Direct Use in Electrochemical Energy Devices of Electrospun Nanofibres with Functional Nanostructures
Abstract
1. Introduction
2. Supercapacitor Electrodes
3. Battery Electrodes
3.1. Ion Batteries (Li, Na, K, Zn)
3.2. Metal–Sulphur Batteries
4. Electrocatalysts
5. Other Components (Separators, Solid State Electrolytes)
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| [Mo2C/C]//[Ni/C]-NMCFs | Mo2C, Ni embedded in porous N-doped multi-channel Janus carbon fibres |
| [Ni/C]@[MoC/C]-PCNFs | one-dimensional honeycomb coaxial CNFs with MoC shell and Ni core layer |
| 2-MI | 2-methylimidazole |
| 3DHPCNF | three-dimensional hollow and porous carbon nanofibre |
| AC | Activated carbon |
| AEMWE | anion exchange membrane water electrolysis |
| ATP | attapulgite |
| BIT | Bi4Ti3O12 |
| CA | Cellulose acetate |
| C-CFs | coal-based carbon fibres |
| C-CNFs | coal-based carbon nanofibres |
| CD | Ciclodestina |
| CDs | Carbon dots |
| CF | carbon fibres |
| CFC | carbon fibre cloth |
| CFO@PNCFM | CoFe2O4 nanoparticles in situ encapsulated in porous N-doped carbon nanofibres membranes |
| CFOANF | amide groups modified nitrogen-doped carbon nanofibres (ANF) combined with spinel CoFe2O4 (CFO) nanoparticles |
| CL-NCNF | Cross linked NCNF |
| CMNO | cobalt-manganese-nickel-oxide |
| CNFs | Carbon Nanofibres |
| CNS | Carbon nanosheets |
| CNTs | Carbon nanotubes |
| CoNC | carbon encapsulated Co nanoparticles |
| CPAN | electrospun carbon fibre |
| CPCNF | cavity-interconnected porous carbon nanofibres |
| CPZ | coaxial PAN@ZIF-8 nanofibre membrane |
| CQD | carbon quantum dot |
| CSNF | core–shell structured nanofibre |
| CTS | Carbon thermal shock |
| CVD | Chemical vapour deposition |
| DA | dopamine |
| EDL | Electrical Double Layer |
| EDLC | Electric Double Layer Capacitance |
| ES | Electrospinning |
| FCOS | partially sulphurised iron–cobalt oxide |
| FOCNF | Fe2O3-embedded highly graphitised carbon nanofibres |
| F-RGO | Freeze-dried reductive graphene oxide |
| GCNF | graphene-coated electrospun carbon nanofibres |
| GDLs | Gas diffusion layers |
| GO | graphene oxide |
| GOP | surface-modified PP nonwoven fabric |
| H2BDC | 1,4-benzenedicarboxylic acid |
| HCNF | hollow CNF |
| HCS | Hollow carbon hybrid spheres |
| HER | Hydrogen evolution reaction |
| H–NiSe/SnSe@NC | hollow NiSe/SnSe nanocubes within nitrogen-doped carbon nanofibres |
| HPC | hierarchical porous carbon nanofibre |
| HTMAB | hexadecyl trimethyl ammonium bromide |
| KMF-ES | electrospun prussian blue K2Mn[Fe(CN)6] electrode |
| LCNFs | Lignin/polymer CNFs |
| LDHs | Layered Double Hydroxides |
| LFP | LiFePO4 |
| LIBs | Lithium-ion batteries |
| LLTO | Li0.33La0.557TiO3 |
| MCF | multichannel carbon nanofibres |
| MCPS | Cu-mediated MoP/SnO2 carbon fibre |
| MeIM | 2-methylimidazole |
| MNCNF | N-doped CNFs with multi-channels |
| MOFs | Metal Organic Frameworks |
| M-PI CFMs | modified-polyimide composite fibrous membranes |
| MX | Mxene |
| NA | Nano arrays |
| Nb(BTC)MOF | niobium (benzene 1,3,5-tricarboxylic acid) MOFs |
| NC | nanocubes |
| NC@Ge | N-doped carbon nanofibre@germanium |
| NCF | N-doped carbon nanofibre |
| NCNFs | N-doped CNFs |
| NCNFs-H | N-doped hollow CNFs |
| NCNT | N-enriched CNT |
| NF-FTO | FeTiO3 nanoparticle-impregnated porous multichannel N-doped carbon nanofibres |
| NHCNFs | nitrogen-doped bead-chain-like hollow carbon nanofibres |
| NM@CCNF | nickel-based MOF decorated over cobalt oxide-embedded CNFs |
| NOCNF | NiO-embedded highly graphitised carbon nanofibres |
| NOPCNFs | N/O co-doping porous carbon nanofibres |
| NPC | nanoporous carbon nanostructures |
| NPCN | nitrogen-doped porous carbon nanofibres |
| NPCNF | nitrogen/phosphorus co-doped carbon fibres |
| NPs | Nanoparticles |
| NPV | Na3V2(PO4)3 |
| NRs | nanorods |
| NS | NS-co-doped |
| N-TCF/CNT | N-doped TiN/carbon composite nanofibres with carbon nanotubes |
| NWs | Nanowires |
| OC | oxidised coal |
| OER | Oxygen evolution reaction |
| ORR | Oxygen reduction reaction |
| OWS | overall water splitting |
| PA | Phytic acid |
| PAA | polyamide acid |
| PAF | Nanofibre composite separator |
| PAMAM | polyamidoamine dendrimer |
| PAN | Polyacrylonitrile |
| PANI | Polyaniline |
| PB | Prussian blue |
| PC | Pseudocapacitive |
| PCNF | porous carbon nanofibres |
| PCNFM | porous N-doped carbon nanofibre membrane |
| PDA | polydopamine |
| PEDOT | Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate |
| PEMs | Proton exchange membranes |
| PEO/PEG | Polyethylene glycol |
| PH | PVDF-HP |
| PIB | Potassium ion battery |
| PMIA | poly(m-phenylene isophthalamide) |
| PMMA | poly(methylmethacrylate |
| PMMNFS | PAN/MeIM/PMMA |
| PMnG(γ) | γ-CD/graphene-based porous CNF with MnO2 |
| PPy | polypyrrole |
| PS | polystyrene |
| PSN | Polymer-less silica nanofibres |
| PTA | terephthalic acid |
| PTFE | Polytetrafluoroethylene |
| PVA | polyvinyl alchohol |
| PVDF | Polyvinylidene fluoride |
| PVDF-CTFE | poly(vinylidene fluoride-co-chlorotrifluoroethylene) |
| PVDF-HFP | Poly(vinylidene fluoride-co-hexafluoropropylene) |
| PVP | Polyvynilylpirrolidone |
| Py | pyrrole |
| rGO, RGO | reduced graphene oxide |
| RHE | Reference Hydrogen Electrode |
| RSF | Regenerated silk fibroin |
| SA | Single atoms |
| SBR | Carboxylic butadiene-styrene layex |
| SCs | Supercapacitors |
| SEI | Solid electrolyte interphase |
| SFN | SPEEK, SrFeO3-NH2 nano needles composite obtained by electrospinning |
| SIBs | Sodium-ion batteries |
| SN | Succinonitrile |
| SPEEK | Sulfonated poly(ether ketone) |
| SSC | Symmetric supercapacitor |
| SSE | Solid state electrolytes |
| ST-NCF | Sn/TiO2 carbon nanofibre |
| TBOT | Tetrabutil titanate |
| TBT | titanium butoxide |
| TEOS | tetraethyl orthosilicate |
| VGAs | vertical graphene nanosheets arrays |
| VN | Vanadium nitride |
| ZCS | ZnCo2S4 |
| ZIB | Zinc ion batteries |
| ZIF | Zeolitic imidazolate framework |
| ZMA | zinc-magnesium-alluminum |
References
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibres: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Nadaf, A.; Gupta, A.; Hasan, N.; Fauziya; Ahmad, S.; Kesharwani, P.; Ahmad, F.J. Recent Update on Electrospinning and Electrospun Nanofibres: Current Trends and Their Applications. RSC Adv. 2022, 12, 23808–23828. [Google Scholar] [CrossRef] [PubMed]
- Kailasa, S.; Reddy, M.S.B.; Maurya, M.R.; Rani, B.G.; Rao, K.V.; Sadasivuni, K.K. Electrospun Nanofibres: Materials, Synthesis Parameters, and Their Role in Sensing Applications. Macromol. Mater. Eng. 2021, 306, 2100410. [Google Scholar] [CrossRef]
- Toriello, M.; Afsari, M.; Shon, H.K.; Tijing, L.D. Progress on the Fabrication and Application of Electrospun Nanofibre Composites. Membranes 2020, 10, 204. [Google Scholar] [CrossRef]
- Li, D.; Yue, G.; Li, S.; Liu, J.; Li, H.; Gao, Y.; Liu, J.; Hou, L.; Liu, X.; Cui, Z.; et al. Fabrication and Applications of Multi-Fluidic Electrospinning Multi-Structure Hollow and Core–Shell Nanofibres. Engineering 2022, 13, 116–127. [Google Scholar] [CrossRef]
- Han, D.; Steckl, A.J. Coaxial Electrospinning Formation of Complex Polymer Fibres and Their Applications. Chempluschem 2019, 84, 1453–1497. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Silva, S.R.P.; Ding, B.; Zhang, P.; Shao, G. Lithium–Sulfur Batteries Meet Electrospinning: Recent Advances and the Key Parameters for High Gravimetric and Volume Energy Density. Adv. Sci. 2022, 9, 2103879. [Google Scholar] [CrossRef]
- Li, C.; Qiu, M.; Li, R.; Li, X.; Wang, M.; He, J.; Lin, G.; Xiao, L.; Qian, Q.; Chen, Q.; et al. Electrospinning Engineering Enables High-Performance Sodium-Ion Batteries. Adv. Fibre Mater. 2022, 4, 43–65. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, J.; Zhang, L.; Qiu, Y. Recent Advances in Energy Materials by Electrospinning. Renew. Sustain. Energy Rev. 2018, 81, 1825–1858. [Google Scholar] [CrossRef]
- Omer, S.; Forgách, L.; Zelkó, R.; Sebe, I. Scale-up of Electrospinning: Market Overview of Products and Devices for Pharmaceutical and Biomedical Purposes. Pharmaceutics 2021, 13, 286. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, T.S.; Gouma, P.-I. Scalable Electrospinning Using a Desktop, High Throughput, Self-Contained System. Sci. Rep. 2024, 14, 25844. [Google Scholar] [CrossRef]
- Persano, L.; Camposeo, A.; Tekmen, C.; Pisignano, D. Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibres: A Review. Macromol. Mater. Eng. 2013, 298, 504–520. [Google Scholar] [CrossRef]
- Sun, G.; Sun, L.; Xie, H.; Liu, J. Electrospinning of Nanofibres for Energy Applications. Nanomaterials 2016, 6, 129. [Google Scholar] [CrossRef]
