Impact of COVID-19-Related Sports Activity Disruptions on the Physical Fitness of Japanese Adolescent Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Participants
2.3. Procedures
2.3.1. Body Type and Composition
2.3.2. Muscle Strength Measurements
2.3.3. Flexibility Measurements
2.3.4. Jump Height Measurements
2.4. Internet Questionnaire
2.5. Statistical Data Analysis
3. Results
3.1. Physical Fitness Data
3.2. Internet Questionnaire
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Statement on the Second Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV). Available online: https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-nCoV) (accessed on 14 February 2022).
- Situation Report. Ministry of Health, Labour and Welfare, JAPAN. Available online: https://www.mhlw.go.jp/stf/covid-19/kokunainohasseijoukyou_00006.html (accessed on 14 February 2022).
- Davies, N.G.; Klepac, P.; Liu, Y.; Prem, K.; Jit, M.; CMMID COVID-19 working group; Eggo, R.M. Age-Dependent Effects in the Transmission and Control of COVID-19 Epidemics. Nat. Med. 2020, 26, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Buoite Stella, A.; Ajčevic, M.; Furlanis, G.; Cillotto, T.; Menichelli, A.; Accardo, A.; Manganotti, P. Smart Technology for Physical Activity and Health Assessment During COVID-19 Lockdown. J. Sports Med. Phys. Fit. 2021, 61, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Sañudo, B.; Fennell, C.; Sánchez-Oliver, A.J. Objectively-Assessed Physical Activity, Sedentary Behavior, Smartphone Use, and Sleep Patterns Pre and During-COVID-19 Quarantine in Young Adults from Spain. Sustainability 2020, 12, 5890. [Google Scholar] [CrossRef]
- Vetrovsky, T.; Frybova, T.; Gant, I.; Semerad, M.; Cimler, R.; Bunc, V.; Siranec, M.; Miklikova, M.; Vesely, J.; Griva, M.; et al. The Detrimental Effect of COVID-19 Nationwide Quarantine on Accelerometer-Assessed Physical Activity of Heart Failure Patients. ESC Heart Fail. 2020, 7, 2093–2097. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.A.; Faulkner, G.; Rhodes, R.E.; Brussoni, M.; Chulak-Bozzer, T.; Ferguson, L.J.; Mitra, R.; O’Reilly, N.; Spence, J.C.; Vanderloo, L.M.; et al. Impact of the COVID-19 Virus Outbreak on Movement and Play Behaviours of Canadian Children and Youth: A National Survey. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 85. [Google Scholar] [CrossRef]
- Munasinghe, S.; Sperandei, S.; Freebairn, L.; Conroy, E.; Jani, H.; Marjanovic, S.; Page, A. The Impact of Physical Distancing Policies during the COVID-19 Pandemic on Health and Well-Being among Australian Adolescents. J. Adolesc. Health 2020, 67, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Tsoukos, A.; Bogdanis, G.C. The Effects of a Five-Month Lockdown Due to COVID-19 on Physical Fitness Parameters in Adolescent Students: A Comparison between Cohorts. Int. J. Environ. Res. Public Health 2021, 19, 326. [Google Scholar] [CrossRef] [PubMed]
- Sunda, M.; Gilic, B.; Peric, I.; Jurcev Savicevic, A.; Sekulic, D. Evidencing the Influence of the COVID-19 Pandemic and Imposed Lockdown Measures on Fitness Status in Adolescents: A Preliminary Report. Healthcare 2021, 9, 681. [Google Scholar] [CrossRef] [PubMed]
- Diedhiou, A.B.; Yilmaz, F.; Yilmaz, A. The Effect of COVID-19 Pandemic on Healthy Lifestyle Behaviors and Quality of Life in Turkey. Trends Sport Sci. 2021, 28, 265–272. [Google Scholar]
- Muriel, X.; Courel-Ibáñez, J.; Cerezuela-Espejo, V.; Pallarés, J.G. Training Load and Performance Impairments in Professional Cyclists during COVID-19 Lockdown. Int. J. Sports Physiol. Perform. 2020, 16, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, A.G.; Schinke, R.J.; Chang, Y.K.; Kim, Y.H.; Duda, J.L. Physical Activity, Health and Well-Being in an Imposed Social Distanced World. Int. J. Sport Exerc. Psychol. 2020, 18, 414–419. [Google Scholar] [CrossRef]
- Watson, A.; Koontz, J.S. Youth Sports in the Wake of COVID-19: A Call for Change. Br. J. Sports Med. 2021, 55, 764. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Faigenbaum, A.D.; Cherny, C.E.; Heidt, R.S.; Hewett, T.E. Did the NFL Lockout Expose the Achilles Heel of Competitive Sports? J. Orthop. Sports Phys. Ther. 2011, 41, 702–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Attar, W.S.A.; Husain, M.A. How Did Athletes Train and Avoid Injuries During the COVID-19 Quarantine Period? Trends Sport Sci. 2021, 28, 109–115. [Google Scholar]
- Information about Initial Vaccinations (1st and 2nd Vaccinations). Ministry of Health, Labour and Welfare. Available online: https//www.mhlw.go.jp/stf/seisakunitsuite/bunya/000012143100218.html (accessed on 25 February 2022).
