tomatoes | Improved growth | [51] |
PE-thin film | Dye | UV range | 400–480 nm | decreased | N/A | Only 16% of the light was emitted toward the ground | [52] |
PVC-thin film | Dye | 400–600 nm | 600–700 nm | decreased | N/A | energetic efficiency (21%) of the fluorescence process was not enough to compensate for the loss in the PAR region | [54] |
PE-thin film | Dye | 400–600 nm | 600–700 nm | N/A | tomatoes, roses | 19% increase in tomato yield, 26% increase in flowering branches in rose bushes | [55] |
LDPE film | Dye | UV range | 410–480 nm | increased (+1%) | strawberry | strawberry production to increased +11% (increased fruit number), less sweet | [57] |
LDPE film | Dye | UV range | 610–630 nm | decreased (−1%) | strawberry | no significant changes | [57] |
LDPE film | Dye | up to 600 nm | 600–690 nm | decreased (−24%) | strawberry | 10% lower fruit production | [57] |
Resin coated on reflective film | Phosphor, Ca0.4Sr0.6S:Eu2+ | up to 600 nm | 600–725 nm | N/A | Spinacia oleracea | photosynthetic activity increased by 25% | [58] |
PP-fabric | Phosphor, Y2O2SEu | up to 400 nm | 600–725 nm | decreased | cabbage, lettuce | total biomass of plants increased by 30–50%, increased rate of photosynthesis and water-use efficiency | [60] |
PET embedded acrylate-based Fibers | CuInSexS2-x/ZnS QDs | up to 500 nm | around 600 nm | increased at lower canopy, decreased otherwise | tomatoes | 7% improvement in weight yield | [62] |
PET embedded acrylate-based thin films | CuInSexS2-x/ZnS QDs | up to 600 nm | 500–700 nm | no significant change | lettuce | 13% increased edible dry mass, 11% increased edible fresh mass, 8% increased leaf area | [63] |
PET embedded acrylate-based thin films | CuInSexS2-x/ZnS QDs | up to 650 nm | 600–800 nm | decreased (−11%) | lettuce | 9% increased edible dry mass, 11% increased edible fresh mass, 13% increased leaf area | [63] |
PMMA thin film + PV embedded | Dye | up to 625 nm | 550–700 nm | decreased (5–30%) | tomatoes | no clear difference in fruit yields and quality | [67] |
Commercial thin film (Solar Gard) | Dye (SG80) | 99% up to 400 nm | Not specified | decreased (−25%) | eggplants | 8% decrease in heat load and 18% reduction in water and nutrient consumption, 25% reduction in total fruit yield | [68] |
PMMA microdome thin film | Dye (LF305) | up to 600 nm | 550–700 nm | decreased | lettuce | 20% increase in fresh weight, 30% increase in dry weight, overall extension of the growth of lettuce | [69] |
Requirements | Advantages | Issues |
---|---|---|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benetti, D.; Rosei, F. Alternative Uses of Luminescent Solar Concentrators. Nanoenergy Adv. 2022, 2, 222-240. https://doi.org/10.3390/nanoenergyadv2030010
Benetti D, Rosei F. Alternative Uses of Luminescent Solar Concentrators. Nanoenergy Advances. 2022; 2(3):222-240. https://doi.org/10.3390/nanoenergyadv2030010
Chicago/Turabian StyleBenetti, Daniele, and Federico Rosei. 2022. "Alternative Uses of Luminescent Solar Concentrators" Nanoenergy Advances 2, no. 3: 222-240. https://doi.org/10.3390/nanoenergyadv2030010
APA StyleBenetti, D., & Rosei, F. (2022). Alternative Uses of Luminescent Solar Concentrators. Nanoenergy Advances, 2(3), 222-240. https://doi.org/10.3390/nanoenergyadv2030010