- Santangelo, S. Electrospun Nanomaterials for Energy Applications: Recent Advances. Appl. Sci. 2019, 9, 1049. [Google Scholar] [CrossRef]
- Mamun, A.; Kiari, M.; Sabantina, L. A Recent Review of Electrospun Porous Carbon Nanofibre Mats for Energy Storage and Generation Applications. Membranes 2023, 13, 830. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Hu, L.-J.; Guan, Z.-K.; Chen, T.-L.; Zhang, X.-Y.; Sun, S.; Shi, R.; Jing, P.; Wang, P.-F. Tailoring Cathode–Electrolyte Interface for High-Power and Stable Lithium–Sulfur Batteries. Nano-Micro Lett. 2024, 17, 85. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Li, M.; Wang, C.; Lu, X. Electronic Modulation and Interface Engineering of Electrospun Nanomaterials-Based Electrocatalysts toward Water Splitting. Carbon Energy 2021, 3, 101–128. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, X.; Sun, R.; Zhang, X.; Ge, C.; Liu, Y. Review of Electro-Spun Carbon Nanofibre Electrode Materials for Electrochemical Capacitors. J. Mater. Chem. A Mater. 2024, 12, 32566–32592. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, B.; Chen, Y.; Guo, L.; Wei, G. Carbon Nanofibre-Based Three-Dimensional Nanomaterials for Energy and Environmental Applications. Mater. Adv. 2020, 1, 2163–2181. [Google Scholar] [CrossRef]
- Kopeć, M.; Lamson, M.; Yuan, R.; Tang, C.; Kruk, M.; Zhong, M.; Matyjaszewski, K.; Kowalewski, T. Polyacrylonitrile-Derived Nanostructured Carbon Materials. Prog. Polym. Sci. 2019, 92, 89–134. [Google Scholar] [CrossRef]
- Zhang, B.; Kang, F.; Tarascon, J.-M.; Kim, J.-K. Recent Advances in Electrospun Carbon Nanofibres and Their Application in Electrochemical Energy Storage. Prog. Mater. Sci. 2016, 76, 319–380. [Google Scholar] [CrossRef]
- Xu, H.; Li, B.; Wang, Z.; Liao, Q.; Zeng, L.; Zhang, H.; Liu, X.; Yu, D.-G.; Song, W. Improving Supercapacitor Electrode Performance with Electrospun Carbon Nanofibres: Unlocking Versatility and Innovation. J. Mater. Chem. A 2024, 12, 22346–22371. [Google Scholar] [CrossRef]
- Xiao, M.; Li, R.; Yang, T.; Dai, Y. The Progress and Perspective of Electrospun Carbon Nanofibres Based Anode Materials for Potassium Ion Storage: A Mini Review. Front. Energy Res. 2022, 10, 966825. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Z.; Gong, W.; Xu, F.; Song, X.; He, X.; Fan, M. Electrospun Carbon Nanofibres and Their Applications in Several Areas. ACS Omega 2023, 8, 22316–22330. [Google Scholar] [CrossRef]
- Dou, Y.; Zhang, W.; Kaiser, A. Electrospinning of Metal–Organic Frameworks for Energy and Environmental Applications. Adv. Sci. 2020, 7, 1902590. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, C.; Favier, F.; Pinna, N. Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance. Adv. Energy Mater. 2017, 7, 1601301. [Google Scholar] [CrossRef]
- Wang, X.-X.; Yu, G.-F.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. Conductive Polymer Ultrafine Fibres via Electrospinning: Preparation, Physical Properties and Applications. Prog. Mater. Sci. 2021, 115, 100704. [Google Scholar] [CrossRef]
- Joshi, B.; Samuel, E.; Kim, Y.; Yarin, A.L.; Swihart, M.T.; Yoon, S.S. Review of Recent Progress in Electrospinning-Derived Freestanding and Binder-Free Electrodes for Supercapacitors. Coord. Chem. Rev. 2022, 460, 214466. [Google Scholar] [CrossRef]
- Karagiorgis, X.; Sandhu, S.; Skabara, P.J.; Dahiya, R. Electrospun Conducting Polymers: Recent Trends and the Transition towards a Sustainable Future. Polym. Int. 2025. early view. [Google Scholar] [CrossRef]
- Luzio, A.; Canesi, E.V.; Bertarelli, C.; Caironi, M. Electrospun Polymer Fibres for Electronic Applications. Materials 2014, 7, 906–947. [Google Scholar] [CrossRef]
- Liu, J.; Hu, X.; Ran, F.; Wang, K.; Dai, J.; Zhu, X. Electrospinning-Assisted Construction of 3D LiFePO4@rGO/Carbon Nanofibres as Flexible Cathode to Boost the Rate Capabilities of Lithium-Ion Batteries. Ceram. Int. 2023, 49, 1401–1408. [Google Scholar] [CrossRef]
- Akhmetova, K.; Tatykayev, B.; Kalybekkyzy, S.; Sultanov, F.; Bakenov, Z.; Mentbayeva, A. One-Step Fabrication of All-in-One Flexible Nanofibrous Lithium-Ion Battery. J. Energy Storage 2023, 65, 107237. [Google Scholar] [CrossRef]
- Xiao, B.; Liu, J.; Fang, J.; Zeng, J.; Liu, K.; Feng, S.; Chen, J.; Lu, X.F. Electrospun Noble Metal-Based Nanofibres for Water Electrolysis. Mater. Chem. Front. 2025, 9, 3125–3138. [Google Scholar] [CrossRef]
- Shang, Z.; Wycisk, R.; Pintauro, P. Electrospun Composite Proton-Exchange and Anion-Exchange Membranes for Fuel Cells. Energies 2021, 14, 6709. [Google Scholar] [CrossRef]
- Zhang, S.; Matsumoto, H.; Sato, K.; Ishikawa, Y.; Naito, H.; Kawamura, K.; Sakai, K.; Hirai, S. Carbon Nanofibre-Based Thin Gas Diffusion Layers for Polymer Electrolyte Fuel Cells. ACS Eng. Au 2025, 5, 540–548. [Google Scholar] [CrossRef]
- Anand, S.; Ahmad, M.W.; Ali Al Saidi, A.K.; Yang, D.-J.; Choudhury, A. Polyaniline Nanofibre Decorated Carbon Nanofibre Hybrid Mat for Flexible Electrochemical Supercapacitor. Mater. Chem. Phys. 2020, 254, 123480. [Google Scholar] [CrossRef]
- Reenu; Sonia; Phor, L.; Kumar, A.; Chahal, S. Electrode Materials for Supercapacitors: A Comprehensive Review of Advancements and Performance. J. Energy Storage 2024, 84, 110698. [Google Scholar] [CrossRef]
- Radhakanth, S.; Singhal, R. In–Situ Synthesis of MnO Dispersed Carbon Nanofibres as Binder-Free Electrodes for High-Performance Supercapacitors. Chem. Eng. Sci. 2023, 265, 118224. [Google Scholar] [CrossRef]
- Swain, S.; Sundaray, B. Electrospun Free-Standing MnO2/Carbon Nanofibre Composite as Battery-Type Electrode for Advanced Supercapacitor Applications. J. Energy Storage 2025, 134, 118061. [Google Scholar] [CrossRef]
- Kim, E.S.; Lee, H.-J.; Kim, B.-H. Sandwich-Structured Carbon Nanofibre/MnO2/Carbon Nanofibre Composites for High-Performance Supercapacitor. Electrochim. Acta 2022, 406, 139883. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, G.; Xu, X.; Chen, L.; Lu, T.; Hill, J.P.; Pan, L.; Yamauchi, Y. Embedding Metal–Organic Frameworks for the Design of Flexible Hybrid Supercapacitors by Electrospinning: Synthesis of Highly Graphitized Carbon Nanofibres Containing Metal Oxide Nanoparticles. Small Struct. 2022, 3, 2200015. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Dey, B.; Syed, A.; Bahkali, A.H.; Verma, M.; Yang, D.-J.; Choudhury, A. MOFs-Derived Niobium Oxide Nanoparticles/Carbon Nanofibre Hybrid Paper as Flexible Binder-Free Electrode for Solid-State Asymmetric Supercapacitors. J. Alloys Compd. 2023, 957, 170269. [Google Scholar] [CrossRef]
- Aydın, H.; Kurtan, U.; Demir, M.; Karakuş, S. Synthesis and Application of a Self-Standing Zirconia-Based Carbon Nanofibre in a Supercapacitor. Energy Fuels 2022, 36, 2212–2219. [Google Scholar] [CrossRef]
- Aydın, H.; Üstün, B.; Kurtan, Ü.; Aslan, A.; Karakuş, S. Incorporating Gadolinium Oxide (Gd2O3) as a Rare Earth Metal Oxide in Carbon Nanofibre Skeleton for Supercapacitor Application. ChemElectroChem 2024, 11, e202300585. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, K.; Chen, Z.; Bai, J.; Sun, W. 1D WO3@CNFs Modified with Sulphur for Fabricating Self-Supported Flexible Supercapacitors with Enhanced Performance. J. Alloys Compd. 2024, 1008, 176596. [Google Scholar] [CrossRef]
- Amiri, D.; Kamali Heidari, E.; Kamyabi-Gol, A.; Sajjadi, S.A.; Hoor, M. Electrospun NiMoO4-Encapsulated Carbon Nanofibres Electrodes for Advanced Supercapacitors. J. Energy Storage 2022, 55, 105490. [Google Scholar] [CrossRef]
- Mohammadpour-Haratbar, A.; Kiaeerad, P.; Mazinani, S.; Bazargan, A.M.; Sharif, F. Bimetallic Nickel–Cobalt Oxide Nanoparticle/Electrospun Carbon Nanofibre Composites: Preparation and Application for Supercapacitor Electrode. Ceram. Int. 2022, 48, 10015–10023. [Google Scholar] [CrossRef]
- Yan, Z.; Li, X.; Yang, R.; Jia, L. Electrospun Lignin/PAN Carbon Nanofibre-Supported CeO2/NiCo2O4 Nanoflowers as Electrodes for Supercapacitors. Fibres Polym. 2025, 26, 4767–4777. [Google Scholar] [CrossRef]
- Luo, Y.; Li, J.; Chen, C.; Liu, W. ZnO-MnO2 Co-Modified Hierarchical Porous Carbon Nanofibre Film Electrodes for High-Energy Density Supercapacitors. Sci. Rep. 2025, 15, 6393. [Google Scholar] [CrossRef] [PubMed]
- Panith, P.; Butnoi, P.; Intasanta, V. The Hybrid Structure of Nanoflower-like CoxMnyNizO4 Nanoparticles Embedded Biomass-Lignin Carbon Nanofibres as Free-Standing and Binder-Free Electrodes for High Performance Supercapacitors. J. Alloys Compd. 2022, 918, 165659. [Google Scholar] [CrossRef]