- Lim, J.S.; Hwang, J.S.; Lee, J.A.; Kim, D.H.; Park, K.D.; Jeong, J.S.; Cheon, G.J. Cross-Calibration of Multi-Frequency Bioelectrical Impedance Analysis with Eight-Point Tactile Electrodes and Dual-Energy X-Ray Absorptiometry for Assessment of Body Composition in Healthy Children Aged 6–18 Years. Pediatr. Int. 2009, 51, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and Reliability of Optojump Photoelectric Cells for Estimating Vertical Jump Height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Grazioli, R.; Loturco, I.; Baroni, B.M.; Oliveira, G.S.; Saciura, V.; Vanoni, E.; Dias, R.; Veeck, F.; Pinto, R.S.; Cadore, E.L. Coronavirus Disease-19 Quarantine Is More Detrimental Than Traditional Off-Season on Physical Conditioning of Professional Soccer Players. J. Strength Cond. Res. 2020, 34, 3316–3320. [Google Scholar] [CrossRef]
- Andersen, K.L.; Seliger, V.; Rutenfranz, J.; Nesset, T. Physical performance capacity of children in Norway. Eur. J. Appl. Physiol. Occup. Physiol. 1980, 45, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Pietrobelli, A.; Pecoraro, L.; Ferruzzi, A.; Heo, M.; Faith, M.; Zoller, T.; Antoniazzi, F.; Piacentini, G.; Fearnbach, S.N.; Heymsfield, S.B. Effects of COVID-19 Lockdown on Lifestyle Behaviors in Children with Obesity Living in Verona, Italy: A Longitudinal Study. Obesity 2020, 28, 1382–1385. [Google Scholar] [CrossRef]
- Results of the 2021 National Survey on Physical Fitness, Athletic Ability, and Exercise Habits. Japan Sports Agency. Available online: https://www.mext.go.jp/sports/b_menu/toukei/kodomo/zencyo/1411922_00003.html (accessed on 23 February 2022).
- Chaouachi, A.; Ben Othman, A.; Makhlouf, I.; Young, J.D.; Granacher, U.; Behm, D.G. Global Training Effects of Trained and Untrained Muscles with Youth Can be Maintained During 4 Weeks of Detraining. J. Strength Cond. Res. 2019, 33, 2788–2800. [Google Scholar] [CrossRef] [PubMed]
- Chatzinikolaou, A.; Michaloglou, K.; Avloniti, A.; Leontsini, D.; Deli, C.K.; Vlachopoulos, D.; Gracia-Marco, L.; Arsenis, S.; Athanailidis, I.; Draganidis, D.; et al. The Trainability of Adolescent Soccer Players to Brief Periodized Complex Training. Int. J. Sports Physiol. Perform. 2018, 13, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Falk, B.; Eliakim, A. Resistance Training, Skeletal Muscle and Growth. Pediatr. Endocrinol. Rev. 2003, 1, 120–127. [Google Scholar] [PubMed]
- Ozmun, J.C.; Mikesky, A.E.; Surburg, P.R. Neuromuscular Adaptations Following Prepubescent Strength Training. Med. Sci. Sports Exerc. 1994, 26, 510–514. [Google Scholar] [CrossRef]
- Ramsay, J.A.; Blimkie, C.J.; Smith, K.; Garner, S.; MacDougall, J.D.; Sale, D.G. Strength Training Effects in Prepubescent Boys. Med. Sci. Sports Exerc. 1990, 22, 605–614. [Google Scholar] [CrossRef]
- Waugh, C.M.; Korff, T.; Fath, F.; Blazevich, A.J. Effects of Resistance Training on Tendon Mechanical Properties and Rapid Force Production in Prepubertal Children. J. Appl. Physiol. 2014, 117, 257–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schons, P.; Fischer, G.; da Rosa, R.G.; Berriel, G.P.; Peyré-Tartaruga, L.A. Correlations between the Strength of Knee Extensor and Flexor Muscles and Jump Performance in Volleyball Players: A Review. J. Phys. Educ. 2018, 29, 1–12. [Google Scholar]