- Liu, W.-J.; Yuan, M.; Lian, J.-B.; Li, G.-C.; Li, Q.-P.; Qiao, F.; Zhao, Y. Embedding Partial Sulfurization of Iron–Cobalt Oxide Nanoparticles into Carbon Nanofibres as an Efficient Electrode for the Advanced Asymmetric Supercapacitor. Tungsten 2023, 5, 118–129. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Anand, S.; Dey, B.; Yang, D.-J.; Choudhury, A. Asymmetric Supercapacitors Based on Porous MnMoS4 Nanosheets-Anchored Carbon Nanofibre and N, S-Doped Carbon Nanofibre Electrodes. J. Alloys Compd. 2022, 906, 164271. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Wei, G.; Fang, X.; Lan, N.; Zhao, Y.; Liu, Q.; Lin, S.; He, D. Spinning of Carbon Nanofibre/Ni–Cu–S Composite Nanofibres for Supercapacitor Negative Electrodes. Energies 2024, 17, 1449. [Google Scholar] [CrossRef]
- Yao, M.; Guo, C.; Zhang, Y.; Zhao, X.; Wang, Y. In Situ Encapsulation of Metal Sulfide into Hierarchical Nanostructured Electrospun Nanofibres as Self-Supported Electrodes for Flexible Quasi-Solid-State Supercapacitors. J. Mater. Chem. C Mater. 2022, 10, 542–548. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, Y.; Zheng, J.; Jin, D.; Wang, Y.; Lian, J.; Yang, S.; Li, G.; Bu, Y.; Qiao, F. Heterogeneous Cobalt Polysulfide Leaf-like Array/Carbon Nanofibre Composites Derived from Zeolite Imidazole Framework for Advanced Asymmetric Supercapacitors. J. Colloid Interface Sci. 2022, 606, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Acharya, D.; Ko, T.H.; Bhattarai, R.M.; Muthurasu, A.; Kim, T.; Saidin, S.; Choi, J.-S.; Chhetri, K.; Kim, H.Y. Double-Phase Engineering of Cobalt Sulfide/Oxyhydroxide on Metal-Organic Frameworks Derived Iron Carbide-Integrated Porous Carbon Nanofibres for Asymmetric Supercapacitors. Adv. Compos. Hybrid. Mater. 2023, 6, 179. [Google Scholar] [CrossRef]
- Afshan, M.; Kumar, S.; Rani, D.; Pahuja, M.; Ghosh, R.; Siddiqui, S.A.; Riyajuddin, S.; Ghosh, K. Electrodes Based on Se Anchored on NiCoP and Carbon Nanofibres for Flexible Energy Storage Devices. ACS Appl. Nano Mater. 2022, 5, 15328–15340. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, T.; Zhang, J.; Bao, S.; Zhang, Y.; Yin, Y.; Lu, J. Constructing N, Se Co-Doped Carbon Nanofibres Encapsulated with Hollow FeSe2 Nanospheres as Electrodes for Energy Storage. J. Alloys Compd. 2023, 966, 171589. [Google Scholar] [CrossRef]
- Jeong, H.S.; Sahoo, G.; Jeong, S.M. Surface-Engineered Carbon Nanofibres Enriched with Metallic Particles for Effective Bimetallic MOF Formation toward Hybrid Supercapacitors. J. Energy Storage 2023, 73, 109260. [Google Scholar] [CrossRef]
- Luo, Y.; Shen, Y.; Ge, H.; Cheng, L.; Li, Z.; Jiao, Z. N/O-Bridge Stimulated Robust Binding Energy and Fast Charge Transfer between Carbon Nanofibre and NiCo LDH for Advanced Supercapacitors. J. Colloid Interface Sci. 2025, 678, 240–250. [Google Scholar] [CrossRef]
- Ge, H.; Wang, J.; Luo, Y.; Shi, B.; Jiang, J.; Cui, S.; Cheng, L.; Li, Z.; Jiao, Z. Enhancing Heterojunction Interface Charge Transport Efficiency in NiCo-LDHs@Co/CoO-CNFs for High-Performance Asymmetric and Zinc-Ion Hybrid Supercapacitors. Carbon 2024, 229, 119482. [Google Scholar] [CrossRef]
- Liu, W.; Qiao, F.; Chu, H. Multishell Hierarchical GCNF/PANI/NiCo-LDH Nanofibres Film for High-Performance Supercapacitors. Electrochim. Acta 2025, 511, 145410. [Google Scholar] [CrossRef]
- Poudel, M.B.; Kim, H.J. Confinement of Zn-Mg-Al-Layered Double Hydroxide and α-Fe2O3 Nanorods on Hollow Porous Carbon Nanofibres: A Free-Standing Electrode for Solid-State Symmetric Supercapacitors. Chem. Eng. J. 2022, 429, 132345. [Google Scholar] [CrossRef]
- Song, W.; Wang, K.; Lian, X.; Zheng, F.; Niu, H. Non-Preoxidation Synthesis of MXene Integrated Flexible Carbon Film for Supercapacitors. Chem. Eng. J. 2024, 493, 152804. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.; Gao, Y.; Dai, J.; Sun, X. The Construction of Carbon Nanofibre Composites Modified by Graphene/Polypyrrole for Flexible Supercapacitors. J. Energy Storage 2022, 51, 104581. [Google Scholar] [CrossRef]
- Wang, L.; Wu, J.; Zhang, C.; Cao, X.; Xu, X.; Bai, J.; Zhu, J.; Li, R.; Satoh, T. Rational Nanoarchitectonics of Polypyrrole/Graphene/Polyimide Composite Fibrous Membranes with Enhanced Electrochemical Performance as Self-Supporting Flexible Electrodes for Supercapacitors. J. Energy Storage 2024, 81, 110425. [Google Scholar] [CrossRef]
- Yun, S.I.; Song, J.-W.; Kim, B.-H. Cyclodextrin/Graphene-Based Porous Carbon Nanofibres with Embedded MnO2 Nanoparticles for Supercapacitor Applications. ACS Appl. Nano Mater. 2022, 5, 5688–5698. [Google Scholar] [CrossRef]
- Zou, Y.; Bu, Y.; Zhou, X.; Hu, M.; Zhang, M. Carbon Quantum Dot-Anchored Polyaniline on Electrospun Carbon Nanofibres as Freestanding Electrodes for Symmetric Solid-State Supercapacitors. Dalton Trans. 2025, 54, 3722–3732. [Google Scholar] [CrossRef]
- Du, X.; Huang, Y.; Feng, Z.; Wang, J.; Duan, Z.; Sun, X. Anchoring 1T/2H MoS2 Nanosheets on Carbon Nanofibres Containing Si Nanoparticles as a Flexible Anode for Lithium–Ion Batteries. Mater. Chem. Front. 2022, 6, 3543–3554. [Google Scholar] [CrossRef]
- Wu, Y.; Shuang, W.; Wang, Y.; Chen, F.; Tang, S.; Wu, X.-L.; Bai, Z.; Yang, L.; Zhang, J. Recent Progress in Sodium-Ion Batteries: Advanced Materials, Reaction Mechanisms and Energy Applications. Electrochem. Energy Rev. 2024, 7, 17. [Google Scholar] [CrossRef]
- Li, M.; Wang, C.; Wang, C.; Lyu, Y.; Wang, J.; Xia, S.; Mao, J.; Guo, Z. 10 Years Development of Potassium-Ion Batteries. Adv. Mater. 2025, 37, 2416717. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Y.; Adelhelm, P.; Titirici, M.-M.; Hu, Y.-S. Intercalation Chemistry of Graphite: Alkali Metal Ions and Beyond. Chem. Soc. Rev. 2019, 48, 4655–4687. [Google Scholar] [CrossRef]
- Chen, B.; Liang, M.; Wu, Q.; Zhu, S.; Zhao, N.; He, C. Recent Developments of Antimony-Based Anodes for Sodium- and Potassium-Ion Batteries. Trans. Tianjin Univ. 2022, 28, 6–32. [Google Scholar] [CrossRef]
- Gu, Y.; Ru Pei, Y.; Zhao, M.; Cheng Yang, C.; Jiang, Q. Sn-, Sb- and Bi-Based Anodes for Potassium Ion Battery. Chem. Rec. 2022, 22, e202200098. [Google Scholar] [CrossRef]
- Fereydooni, A.; Yue, C.; Chao, Y. A Brief Overview of Silicon Nanoparticles as Anode Material: A Transition from Lithium-Ion to Sodium-Ion Batteries. Small 2024, 20, 2307275. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Yang, C.; Dai, S.; Wang, Y.; Cheng, S. High-Mobility Cu+-Induced Multi-Dimensional Structured Copper-Based Sulfide Anode for Advanced Sodium Ion Batteries. Adv. Funct. Mater. 2025, 35, 2510286. [Google Scholar] [CrossRef]
- Dai, S.; Yang, C.; Wang, Y.; Jiang, Y.; Zeng, L. In Situ TEM Studies of Tunnel-Structured Materials for Alkali Metal-Ion Batteries. Adv. Sci. 2025, 12, 2500513. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Kwon, T. Various Technologies to Mitigate Volume Expansion of Silicon Anode Materials in Lithium-Ion Batteries. Batteries 2025, 11, 346. [Google Scholar] [CrossRef]
- Yun, J.H.; Whang, T.K.; Ahn, W.J.; Lee, Y.-S.; Im, J.S. Control of Cyclic Stability and Volume Expansion on Graphite–SiOx–C Hierarchical Structure for Li-Ion Battery Anodes. RSC Adv. 2022, 12, 6552–6560. [Google Scholar] [CrossRef] [PubMed]
- Nandihalli, N. A Review of Nanocarbon-Based Anode Materials for Lithium-Ion Batteries. Crystals 2024, 14, 800. [Google Scholar] [CrossRef]
- Mei, Y.; He, Y.; Zhu, H.; Ma, Z.; Pu, Y.; Chen, Z.; Li, P.; He, L.; Wang, W.; Tang, H. Recent Advances in the Structural Design of Silicon/Carbon Anodes for Lithium Ion Batteries: A Review. Coatings 2023, 13, 436. [Google Scholar] [CrossRef]
- Zhang, X.; Weng, J.; Ye, C.; Liu, M.; Wang, C.; Wu, S.; Tong, Q.; Zhu, M.; Gao, F. Strategies for Controlling or Releasing the Influence Due to the Volume Expansion of Silicon inside Si−C Composite Anode for High-Performance Lithium-Ion Batteries. Materials 2022, 15, 4264. [Google Scholar] [CrossRef]
- Wang, H.; Nie, G.; Wang, Z.; Cui, S.; Li, H.; Dang, L.; Pu, Z.; Liu, X.; Fu, A.; Guo, Y.-G.; et al. Carbon Nanofibres with Uniformly Embedded Silicon Nanoparticles as Self-Standing Anode for High-Performance Lithium-Ion Battery. Colloids Surf. A Physicochem. Eng. Asp. 2023, 671, 131653. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Li, R.; Wu, W.; Yang, Z.; Huang, T.; Chen, L.; Liu, H. Engineering Flexible, Self-Supported Si@CNF Nanofibre Membrane for High-Performance Li-Ion Battery Anode. Ind. Eng. Chem. Res. 2025, 64, 14329–14336. [Google Scholar] [CrossRef]
- Pei, Y.; Wang, Y.; Chang, A.-Y.; Liao, Y.; Zhang, S.; Wen, X.; Wang, S. Nanofibre-in-Microfibre Carbon/Silicon Composite Anode with High Silicon Content for Lithium-Ion Batteries. Carbon 2023, 203, 436–444. [Google Scholar] [CrossRef]
- Xie, X.; Xiao, P.; Pang, L.; Zhou, P.; Li, Y.; Luo, J.; Xiong, J.; Li, Y. Facile Synthesis of Yolk-Shell Si@void@C Nanoparticles with 3D Conducting Networks as Free-Standing Anodes in Lithium-Ion Batteries. J. Alloys Compd. 2023, 931, 167473. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, J.; Chen, Z.; Zeng, H.; Wu, Z.; Yang, H.; Chen, L.; Sun, Q.; Qian, W. Electrospun Sandwich-Structured C@Si/C@C as Anode for Advanced Lithium-Ion Batteries. Appl. Surf. Sci. 2025, 699, 163139. [Google Scholar] [CrossRef]
- Mu, Y.; Han, M.; Wu, B.; Wang, Y.; Li, Z.; Li, J.; Li, Z.; Wang, S.; Wan, J.; Zeng, L. Nitrogen, Oxygen-Codoped Vertical Graphene Arrays Coated 3D Flexible Carbon Nanofibres with High Silicon Content as an Ultrastable Anode for Superior Lithium Storage. Adv. Sci. 2022, 9, 2104685. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Y.; Ye, H.; Chen, J.; Zhang, L.; Wei, H.; Liu, Z.; Qian, Y. Controlled Tin Oxide Nanoparticles Encapsulated in N-Doped Carbon Nanofibres for Superior Lithium-Ion Storage. ACS Appl. Energy Mater. 2022, 5, 1840–1848. [Google Scholar] [CrossRef]
- Xie, J.; Xu, L. Self-Supporting Sn-Based Carbon Nanofibre Anodes for High-Performance Lithium-Ion Batteries. Molecules 2025, 30, 1740. [Google Scholar] [CrossRef]
- Dong, J.; Dong, Y.; Ren, N.; Zhang, L.; Li, Y.; He, H.; Chen, C. Realizing High-Performance Lithium Storage by Fabricating FeTiO3 Nanoparticle-Impregnated Multichannel Carbon Nanofibres with Promoted Reaction Kinetics. ACS Appl. Mater. Interfaces 2022, 14, 46513–46522. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, D.; Bai, Z.; Yang, Y.; Wang, Y.; Cheng, J.; Chu, P.K.; Luo, Y. MXene Nanofibres Confining MnOx Nanoparticles: A Flexible Anode for High-Speed Lithium Ion Storage Networks. Dalton Trans. 2022, 51, 1423–1433. [Google Scholar] [CrossRef]
- Li, X.; Guan, G.; Zhao, T.; Xiang, J. In-Situ Encapsulating Ultrafine CoFe2O4 Nanoparticle into Porous N-Doped Carbon Nanofibre Membrane as Self-Standing Anode for Enhanced Lithium Storage Performance. Electrochim. Acta 2023, 441, 141787. [Google Scholar] [CrossRef]
- Yue, C.; He, D.; Qing, L.; Tang, Y.; Zeng, X.; Jiao, W.; Liu, N.; He, Y.; Zhao, W.; Chen, J. Hierarchical Composite from Carbon Nanofibres Wrapped SnS Core–Shell Nanoparticles as an Anode for Lithium-Ion Batteries. Energy Fuels 2023, 37, 6791–6799. [Google Scholar] [CrossRef]
- Hou, Z.; Jiang, M.; Cao, Y.; Liu, H.; Zhang, Y.; Wang, J.-G. Encapsulating Ultrafine Cobalt Sulfides into Multichannel Carbon Nanofibres for Superior Li-Ion Energy Storage. J. Power Sources 2022, 541, 231682. [Google Scholar] [CrossRef]
- Li, X.; Guan, G.; Tong, S.; Cheng, B.; Xiang, J.; Zhao, T.; Zhang, K. Two Birds with One Stone: Bimetallic ZnCo2S4 Polyhedral Nanoparticles Decorated Porous N-Doped Carbon Nanofibre Membranes for Free-Standing Flexible Anodes and Microwave Absorption. J. Colloid. Interface Sci. 2025, 678, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Qiu, D.; Hou, Y. Free-Standing and Consecutive ZnSe@carbon Nanofibres Architectures as Ultra-Long Lifespan Anode for Flexible Lithium-Ion Batteries. Nano Energy 2022, 94, 106909. [Google Scholar] [CrossRef]
- Zha, J.; Zheng, D.; Wang, Y.; Xie, Z.; Wu, G.; Qi, J.; Wei, F.; Meng, Q.; Xue, X.; Zhao, D.; et al. Coaxial Electrospinning Synthesis Free-Standing Sn/TiO2 Flexible Carbon Fibres with Sheath/Core Structure for Advanced Flexible Lithium/Potassium-Ion Batteries. Electrochim. Acta 2024, 500, 144745. [Google Scholar] [CrossRef]
- Hao, S.; Sheng, X.; Xie, F.; Sun, M.; Diao, F.; Wang, Y. Electrospun Carbon Nanofibres Embedded with Heterostructured NiFe2O4/Fe0.64Ni0.36 Nanoparticles as an Anode for High-Performance Lithium-Ion Battery. J. Energy Storage 2024, 80, 110412. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, J.; Han, W.; Ma, X.; Wu, G.; Sui, Y.; Wei, F.; Meng, Q.; Xue, X.; Zhao, D.; et al. Hierarchical Sn/MoO3 Embedded in Heteroatom-Doped Carbon-Graphene Hierarchical Networks as Flexible Self-Supporting Anodes for Lithium/Potassium-Ion Batteries. J. Alloys Compd. 2025, 1037, 182381. [Google Scholar] [CrossRef]
- You, J.; Sun, H.; Wang, X.; Li, M.; Sun, J.; Wang, P.; He, Y.; Liu, Z. Sb Ultra-Small Nanoparticles Embedded within N, S Co-Doped Flexible Carbon Nanofibre Films with Longitudinal Tunnels as High Performance Anode Materials for Sodium-Ion Batteries. Batter. Supercaps 2023, 6, e202300022. [Google Scholar] [CrossRef]
- Luo, X.; Wu, X.; Pei, Y.; Lv, Y.; Xue, R.; Ma, C.; Liu, C.; Guo, J. Ultrafast and Controllable Construction of Sb Particle-Loaded Bead-Like Carbon Nanofibres for Long Cycle-Life Sodium-Ion Storage. ACS Appl. Nano Mater. 2025, 8, 3749–3759. [Google Scholar] [CrossRef]
- Qing, L.; Li, R.; Su, W.; Zhao, W.; Li, Y.; Chen, G.; Liu, N.; Chen, J. Nanostructures of Carbon Nanofibre-Constrained Stannous Sulfide with High Flexibility and Enhanced Performance for Sodium-Ion Batteries. Energy Fuels 2022, 36, 2179–2188. [Google Scholar] [CrossRef]
- Wu, C.; Long, Z.; Dai, H.; Li, Z.; Qiao, H.; Liu, K.; Wang, Q.; Wang, K.; Wei, Q. Flexible Self-Supporting MOF-Based Bean Pod Cube Hollow Nanofibres for Ultralong Cycling and High Rate Na Storage. ACS Appl. Mater. Interfaces 2024, 16, 10545–10555. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, H.; Li, Z. Preparation of Binder-Free MoP/SnO2 Carbon Fibre Composites with Cu-Mediated Surface Modification for High-Rate Sodium Ion Storage. J. Alloys Compd. 2024, 995, 174776. [Google Scholar] [CrossRef]
- Lu, M.; Huang, Y.; Song, B.; Chen, C. Carbon Nanofibre-Supported SnSe as Self-Supporting Anode for Sodium Ion Battery. J. Mater. Sci. 2025, 60, 3899–3911. [Google Scholar] [CrossRef]
- Wang, L.; Lin, C.; Liang, T.; Wang, N.; Feng, J.; Yan, W. NiSe2 Nanoparticles Encapsulated in CNTs Covered and N-Doped TiN/Carbon Nanofibres as a Binder-Free Anode for Advanced Sodium-Ion Batteries. Mater. Today Chem. 2022, 24, 100849. [Google Scholar] [CrossRef]
- Wang, D.; Bai, X.; Man, J.; Yang, H.; Du, G.; Wang, Z.; Zhang, P.; Du, F.; Shi, W. Advanced Flexible CoSe2@carbon Fibres as High-Performance Electrode for Sodium Ion and Lithium Sulfur Batteries and Its Micromorphology Transformation. J. Colloid. Interface Sci. 2025, 700, 138364. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, D.; Wang, C.; Zhu, H.; Yu, F.; Yin, J. Bismuth Nanoparticles Encapsulated in Mesoporous Carbon Nanofibres for Efficient Potassium-Ion Storage. ACS Appl. Nano Mater. 2022, 5, 13171–13179. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Z.; Wang, Z.; Liu, X.; Zhang, S.; Deng, C. Tailoring Stress-Relieved Structure for Ternary Cobalt Phosphoselenide@N/P Codoped Carbon towards High-Performance Potassium-Ion Hybrid Capacitors and Potassium-Ion Batteries. Energy Storage Mater. 2023, 57, 180–194. [Google Scholar] [CrossRef]
- Yan, B.; Yu, Y.; Sun, H.; Liu, X.; Li, Y.; Zhang, L.; Yang, X.; Zhong, S.; Wang, R. Flexible Potassium-Ion Batteries Enabled by Encapsulating Hollow NiSe/SnSe Nanocubes within Freestanding N-Doped Carbon Nanofibres. Energy Storage Mater. 2025, 74, 103908. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, X.; Qi, Y.; Wang, Z.; Liang, J.; Huang, D.; Wei, Y. Selenium-Assisted N-Doped Carbon Nanofibre@Ge as Binderless Electrodes for Advanced Potassium-Ion Batteries. J. Energy Storage 2025, 132, 118019. [Google Scholar] [CrossRef]
- Su, L.; Xie, J.; Xu, Y.; Wang, L.; Wang, Y.; Ren, M. Preparation and Lithium Storage Performance of Yolk–Shell Si@void@C Nanocomposites. Phys. Chem. Chem. Phys. 2015, 17, 17562–17565. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Ma, B.; Peng, J.; Wu, Z.; Luo, Z.; Wang, X. Modified Chestnut-Like Structure Silicon Carbon Composite as Anode Material for Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2019, 7, 10415–10424. [Google Scholar] [CrossRef]
- Hu, L.; Luo, B.; Wu, C.; Hu, P.; Wang, L.; Zhang, H. Yolk-Shell Si/C Composites with Multiple Si Nanoparticles Encapsulated into Double Carbon Shells as Lithium-Ion Battery Anodes. J. Energy Chem. 2019, 32, 124–130. [Google Scholar] [CrossRef]
- Yu, J.; Cai, D.; Si, J.; Zhan, H.; Wang, Q. MOF-Derived NiCo2S4 and Carbon Hybrid Hollow Spheres Compactly Concatenated by Electrospun Carbon Nanofibres as Self-Standing Electrodes for Aqueous Alkaline Zn Batteries. J. Mater. Chem. A Mater. 2022, 10, 4100–4109. [Google Scholar] [CrossRef]
- Yang, N.; Xue, J.; Ji, Y.; Zhang, J.; Zhang, W.; He, X.; Li, Q.; Lei, Z.; Liu, Z.; Sun, J. Self-Supporting Poly(3,4-Ethylenedioxythiophene) and Fe3C Co-Decorated Electrospun Carbon Nanofibres as Li2S Supporters for Lithium–Sulfur Batteries. Nanoscale 2025, 17, 7877–7887. [Google Scholar] [CrossRef]