- Ikegawa, S.; Funato, K.; Tsunoda, N.; Kanehisa, H.; Fukunaga, T.; Kawakami, Y. Muscle Force per Cross-Sectional Area Is Inversely Related with Pennation Angle in Strength Trained Athletes. J. Strength Cond. Res. 2008, 22, 128–131. [Google Scholar] [CrossRef]
- Fouré, A.; Nordez, A.; McNair, P.; Cornu, C. Effects of Plyometric Training on Both Active and Passive Parts of the Plantarflexors Series Elastic Component Stiffness of Muscle-Tendon Complex. Eur. J. Appl. Physiol. 2011, 111, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Sell, T.C.; House, A.J.; Abt, J.P.; Lephart, S.M. Knee Proprioception and Strength and Landing Kinematics during a Single-Leg Stop-Jump Task. J. Athl. Train. 2013, 48, 31–38. [Google Scholar] [CrossRef] [Green Version]
- DeJong, A.F.; Fish, P.N.; Hertel, J. Running Behaviors, Motivations, and Injury Risk During the COVID-19 Pandemic: A Survey of 1147 Runners. PLoS ONE 2021, 16, e0246300. [Google Scholar] [CrossRef]
- Wang, C.; Vander Voort, W.; Haus, B.M.; Carter, C.W. COVID-19 and Youth Sports: What Are the Risks of Getting Back on the Field Too Quickly? Pediatr. Ann. 2021, 50, e465–e469. [Google Scholar] [CrossRef] [PubMed]
- Bourdas, D.I.; Zacharakis, E.D.; Travlos, A.K.; Souglis, A. Return to Basketball Play Following COVID-19 Lockdown. Sports 2021, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Bisciotti, G.N.; Eirale, C.; Corsini, A.; Baudot, C.; Saillant, G.; Chalabi, H. Return to Football Training and Competition After Lockdown Caused by the COVID-19 Pandemic: Medical Recommendations. Biol. Sport 2020, 37, 313–319. [Google Scholar] [CrossRef]
- Rico-González, M.; Pino-Ortega, J.; Ardigò, L.P. Playing Non-Professional Football in COVID-19 Time: A Narrative Review of Recommendations, Considerations, and Best Practices. Int. J. Environ. Res. Public Health 2021, 18, 568. [Google Scholar] [CrossRef]
- Fabre, J.B.; Grelot, L.; Vanbiervielt, W.; Mazerie, J.; Manca, R.; Martin, V. Managing the Combined Consequences of COVID-19 Infection and Lock-Down Policies on Athletes: Narrative Review and Guidelines Proposal for a Safe Return to Sport. BMJ Open Sport Exerc. Med. 2020, 6, e000849. [Google Scholar] [CrossRef]
- Johnston, K.; Wattie, N.; Schorer, J.; Baker, J. Talent Identification in Sport: A Systematic Review. Sports Med. 2018, 48, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Albaladejo-Saura, M.; Vaquero-Cristóbal, R.; González-Gálvez, N.; Esparza-Ros, F. Relationship between Biological Maturation, Physical Fitness, and Kinanthropometric Variables of Young Athletes: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 328. [Google Scholar] [CrossRef] [PubMed]
- McGuine, T.; Biese, K.; Petrovska, L.; Hetzel, S.; Reardon, C.; Kliethermes, S.; Bell, D.; Brooks, A.; Watson, A. Mental health, physical activity, and quality of life of us adolescent athletes during COVID-19-related school closures and sport cancellations: A study of 13 000 athletes. J. Athl Train. 2021, 56, 11–19. [Google Scholar] [CrossRef] [PubMed]
2019 | 2020 | p Value | ||
---|---|---|---|---|
Sex | Male | 28 | 26 | 0.31 |
Female | 9 | 14 | ||
Age (years) | 13.6 | 13.8 | 0.41 | |
Sports | Rugby | 7 | 15 | |
Hockey | 9 | 7 | ||
Handball | 7 | 4 | ||
Table tennis | 6 | 4 | ||
Kendo | 8 | 3 |
2019 | 2020 | p Value | ||
---|---|---|---|---|