- Kotal, M.; Jakhar, S.; Roy, S.; Sharma, H.K. Cathode Materials for Rechargeable Lithium Batteries: Recent Progress and Future Prospects. J. Energy Storage 2022, 47, 103534. [Google Scholar] [CrossRef]
- Xu, S.; Dong, H.; Yang, D.; Wu, C.; Yao, Y.; Rui, X.; Chou, S.; Yu, Y. Promising Cathode Materials for Sodium-Ion Batteries from Lab to Application. ACS Cent. Sci. 2023, 9, 2012–2035. [Google Scholar] [CrossRef]
- Liu, S.; Kang, L.; Jun, S.C. Challenges and Strategies toward Cathode Materials for Rechargeable Potassium-Ion Batteries. Adv. Mater. 2021, 33, 2004689. [Google Scholar] [CrossRef]
- Manfo, T.A. Promising Cathode Materials for Rechargeable Lithium-Ion Batteries: A Review. J. Sustain. Energy 2023, 14, 51–58. [Google Scholar]
- Pan, J.; Liu, Z.; Zhang, B.; Qi, M.; Feng, Y. Embedment of Molybdenum Disulfide in Electrospun Fibres as an Integrated Cathode for Lithium-Ion Batteries. Coatings 2024, 14, 1465. [Google Scholar] [CrossRef]
- Ren, W.; Wang, Y.; Hu, X.; Cao, Z.; Xu, Y.; Zhou, Y.; Cao, X.; Liang, S. Electrospun Na3MnTi(PO4)3/C Film: A Multielectron-Reaction and Free-Standing Cathode for Sodium-Ion Batteries. Chem. Eng. J. 2024, 487, 150492. [Google Scholar] [CrossRef]
- Luo, C.; Qiu, R.; Li, G.; Shi, X.; Mao, Z.; Wang, R.; Jin, J.; He, B.; Gong, Y.; Wang, H. Electrospun Na3V2(PO4)3/Carbon Composite Nanofibres as Binder-Free Cathodes for Advanced Sodium-Ion Hybrid Capacitors. Mater. Today Energy 2022, 30, 101148. [Google Scholar] [CrossRef]
- Ren, W.; Qin, M.; Zhou, Y.; Zhou, H.; Zhu, J.; Pan, J.; Zhou, J.; Cao, X.; Liang, S. Electrospun Na4Fe3(PO4)2(P2O7) Nanofibres as Free-Standing Cathodes for Ultralong-Life and High-Rate Sodium-Ion Batteries. Energy Storage Mater. 2023, 54, 776–783. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, L.; Liu, J.; Li, W.; Liang, M.; Li, H.; Sun, Y.; Shi, Z.; Ma, S. High-Loading NaCrO2 @C Nanofibres as Binder-Free Cathode for High-Stable Sodium-Ion Batteries. Vacuum 2024, 230, 113647. [Google Scholar] [CrossRef]
- Liu, X.; Liu, K.; Liu, R.; Zhang, J.; Hao, H.; Jin, J.; Chen, X. Highly Crystalline Prussian Blue Anchored on Electrospun Carbon Nanofibres as Flexible Electrode for High Power Sodium-Ion Batteries. Ionics 2024, 30, 3241–3251. [Google Scholar] [CrossRef]
- Xu, J.; Chen, Z.; Luo, Y.; Chen, Y.; Yu, H.; Yan, L.; Shu, J.; Zhang, L. Regulating Particle Size and Facilitating K+ De-Solvation by Closed-Loop Recycling Electrospinning of Metal Hexacyanoferrates. Chem. Eng. J. 2025, 505, 159108. [Google Scholar] [CrossRef]
- Xu, N.; Yan, C.; He, W.; Xu, L.; Jiang, Z.; Zheng, A.; Wu, H.; Chen, M.; Diao, G. Flexible Electrode Material of V2O5 Carbon Fibre Cloth for Enhanced Zinc Ion Storage Performance in Flexible Zinc-Ion Battery. J. Power Sources 2022, 533, 231358. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Niu, Y.; Liu, C.; Chen, H.; Ren, X.; Liu, Z.; Lau, W.-M.; Zhou, D. Electrospun V2O3@Carbon Nanofibres as a Flexible and Binder-Free Cathode for Highly Stable Aqueous Zn-Ion Full Batteries. ACS Appl. Energy Mater. 2022, 5, 3525–3535. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lu, Z.; Dong, J.; Xu, X.; Song, H.; Yuan, L.; Wang, X. An Ultrasmall Structure-Optimized Vanadium Oxides Integrated into Nitrogen-Doped Bead-Chain-like Hollow Carbon Nanofibres for Advanced Flexible Cathode of Zinc Ion Batteries. J. Colloid. Interface Sci. 2026, 702, 138776. [Google Scholar] [CrossRef]
- Fu, W.; Hou, Y.; Zhang, L.; Ma, T.; Duan, G.; Yang, S. 3D ε-MnO2/Electrospun Carbon Fibre Cathodes for Aqueous Zinc-Ion Batteries. New J. Chem. 2025, 49, 11254–11260. [Google Scholar] [CrossRef]
- Dzikra Azura, F.; Akmalia, R.; Irmawati, Y.; Sumboja, A. Porous Layered F–N-Doped Carbon Nanofibres for Capacity Enhancement in Flexible Zinc-Ion Batteries Cathodes. Batter. Supercaps 2025, 8, 2500235. [Google Scholar] [CrossRef]
- Zhu, C.; Bai, X.; Dilixiati, Y.; Zhang, Z.; Dong, C.; Yang, L.; Zhang, J. Fast Oxidation Fabrication of Nanosized BiOCl-Embedded 1D Carbon Nanofibres as a Novel Aqueous Zinc-Ion Batteries Cathode. J. Energy Storage 2025, 131, 117611. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Li, Y.; Ren, X.; Zhang, P.; Sun, L.; Yang, H.Y. In Situ Grown Hierarchical Electrospun Nanofibre Skeletons with Embedded Vanadium Nitride Nanograins for Ultra-Fast and Super-Long Cycle Life Aqueous Zn-Ion Batteries. Adv. Energy Mater. 2023, 13, 2202826. [Google Scholar] [CrossRef]
- Liang, Y.; Dong, H.; Aurbach, D.; Yao, Y. Current Status and Future Directions of Multivalent Metal-Ion Batteries. Nat. Energy 2020, 5, 646–656. [Google Scholar] [CrossRef]
- Hsieh, Y.-Y.; Tuan, H.-Y. Emerging Trends and Prospects in Aqueous Electrolyte Design: Elevating Energy Density and Power Density of Multivalent Metal-Ion Batteries. Energy Storage Mater. 2024, 68, 103361. [Google Scholar] [CrossRef]
- Vedhanarayanan, B.; Nagaraj, J.; Arjunan, K.; Lakshmi, K.C.S. Multivalent Metal-Ion Batteries: Unlocking the Future of Post-Lithium Energy Storage. Nanoenergy Adv. 2025, 5, 13. [Google Scholar] [CrossRef]
- Yao, W.; Liao, K.; Lai, T.; Sul, H.; Manthiram, A. Rechargeable Metal-Sulfur Batteries: Key Materials to Mechanisms. Chem. Rev. 2024, 124, 4935–5118. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Park, H.; Kim, H.; Kansara, S.; Sun, Y.-K. Advanced Cathodes for Practical Lithium–Sulfur Batteries. Acc. Mater. Res. 2025, 6, 245–258. [Google Scholar] [CrossRef]
- McNulty, D.; Landgraf, V.; Trabesinger, S. The Importance of Sulfur Host Structural Preservation for Lithium–Sulfur Battery Performance. J. Mater. Chem. A 2020, 8, 26085–26097. [Google Scholar] [CrossRef]
- Yang, X.; Li, R.; Yang, J.; Liu, H.; Luo, T.; Wang, X.; Yang, L. A Novel Route to Constructing High-Efficiency Lithium Sulfur Batteries with Spent Graphite as the Sulfur Host. Carbon 2022, 199, 215–223. [Google Scholar] [CrossRef]
- Zhi, P.; Qi, Y.; Zhao, J.; Ding, H.; Zhao, Q.; Li, Y.; Xu, M. Cobalt Nanoparticles Embedded in Nitrogen-Doped Carbon Nanofibres to Enhance Redox Kinetics for Long-Cycling Sodium–Sulfur Batteries. Mater. Today Energy 2024, 41, 101536. [Google Scholar] [CrossRef]
- Pei, H.; Yang, Q.; Yu, J.; Song, H.; Zhao, S.; Waterhouse, G.I.N.; Guo, J.; Lu, S. Self-Supporting Carbon Nanofibres with Ni-Single-Atoms and Uniformly Dispersed Ni-Nanoparticles as Scalable Multifunctional Hosts for High Energy Density Lithium-Sulfur Batteries. Small 2022, 18, 2202037. [Google Scholar] [CrossRef]
- Cheng, Z.; Pan, H.; Wu, Z.; Wübbenhorst, M.; Zhang, Z. Cu–Mo Bimetal Modulated Multifunctional Carbon Nanofibres Promoting the Polysulfides Conversion for High-Sulfur-Loading Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2022, 14, 45688–45696. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, C.; Zhang, W.; Wang, Y.; Rehman, Z.U.; Shen, X.; Yao, S. CoFe2O4 Nanoparticles Modified Amidation of N-Doped Carbon Nanofibres Hybrid Catalysts to Accelerate Electrochemical Kinetics of Li-S Batteries with High Sulfur Loading. Chem. Eng. J. 2024, 481, 148374. [Google Scholar] [CrossRef]
- Luo, X.; Pu, Z.; Li, H.; Li, Z.; Yang, X.; Fu, A.; Liu, X.; Li, H. Co2P Nanoparticles Decorated Porous Carbon Nanofibres as Self-Standing Cathode for High-Performance Li–S Batteries. ACS Appl. Mater. Interfaces 2025, 17, 38019–38030. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Qi, C.; Chang, Q.; Jin, J.; Lu, Y.; Wen, Z. TiC Nanoparticles Supported on Free-Standing Carbon Nanofibres Enabled High-Performance Lithium–Sulfur Batteries. Compos. B Eng. 2023, 257, 110679. [Google Scholar] [CrossRef]
- Shan, Z.; Li, X.; Li, X.; He, Y.; Guo, Y.; Wang, G.; Geng, Y.; Chang, G.; Li, Q. Nanofibre-Based Electrode Current Collector for High-Energy Li-S Batteries towards Practical Application for Energy Storage. Appl. Surf. Sci. 2024, 651, 159218. [Google Scholar] [CrossRef]
- Saroha, R.; Heo, J.; Liu, Y.; Angulakshmi, N.; Lee, Y.; Cho, K.-K.; Ahn, H.-J.; Ahn, J.-H. V2O3-Decorated Carbon Nanofibres as a Robust Interlayer for Long-Lived, High-Performance, Room-Temperature Sodium–Sulfur Batteries. Chem. Eng. J. 2022, 431, 134205. [Google Scholar] [CrossRef]
- Si, J.; Zhang, H.; Deng, Y.; Zeng, S.; Wang, Q.; Cai, D.; Cui, Z.; Liu, X. Accelerating the Consecutive Conversion of Polysulfides Enabled by Heterostructured Ni3Se4/FeSe2 Tandem Electrocatalyst for High-Performance Lithium-Sulfur Batteries. J. Colloid. Interface Sci. 2025, 688, 11–21. [Google Scholar] [CrossRef]
- Guan, Y.; Du, Z.; Yu, C.; Chen, B.; Sun, J.; Ai, W. Semi-Embedded Ni2P Nanoparticles in N,P Codoped Porous Carbon Nanofibres Enable Efficient 3D Li2S Deposition for Low-Temperature Lithium–Sulfur Batteries. ACS Sustain. Chem. Eng. 2025, 13, 11579–11590. [Google Scholar] [CrossRef]
- Yılmazoğlu, E.; Karakuş, S. Role of Electrocatalysts in Electrochemical Energy Conversion and Storage Devices. In Atomically Precise Electrocatalysts for Electrochemical Energy Applications; Kumar, A., Gupta, R.K., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 37–54. ISBN 978-3-031-54622-8. [Google Scholar]
- O’Mullane, A.P.; Escudero-Escribano, M.; Stephens, I.E.L.; Krischer, K. The Role of Electrocatalysis in a Sustainable Future: From Renewable Energy Conversion and Storage to Emerging Reactions. ChemPhysChem 2019, 20, 2900–2903. [Google Scholar] [CrossRef]
- Kong, Z.; Wu, J.; Liu, Z.; Yan, D.; Wu, Z.-P.; Zhong, C.-J. Advanced Electrocatalysts for Fuel Cells: Evolution of Active Sites and Synergistic Properties of Catalysts and Carrier Materials. Exploration 2025, 5, 20230052. [Google Scholar] [CrossRef] [PubMed]
- Phuc, N.H.H.; Anh Tu, T.; Cam Loc, L.; Xuan Viet, C.; Thi Thuy Phuong, P.; Tri, N.; Van Thang, L. A Review of Bifunctional Catalysts for Zinc-Air Batteries. Nanoenergy Adv. 2023, 3, 13–47. [Google Scholar] [CrossRef]
- Gautam, J.; Mahajan, R.L.; Lee, S.-Y.; Park, S.-J. Bifunctional Electrocatalysts for Zn–Air Batteries: A Comprehensive Review of Design Optimization and In-Situ Characterization. Mater. Sci. Eng. R Rep. 2025, 166, 101058. [Google Scholar] [CrossRef]
- Araújo, H.; Šljukić, B.; Gago, S.; Santos, D.M.F. The Current State of Transition Metal-Based Electrocatalysts (Oxides, Alloys, POMs, and MOFs) for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. Front. Energy Res. 2024, 12, 1373522. [Google Scholar] [CrossRef]
- Smiljanić, M.; Srejić, I.; Georgijević, J.P.; Maksić, A.; Bele, M.; Hodnik, N. Recent Progress in the Development of Advanced Support Materials for Electrocatalysis. Front. Chem. 2023, 11, 1304063. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, Y.; Lv, H.; Shi, H.; Zhou, W.; Liu, Y.; Yu, D.-G. Processes of Electrospun Polyvinylidene Fluoride-Based Nanofibres, Their Piezoelectric Properties, and Several Fantastic Applications. Polymers 2022, 14, 4311. [Google Scholar] [CrossRef]
- Shin, S.; Yoon, Y.; Park, S.; Shin, M.W. Fabrication of Core-Shell Structured Cobalt Nanoparticle/Carbon Nanofibre as a Bifunctional Catalyst for the Oxygen Reduction/Evolution Reactions. J. Alloys Compd. 2023, 939, 168731. [Google Scholar] [CrossRef]
- Sun, L.; Xu, H.; Yang, Y.; Li, L.; Zhao, X.; Zhang, W. Graphitic Carbon-Encapsulated Cobalt Nanoparticles Embedded 1D Porous Hollow Carbon Nanofibres as Advanced Multifunctional Electrocatalysts for Overall Water Splitting and Zn-Air Batteries. Int. J. Hydrogen Energy 2023, 48, 5095–5106. [Google Scholar] [CrossRef]
- Tian, X.; Lu, X.F.; Xia, B.Y.; Lou, X.W.D. Advanced Electrocatalysts for the Oxygen Reduction Reaction in Energy Conversion Technologies. Joule 2020, 4, 45–68. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, L.; Yan, X.; Yao, X. Recent Progress in Oxygen Electrocatalysts for Zinc–Air Batteries. Small Methods 2017, 1, 1700209. [Google Scholar] [CrossRef]
- Zhao, J.; He, Y.; Chen, Z.; Zheng, X.; Han, X.; Rao, D.; Zhong, C.; Hu, W.; Deng, Y. Engineering the Surface Metal Active Sites of Nickel Cobalt Oxide Nanoplates toward Enhanced Oxygen Electrocatalysis for Zn–Air Battery. ACS Appl. Mater. Interfaces 2019, 11, 4915–4921. [Google Scholar] [CrossRef]
- Wang, Z.; Luan, D.; Madhavi, S.; Ming Li, C.; Lou, X.W.D. α-Fe2O3 Nanotubes with Superior Lithium Storage Capability. Chem. Commun. 2011, 47, 8061–8063. [Google Scholar] [CrossRef]
- Cao, K.; Jiao, L.; Liu, H.; Liu, Y.; Wang, Y.; Guo, Z.; Yuan, H. 3D Hierarchical Porous α-Fe2O3 Nanosheets for High-Performance Lithium-Ion Batteries. Adv. Energy Mater. 2015, 5, 1401421. [Google Scholar] [CrossRef]
- Li, L.; Wu, H.B.; Yu, L.; Madhavi, S.; Lou, X.W.D. A General Method to Grow Porous α-Fe2O3 Nanosheets on Substrates as Integrated Electrodes for Lithium-Ion Batteries. Adv. Mater. Interfaces 2014, 1, 1400050. [Google Scholar] [CrossRef]
- Sun, L.; Qin, Y.; Fu, L.; Di, Y.; Hu, K.; Li, H.; Li, L.; Zhang, W. A Self-Supported Bifunctional Air Cathode Composed of Co3O4/Fe2O3 Nanoparticles Embedded in Nanosheet Arrays Grafted onto Carbon Nanofibres for Secondary Zinc-Air Batteries. J. Alloys Compd. 2022, 921, 166128. [Google Scholar] [CrossRef]
- Suo, N.; Han, X.; Chen, C.; He, X.; Dou, Z.; Lin, Z.; Cui, L.; Xiang, J. Engineering Vanadium Phosphide by Iron Doping as Bifunctional Electrocatalyst for Overall Water Splitting. Electrochim. Acta 2020, 333, 135531. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, C.; Zhu, X.; Wang, X.; He, J.; Zhao, Y. A Hierarchical Carbon Nanotube Forest Supported Metal Phosphide Electrode for Efficient Overall Water Splitting. J. Mater. Chem. A Mater. 2021, 9, 1150–1158. [Google Scholar] [CrossRef]
- Xiao, C.; Zhang, B.; Li, D. Partial-Sacrificial-Template Synthesis of Fe/Ni Phosphides on Ni Foam: A Strongly Stabilized and Efficient Catalyst for Electrochemical Water Splitting. Electrochim. Acta 2017, 242, 260–267. [Google Scholar] [CrossRef]
- Yan, L.; Cao, L.; Dai, P.; Gu, X.; Liu, D.; Li, L.; Wang, Y.; Zhao, X. Metal-Organic Frameworks Derived Nanotube of Nickel–Cobalt Bimetal Phosphides as Highly Efficient Electrocatalysts for Overall Water Splitting. Adv. Funct. Mater. 2017, 27, 1703455. [Google Scholar] [CrossRef]
- Zhang, W.; Cui, L.; Liu, J. Recent Advances in Cobalt-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. J. Alloys Compd. 2020, 821, 153542. [Google Scholar] [CrossRef]
- Huang, T.; Xu, G.; Ding, H.; Zhang, L.; Wei, B.; Liu, X. Ultrafine Cobalt Molybdenum Phosphide Nanoparticles Embedded in Crosslinked Nitrogen-Doped Carbon Nanofibre as Efficient Bifunctional Catalyst for Overall Water Splitting. J. Colloid Interface Sci. 2022, 625, 956–964. [Google Scholar] [CrossRef]
- Buan, M.E.M.; Cognigni, A.; Walmsley, J.C.; Muthuswamy, N.; Rønning, M. Active Sites for the Oxygen Reduction Reaction in Nitrogen-Doped Carbon Nanofibres. Catal. Today 2020, 357, 248–258. [Google Scholar] [CrossRef]
- Corpas, J.; Kim-Lee, S.-H.; Mauleón, P.; Arrayás, R.G.; Carretero, J.C. Beyond Classical Sulfone Chemistry: Metal- and Photocatalytic Approaches for C–S Bond Functionalization of Sulfones. Chem. Soc. Rev. 2022, 51, 6774–6823. [Google Scholar] [CrossRef]
- Guan, J.; Chen, J.; Zhu, Y.; Wang, L.; Guo, B.; Fu, Y.; Wang, J.; Zhang, M. Anchoring Carbon Shells Encapsulated RuMn Nanoparticles on N-Doped Carbon Nanofibres for Efficient Hydrogen Evolution Reaction. Chem. Eng. J. 2025, 518, 164342. [Google Scholar] [CrossRef]
- Ouyang, T.; Ye, Y.-Q.; Wu, C.-Y.; Xiao, K.; Liu, Z.-Q. Heterostructures Composed of N-Doped Carbon Nanotubes Encapsulating Cobalt and β-Mo2C Nanoparticles as Bifunctional Electrodes for Water Splitting. Angew. Chem. Int. Ed. 2019, 58, 4923–4928. [Google Scholar] [CrossRef]
- Yun, Q.; Lu, Q.; Zhang, X.; Tan, C.; Zhang, H. Three-Dimensional Architectures Constructed from Transition-Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion. Angew. Chem. Int. Ed. 2018, 57, 626–646. [Google Scholar] [CrossRef]
- Jia, L.; Li, C.; Zhao, Y.; Liu, B.; Cao, S.; Mou, D.; Han, T.; Chen, G.; Lin, Y. Interfacial Engineering of Mo2C–Mo3C2 Heteronanowires for High Performance Hydrogen Evolution Reactions. Nanoscale 2019, 11, 23318–23329. [Google Scholar] [CrossRef]
- Gong, T.; Zhang, J.; Liu, Y.; Hou, L.; Deng, J.; Yuan, C. Construction of Hetero-Phase Mo2C-CoO@N-CNFs Film as a Self-Supported Bi-Functional Catalyst towards Overall Water Splitting. Chem. Eng. J. 2023, 451, 139025. [Google Scholar] [CrossRef]
- Zhai, Y.; Kuang, C.; Liu, H.; Li, L. Free-Standing Dendritic Nanostructured Co/CNT/Carbon Nanofibre Composites for Efficient Water Splitting in Alkaline Media. ACS Appl. Nano Mater. 2023, 6, 8593–8602. [Google Scholar] [CrossRef]
- Chen, X.; Le, F.; Lu, Z.; Zhou, D.; Yao, H.; Jia, W. Ultrafine Electrospun Cobalt-Molybdenum Bimetallic Nitride as a Durable Electrocatalyst for Hydrogen Evolution. Inorg. Chem. 2023, 62, 11207–11214. [Google Scholar] [CrossRef]
- Fazal, M.W.; Zafar, F.; Asad, M.; Mohammad H. Al Sulami, F.; Khalid, H.; Abdelwahab, A.A.; Ur Rehman, M.U.; Akhtar, N.; El-Said, W.A.; Hussain, S.; et al. Zn and Co Loaded Porous C Decorated Electrospun Nanofibres as Efficient Oxygen Evolution Reaction for Water Splitting. ACS Appl. Energy Mater. 2023, 6, 2739–2746. [Google Scholar] [CrossRef]
- Lu, C.; Liao, Y.; Kang, T.; Liu, Z.; Shen, S.; Luo, Z.; Yang, G.; Tang, Z. Self-Supported NiCo Alloy-Embedded Carbon Nanofibres Boost Water Splitting Reactions in Alkaline Medium. Int. J. Hydrogen Energy 2025, 166, 150761. [Google Scholar] [CrossRef]