Body type composition | Height (cm) | 160.8 ± 10.2 (161.6) | 162.5 ± 7.7 (163.1) | 0.40 |
weight (kg) | 51.4 ± 13.3 (58.5) | 55.4 ± 12.6 (59.7) | 0.12 | |
body fat amount (kg) | 8.7 ± 5.2 (7.5) | 10.4 ± 6.6 (8.3) | 0.32 | |
lean body weight (kg) | 42.9 ± 9.6 (41.3) | 44.9 ± 8.5 (44.6) | 0.28 | |
muscle mass (kg) | 40.3 ± 9.2 (39.0) | 42.4 ± 8.1 (42.2) | 0.30 | |
Muscle strength | Rt KEM (Nm/Kg) | 223.4 ± 42.7 (221.4) | 197.2 ± 34.7 (221) | <0.01 * |
Lt KEM (Nm/Kg) | 218.7 ± 41.5 (219.7) | 193.1 ± 34.3 (192.6) | <0.01 * | |
Rt KFM (Nm/Kg) | 110.4 ± 24.5 (111.2) | 98.7 ± 26.5 (99.8) | 0.04 * | |
Lr KFM (Nm/Kg) | 107.1 ± 25.7 (105.2) | 93 ± 25.4 (94.8) | 0.02 * | |
Rt GP (kg) | 31.2 ± 8.8 (29.7) | 30 ± 7.7 (28.6) | 0.51 | |
Lt GP (kg) | 26.6 ± 7.1 (26.7) | 27.1 ± 5.6 (26.8) | 0.82 | |
Flexibility | Rt SLR (degree) | 55.4 ± 8.7 (55.0) | 54.4 ± 10.4 (51.0) | 0.53 |
Lt SLR (degree) | 55 ± 9.1 (55.0) | 51.1 ± 10.5 (50.0) | 0.21 | |
Rt HBD (cm) | 7.1 ± 5.1 (8.0) | 5.9 ± 4.7 (5.7) | 0.25 | |
Lt HBD (cm) | 7.3 ± 5.4 (8.0) | 5.4 ± 4.1 (5.0) | 0.12 | |
Jump | SJ (cm) | 24.4 ± 6.5 (23.9) | 24.4 ± 5.4 (24.5) | 0.96 |
CMJ (cm) | 26.6 ± 7.1 (26.7) | 27.1 ± 5.6 (26.8) | 0.82 |
Responses | 10 Coaches 3 (Table Tennis), 2 (Rugby, Kendo), 1 (Hockey, Handball) |
---|---|
Suspension periods (days) | Mean (SD) 82.5 (44.6) Maximum 168 (24 February to 10 August) Minimum 14 (1 April to 15 April) |
Cautionary points after resuming practice | |
Adjusting to the “New Normal” | Practice with mask-wearing |
Ventilation | |
Body temperature and symptom check | |
Use hand sanitizer | |
Avoiding the Three Cs | |
Consideration for physical weakness | Stepwise load increase |
Guideline released by national federation |
2019.8 | Immediately after Suspension | 2020.8 | p Value | |
---|---|---|---|---|
Weekday (hour) | 1.8 ± 1.0 (2.0) | 1.3 ± 0.8 (1.3) | 1.5 ± 0.8 (2.0) | 0.33 |
Holyday (hour) | 3.4 ± 2.4 (3.0) | 2.5 ± 2.2 (2.3) | 3.1 ± 2.4 (3.0) | 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obayashi, H.; Ikuta, Y.; Nakashima, N.; Yamamoto, R.; Fujishita, H.; Fukuhara, K.; Sakamitsu, T.; Ushio, K.; Kimura, H.; Adachi, N. Impact of COVID-19-Related Sports Activity Disruptions on the Physical Fitness of Japanese Adolescent Athletes. Adolescents 2022, 2, 140-149. https://doi.org/10.3390/adolescents2020013
Obayashi H, Ikuta Y, Nakashima N, Yamamoto R, Fujishita H, Fukuhara K, Sakamitsu T, Ushio K, Kimura H, Adachi N. Impact of COVID-19-Related Sports Activity Disruptions on the Physical Fitness of Japanese Adolescent Athletes. Adolescents. 2022; 2(2):140-149. https://doi.org/10.3390/adolescents2020013
Chicago/Turabian StyleObayashi, Hiromune, Yasunari Ikuta, Naoki Nakashima, Ryoko Yamamoto, Hironori Fujishita, Koki Fukuhara, Tetsuhiko Sakamitsu, Kai Ushio, Hiroaki Kimura, and Nobuo Adachi. 2022. "Impact of COVID-19-Related Sports Activity Disruptions on the Physical Fitness of Japanese Adolescent Athletes" Adolescents 2, no. 2: 140-149. https://doi.org/10.3390/adolescents2020013
APA StyleObayashi, H., Ikuta, Y., Nakashima, N., Yamamoto, R., Fujishita, H., Fukuhara, K., Sakamitsu, T., Ushio, K., Kimura, H., & Adachi, N. (2022). Impact of COVID-19-Related Sports Activity Disruptions on the Physical Fitness of Japanese Adolescent Athletes. Adolescents, 2(2), 140-149. https://doi.org/10.3390/adolescents2020013