- Poudel, M.B.; Balanay, M.P.; Lohani, P.C.; Sekar, K.; Yoo, D.J. Atomic Engineering of 3D Self-Supported Bifunctional Oxygen Electrodes for Rechargeable Zinc-Air Batteries and Fuel Cell Applications. Adv. Energy Mater. 2024, 14, 2400347. [Google Scholar] [CrossRef]
- Zou, Q.; Zhu, Y.; Zhang, R.; Guan, J.; Wang, L.; Guo, B.; Zhang, M. Construction of Ru-Doped Co Nanoparticles Loaded on Carbon Nanosheets In-Situ Grown on Carbon Nanofibres as Self-Supported Catalysts for Efficient Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2024, 85, 758–765. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, Y.; Guan, J.; Zou, Q.; Geng, M.; Guo, B.; Wang, L.; Zhang, M. N-Doped Hollow Nanofibres Loaded with RuCoNi Ternary Alloy as an Efficient Catalyst for Hydrogen Evolution Reaction. J. Alloys Compd. 2024, 1003, 175352. [Google Scholar] [CrossRef]
- Xiao, W.; Li, Y.; Zhang, Y.; Wang, P.; Qi, N. Silk Derived Electrospun Carbon Nanofibres Loaded with CoS Nanoparticles as Efficient Hydrogen Evolution Reaction Catalysts in Acidic and Alkaline Media. Fuel 2024, 369, 131797. [Google Scholar] [CrossRef]
- Feng, Y.; Lou, M.; Wang, L.; Wen, S.; Wang, Y.; Wang, R. Bimetallic MOF Derived Cu3P/Co2P Grown on Coal-Based Carbon Fibres as Self-Supporting Electrocatalyst for Enhanced Hydrogen Evolution. Appl. Surf. Sci. 2025, 681, 161529. [Google Scholar] [CrossRef]
- Duan, R.; Ding, J.; Fan, J.; Zhuang, L. Production of Self-Supporting Hollow Carbon Nanofibre Membranes with Co/Co2P Heterojunctions via Continuous Coaxial Co-Spinning for Efficient Overall Water Splitting. Coatings 2025, 15, 772. [Google Scholar] [CrossRef]
- Pérez-Pi, G.; Luque-Rueda, J.; Bosch-Jimenez, P.; Camps, E.B.; Martínez-Crespiera, S. Free-Standing Carbon Nanofibre Films with Supported Cobalt Phosphide Nanoparticles as Cathodes for Hydrogen Evolution Reaction in a Microbial Electrolysis Cell. Nanomaterials 2024, 14, 1849. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Zou, Y.; Wang, Q.; Xu, J.; Xiang, C.; Xu, F.; Sun, L.; Yang, F. Self-Supported Co–Mo Sulfide in Electrospun Carbon Nanofibres as Electrocatalysts for Hydrogen Evolution Reaction in Alkaline Medium. J. Alloys Compd. 2022, 911, 165094. [Google Scholar] [CrossRef]
- Liu, X.; Xu, G.; Ding, H.; Zhang, L.; Huang, T. NiCoP Nanoparticles Embedded in Coal-Based Carbon Nanofibres as Self-Supporting Bifunctional Electrocatalyst toward Water Splitting. Int. J. Hydrogen Energy 2023, 48, 35064–35074. [Google Scholar] [CrossRef]
- Zhang, S.; Le, F.; Jia, W.; Yang, X.; Hu, P.; Wu, X.; Shu, W.; Xie, Y.; Xiao, W.; Jia, D. Electrospun Co-MoC Nanoparticles Embedded in Carbon Nanofibres for Highly Efficient PH-Universal Hydrogen Evolution Reaction and Alkaline Overall Water Splitting. Small Methods 2025, 9, 2401103. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, S.; Guan, J.; Zou, Q.; Geng, M.; Guo, B.; Zhang, M. Carbon Nanofibres Load PtRu Alloy Self-Supporting the Preparation of Electrode and Its Application in Electrocatalytic Hydrogen Evolution. J. Electroanal. Chem. 2025, 996, 119354. [Google Scholar] [CrossRef]
- Liao, Y.; Kang, T.; Liu, F.; Zhou, S.; Liu, X.; Shen, S.; Tang, Z. Ni Nanoparticles Embedded in Multi-Channel Carbon Nanofibres: Self-Supporting Electrodes for Bifunctional Catalysis of Hydrogen and Oxygen Evolution Reactions. J. Alloys Compd. 2024, 998, 174894. [Google Scholar] [CrossRef]
- Lin, J.; Yin, D.; He, W.; Wang, L.; Yue, B.; Wang, T.; Li, D.; Han, C.; Dong, X. Self-Supporting Honeycomb Coaxial Carbon Fibres: A New Strategy to Achieve an Efficient Hydrogen Evolution Reaction Both in Base and Acid Media. Chem. Eng. J. 2024, 488, 151195. [Google Scholar] [CrossRef]
- Lv, D.; Yin, D.; Yang, Y.; Shao, H.; Li, D.; Wang, T.; Ma, Q.; Li, F.; Yu, W.; Han, C.; et al. Self-Supporting Multi-Channel Janus Carbon Fibres: A New Strategy to Achieve an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. J. Colloid. Interface Sci. 2024, 663, 270–279. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, C.; Lu, Z.; Dou, J.; Huang, X.; Yu, J.; Wu, J.; Li, H.; Chen, X. Self-Standing Electrospun Co/Zn@N-Doped Carbon Nanofibre Electrode for Highly Stable Liquid and Solid-State Rechargeable Zinc-Air Batteries and Performance Evaluated by Scanning Electrochemical Microscopy at Various Temperatures. Chem. Eng. J. 2023, 477, 147022. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Ai, X.; Wang, B.; Bian, Y.; Wang, G.; Wang, Y.; Hu, Z.; Zhang, Z. Stabilizing Iron Single Atoms with Electrospun Hollow Carbon Nanofibres as Self-Standing Air-Electrodes for Long-Time Zn–Air Batteries. J. Colloid Interface Sci. 2023, 651, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Akmalia, R.; Balqis, F.; Andriani, M.F.; Irmawati, Y.; Sumboja, A. Well-Dispersed NiFe Nanoalloy Embedded on N-Doped Carbon Nanofibres as Free-Standing Air Cathode for All-Solid-State Flexible Zinc-Air Battery. J. Energy Storage 2023, 72, 108743. [Google Scholar] [CrossRef]
- Huang, K.; Hu, J.; Cao, J.; Wei, X.; Liu, S.; Dai, Q.; Shen, F.; Zhang, X.; Zhao, X.; Peng, Y.; et al. Biomass-Templated Strategy to Synthesize Fe2P/Co2P Heterojunction Bifunctional Electrocatalyst for High Performance Flexible Zinc-Air Batteries. Sci. China Chem. 2025, 68, 3056–3063. [Google Scholar] [CrossRef]
- Jaimes-Paez, C.D.; García-Rollán, M.; García-Mateos, F.J.; Ruiz-Rosas, R.; Rosas, J.M.; Rodríguez-Mirasol, J.; Cordero, T.; Morallón, E.; Cazorla-Amorós, D. Self-Standing Carbon Fibre Electrodes Doped with Pd Nanoparticles as Electrocatalysts in Zinc–Air Batteries. Molecules 2025, 30, 2487. [Google Scholar] [CrossRef]
- Radhakanth, S.; Singhal, R. Self-Standing Metal Organic Framework–Carbon Nanofibre Composites as Bifunctional Electrocatalysts for Rechargeable Zinc-Air Batteries. ChemistrySelect 2025, 10, e202405622. [Google Scholar] [CrossRef]
- Likitaporn, C.; Prathumrat, P.; Senthilkumar, N.; Tanalue, N.; Wongsalam, T.; Okhawilai, M. Engineering the Separators for High Electrolyte Uptakes in Li-Ion Batteries. J. Energy Storage 2024, 101, 113861. [Google Scholar] [CrossRef]
- Zhigalenok, Y.; Abdimomyn, S.; Zhumadil, K.; Lepikhin, M.; Starodubtseva, A.; Kiyatova, M.; Shpigel, N.; Malchik, F. A Practical Guide for Separator Selection, Characterization, and Electrochemical Evaluation for Supercapacitor Application. Appl. Phys. Rev. 2024, 11, 031315. [Google Scholar] [CrossRef]
- Lingappan, N.; Lee, W.; Passerini, S.; Pecht, M. A Comprehensive Review of Separator Membranes in Lithium-Ion Batteries. Renew. Sustain. Energy Rev. 2023, 187, 113726. [Google Scholar] [CrossRef]
- Guo, M.; Dong, S.; Xiong, J.; Jin, X.; Wan, P.; Lu, S.; Zhang, Y.; Xu, J.; Fan, H. Flexible Core-Shell PAN/CNTs@PVDF-HFP/Uio-66-NH2 Hybrid Nanofibres Membrane for Advanced Lithium-Ion Batteries Separator. Mater. Today Chem. 2023, 30, 101552. [Google Scholar] [CrossRef]
- Lee, J.; Yoon, J.; Oh, S.-G. Electrospun Nanofibre-Based Tri-Layer Separators with CuO/TiO2 Nanowires for High-Performance and Long-Cycle Stability of Lithium-Ion Batteries. J. Ind. Eng. Chem. 2024, 135, 165–174. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, H.; Wang, B.; Yang, S.; Wu, B.; Zhou, Y.; Li, H.; Wei, Z.; Zhao, Y. Microfibre/Nanofibre/Attapulgite Multilayer Separator with a Pore-Size Gradient for High-Performance and Safe Lithium-Ion Batteries. Molecules 2024, 29, 3277. [Google Scholar] [CrossRef]
- Pan, Y.; Cai, Y.; Zhan, J.; Wang, L.; Jia, S. Application of High-Performance Lithium-Ion Batteries with Dual-Layer Separators Composed of Electron Beam Irradiated PVDF-HFP/PMMA/AlO(OH) and PVDF-CTFE/PEO/LiTFSI/AlO(OH) in Fast Charging and Discharging. Solid State Ion. 2025, 429, 116969. [Google Scholar] [CrossRef]
- Wu, B.; Li, Y.; Liang, Y.; Yang, S.; Ren, H.; Lu, L.; Wei, Z.; Zhao, Y. Attapulgite/Fe3O4 Synergistically Enable the Nanofibre Composite Separator with High Ionic Transport Ability for Lithium Batteries. Electrochim. Acta 2025, 539, 147174. [Google Scholar] [CrossRef]
- Jafaripour, H.; Sanaee, Z.; Mahdavi, H. Polymer-Less Electrospinning for Realization of Silica Nanofibres Membrane as a Flexible Separator with Ultra-High Electrolyte Uptake, for High Safety Lithium Ion Batteries. J. Power Sources 2025, 631, 236237. [Google Scholar] [CrossRef]
- Cao, J.; Meng, J.; Shen, H.; Ye, X.; Liu, H.; Guo, C.; Li, J.; Zhang, G.; Bao, W.; Yu, F. Solid-State Electrolytes for next-Generation Batteries: Recent Advances and Interfacial Challenges. J. Power Sources 2025, 654, 237870. [Google Scholar] [CrossRef]
- Hren, M.; Božič, M.; Fakin, D.; Kleinschek, K.S.; Gorgieva, S. Alkaline Membrane Fuel Cells: Anion Exchange Membranes and Fuels. Sustain. Energy Fuels 2021, 5, 604–637. [Google Scholar] [CrossRef]
- Das, G.; Choi, J.-H.; Nguyen, P.K.T.; Kim, D.-J.; Yoon, Y.S. Anion Exchange Membranes for Fuel Cell Application: A Review. Polymers 2022, 14, 1197. [Google Scholar] [CrossRef]
- Raja Pugalenthi, M.; Ramesh Prabhu, M. The Pore Filled SPEEK Nanofibres Matrix Combined with Ethylene Diamine Modified SrFeO3 Nanoneedles for the Cation Exchange Membrane Fuel Cells. J. Taiwan Inst. Chem. Eng. 2021, 122, 136–147. [Google Scholar] [CrossRef]
- Yang, T.-Q.; Wang, C.; Zhang, W.-K.; Xia, Y.; Gan, Y.-P.; Huang, H.; He, X.-P.; Zhang, J. Composite Polymer Electrolytes Reinforced by a Three-Dimensional Polyacrylonitrile/Li0.33La0.557TiO3 Nanofibre Framework for Room-Temperature Dendrite-Free All-Solid-State Lithium Metal Battery. Rare Met. 2022, 41, 1870–1879. [Google Scholar] [CrossRef]
- Kang, J.; Yan, Z.; Gao, L.; Zhang, Y.; Liu, W.; Yang, Q.; Zhao, Y.; Deng, N.; Cheng, B.; Kang, W. Improved Ionic Conductivity and Enhancedinterfacial Stability of Solid Polymer Electrolytes with Porous Ferroelectric Ceramic Nanofibres. Energy Storage Mater. 2022, 53, 192–203. [Google Scholar] [CrossRef]
- Zhang, T.; Su, D.; Yu, J.; Zhang, Y.; Jiang, M.; Ju, J.; Sun, Y.; Kang, W. Construction of Electrospun Multistage ZnO@PMIA Gel Electrolytes for Realizing High Performance Zinc-Ion Batteries. Electrochim. Acta 2024, 507, 145124. [Google Scholar] [CrossRef]
- Jagan, M.; Vijayachamundeeswari, S.P. Electrospun Poly(Acrylonitrile) and Poly(Ethylene Glycol) Composite Nanofibres Incorporated with Gd2O3 NPs for Energy Storage Applications. J. Polym. Res. 2025, 32, 26. [Google Scholar] [CrossRef]
- Gao, J.; Chai, Y.; Ni, J.; Zeng, Y.; Zhang, G.; Liu, X.; Ning, D.; Jin, X.; Zhao, H.; Zhou, D.; et al. Fabrication of Flexible Polymer-MOF Composite Electrolyte for Solid-State Lithium Metal Batteries with High Rate Performance. Chem. Eng. J. 2025, 512, 162738. [Google Scholar] [CrossRef]
- Zhou, G.; Niu, C.; Jiang, X.; Zhang, M.; Zhao, J.; Zhang, Q. Lithium-Ion Battery Safety Polymer Electrolyte Membrane Based on PVDF-HFP Prepared by Electrospinning Method. J. Energy Storage 2025, 123, 116734. [Google Scholar] [CrossRef]



| Material | ES Solution: Polymer | ES Solution: Other Components | Steps of Post-ES Treatments | Specific Capacitance (F/g) | Device Structure | Max. Energy Density (Wh/Kg) | Ref. |
|---|---|---|---|---|---|---|---|
| MnO-CNFs | PAN | MnSO4 | 280 °C, 5 h, air 800 °C, 1 h, N2 800 °C, 3 h, N2 | 246 @ 0.5 A/g | SSC | 14 @ 250 W/kg | [38] |
| CNF/MnO2 | PAN | MnO2 | 230 °C, 1 h 850 °C, 2 h, N2 | 1114 @ 1 A/g | SSC | 40.8 @ 599 W/kg | [39] |
| C/Mn(10)/C | Sequential spinning 1. PAN, 2. PAN, PMMA 3. PAN | 2. MnCl2 | 260 °C, 3 h, air 800 °C, 1 h, N2 | 220 @ 1 A/cm2 | C/Mn(10)/C//C/Mn(0)/C | 44.3 @ 400 W/Kg | [40] |
| FOCNF | PAN | MIL-88(Fe) | 280 °C, 2 h 800 °C, 2 h 300 °C, 12 h | 523 @ 1 A/g | FOCNF//NOCNF | 43.1 @ 412.5 W/Kg | [41] |
| NOCNF | PAN | MOF-74(Ni) | 280 °C, 2 h 800 °C, 2 h 300 °C, 12 h | 468 @ 1 A/g | FOCNF//NOCNF | 43.1 @ 412.5 W/Kg | [41] |
| Nb2O5@CNFs | PAN | 270 °C, 4 h 800 °C, 2 h, N2 Solvothermal growth of Nb(BTC)MOF 800 °C, 2 h, Ar | 633.6 @ 0.5 A/g | Nb2O5@CNFs//AC | 62.1 @ 292.7 W/Kg | [42] | |
| CNF-20ZrO2 | PAN, PMMA | ZrCl4 | 250 °C, 2 h 800 °C, 2 h, N2 | 140 @ 1 A/g | SCC | 4.86 @ 250 W/Kg | [43] |
| CNF/Gd2O3 | PAN | Gd2O3, thiourea | 250 °C, 2 h 800 °C, 2 h, N2 | SCC | 8.12 @ 300 W/Kg | [44] | |
| S0.075WO3@CNFs | PAN | β-CD | 250 °C, 2 h, air 650 °C, 2 h, N2 Solvothermal growth of S-doped WO3 | 718.33 @ 0.5 A/g | S0.075WO3@CNFs//CNFs | 46.45 @ 375.01 W/Kg | [45] |
| NiMoO4/CNFs | PAN | Ni(CH3COO)2, (NH4)6Mo7O24 | 230 °C, 2 h, air 700 °C, 2 h, N2 350 °C, 0.25 h, air | 122.5 @ 1 A/g (in device) | SSC | 43.9 @ 1567.9 W/Kg | [46] |
| Ni0.25Co0.25 Oxide/CNF | PAN | Ni(acac)2, CoAc | 230 °C, 1 h, air 800 °C, 5 h, N2 300 °C, 15 min, air | 431.2 @ 1A/g 697.5 @ 0.5 A/g | No device | [47] | |
| CeO2/ NiCo2O4@LCNFs | PAN, lignin | 250 °C, 2 h, air 1000 °C, 2 h, N2 Hydrothermal growth of CeO2/NiCo2O4 | 643.6 @ 0.5 A/g | No device | [48] | ||
| ZnMnO-HPC | PAN, PMMA | Zn(C2H3O2)2 | 250 °C, 2 h, N2 750 °C, 2 h, N2 Growth of MnO2 | 401.77 C/g @ 0.5 A/g | ZnMnO-HCP//AC | 38.37 @ 407 W/Kg | [49] |
| CMNO-LCNFs | PEO, lignin | CoxMnyNizO4 | 100 °C, 1 h, air 250 °C, 1 h, air 900 °C, 2 h, N2 900 °C, 1 h, CO2 | 1021 @ 0.1 A/g in KI | SSC | 312 @ 437 W/Kg | [50] |
| FCOS@CNF | PAN | Co(C5H7O2)3, Fe(C5H7O2)3 | 250 °C, 1 h, air 700 °C, 1 h, N2 Na2S treatment in autoclave | 1039 @ 1 A/g | FCOS@CNF-10//F-RGO | 24.2 @ 725.4 W/Kg | [51] |
| MnMoS4@CNF | PAN | Mn(CH3CO2)2, MoO2(acac)2 | 270 °C, 5 h, air 800 °C, N2 Thioacetamide treatment in autoclave | 2187.5 @ 1 A/g | MnMoS4@CNF//N,S-CNF | 72.5 @ 0.9 kW/Kg | [52] |
| CNFs/Ni-Cu-S-300 | PAN, PVP | Ni(NO3)2, Cu(NO3)2 | 230 °C, 2 h, air 800 °C, 2 h, Ar 550 °C, 2 h (with sulphur) | 1208 mF/cm2 @ 1 mA/cm2 | No device | [53] | |
| Co–S@CNF–CNT-3 | PAN | ZIF-67 | 280 °C, 2 h, air 850 °C, 2 h, N2 (with melamine) 550 °C, 2 h, N2 (with sulphur) | 416.5 @ 0.2 A/g | Co–S@CNF–CNT-3//C@CNF–CNT-3 | 10.3 @ 320 W/Kg | [54] |
| C,N-CoxSy/CNF | PAN | 250 °C, 1 h, air 700 °C, 1 h, N2 Growth of Co-ZIF Hydrothermal vulcanization 400 °C, 2 h, N2 | 1080 @ 1 A/g | C,N-CoxSy/CNF//AC | 37.29 @ 813.6 W/Kg | [55] | |
| (Co1-xS/HCoO2)-1@Fe3C/PCNFs | PAN, PMMA | MIL-88A | 250 °C, 1 h 900 °C, 1 h, N2 In situ hydrothermal growth of Co1-xS/HCoO2 | 1724 @ 1A/g | (Co1-x S/HCoO2)-1@Fe3C/PCNFs //Fe2O3/NPC@PCNFs | 65.68 @ 752.7 W/Kg | [56] |
| Se-NiCoP-CNF@800 | PAN | Ni(NO3)2, Co(NO3)2, red P, Se | 250 °C, 1 h 800 °C, 1 h, Ar | 994 @ 1 A/g | SSC | 76.86 @ 843.74 W/Kg | [57] |
| Se, N-FeSe2CNFs | PAN | Fe2O3 | 270 °C, 2 h 500 °C, 4 h, H2 (close to Se) | 718 @ 1 A/g 580.8 @ 2 A/g | SSC | 128.6 @ 800 W/Kg | [58] |
| NiCo MOF@NiCo CNF | PAN | Co(NO3)2, Ni(NO3)2 | 120 °C, 2 h, air 800 °C, 5 h, N2 Hydrothermal growth of NiCo MOF | 2126.8 @ 1 A/g | NiCo MOF@NiCo CNF//ZIF CNF | 45.4 @ 800 W/Kg | [59] |
| NiCo LDH@NOPCNFs | PAN | ZIF-8 | 260 °C, 2 h, air 800 °C, N2 Washing with HCl Hydrothermal growth of NiCo LDH | 1340 @ 1 A/g | NOPCNFs//NiCo LDH@NOPCNFs | 39.2 @ 800 W/Kg | [60] |
| NiCo-LDHs@Co/CoO-CNFs | PAN | Co(NO3)2 | 260 °C, 2 h, air 800 °C, 2 h, Ar Hydrothermal growth of NiCo LDH | 2055 @ 1 A/g | NiCo-LDHs@Co/CoO-CNFs//AC | 54 @ 760 W/Kg | [61] |
| GCNF/PANI/NiCo-LDH | PAN | 250 °C, 1 h, air Dipping in GO 700 °C, 1 h, N2 Synthesis of PANI Hydrothermal growth of NiCo-LDH | 2499 @ 1 A/g | GCNF/PANI/NiCo-LDH//AC | 43.8 @ 937.5 W/Kg | [62] | |
| ZMA-LDH@Fe2O3/3DHPCNF | Core: PMMA Shell: PAN, PMMA | 250 °C, 4 h 950 °C, 2 h, N2 Hydrothermal growth of Fe2O3 Hydrothermal growth of ZMA-LDH | 3437 mF/cm2 @ 1 mA/cm2 | SSC | 1.622 mWh/cm3 @ 9.999 mW/cm3 | [63] | |
| MX-5/N-CPCNF | PAN | MXene, 2-MI, Zn(CH3COO)2 | Alcohol thermal reaction in autoclave 900 °C, 3 h, N2 | 334.8 @ 1 A/g | SSC | 26.2 @ 500 W/Kg | [64] |
| PAN@rGO@PPy | PAN | 260 °C, 2 h, air 600 °C, 3 h, Ar Sensitization with SnCl2 Soaking in rGO Synthesis of PPy | 203 @ 1 A/g | SSC | 15 @ 500 W/Kg | [65] | |
| PPy/RGO/M-PI CFMs | PAA | Imidization Sensitization with SnCl2 Soaking in GO Synthesis of PPy | 1437.1 mF/cm2 @ 0.5 mA/cm2 | SSC | 32.3 μWh/cm2 @ 0.27 mW/cm2 | [66] | |
| PMnG(γ) | PAN | γ-CD, MnCl2, graphene | 280 °C, 1 h, air 800 °C, 1 h, N2 | 235 @ 1 mA/cm2 | SSC | 25.5 @ 400 W/Kg | [67] |
| CNF/PANI/CQD | PAN | 900 °C, protective atmosphere Acidification in HNO3 Synthesis of PANI Dipping in CQDs solution | 756.5 @ 0.5 A/g | SSC | 6.86 @ 100 W/kg | [68] |
| Materials | ES Solution: Polymer | ES Solution: Other Components | Steps of Post-ES Treatments | Application | Capacity After Cycles (mAh/g) | Number of Cycles | Ref. |
|---|---|---|---|---|---|---|---|
| Si//PCNF-15 | PAN | Si NPs, Pluronic P123 | 280 °C, 2 h, air 600 °C, 2 h, Ar/H2 | LIB | 1063.2@ 0.3 A/g | 250 | [83] |
| Si@CNF | PAN | Si NPs | 250 °C, 1 h, air 800 °C, 3 h, Ar | LIB | 995.3 @ 0.2 A/g | 50 | [84] |
| PVA/Si(40%)/PAN | Core: PVA Shell: PAN | Core: Si NPs | 280 °C, 6 h, air 700 °C, 1 h, Ar | LIB | ~900 @ 0.1 C | 250 | [85] |
| Si@void@C/CNFs | PAN | Si@void@C | 250 °C, 2 h 800 °C, 2 h, Ar | LIB | 627.5 @ 0.1 A/g | 100 | [86] |
| C@Si/C@C | Sequential spinning 1. PAN 2. PAN 3. PAN | 2. Si NPs | 800 °C, 2 h, Ar | LIB | 823.8 @ 0.5 A/g | 500 | [87] |
| VGAs@Si@CNFs | PAN | Si NPs | 260 °C, 4 h, air 1000 °C, 4 h, Ar CVD growth of VGAs | LIB | 2390 @ 0.1 A/g | 100 | [88] |
| SnOx/NCNFs | PAN | SnCl4 | 270 °C, air 800 °C, 1 h, Ar 350 °C, 2 h, air | LIB | 871 @ 0.1 A/g | 100 | [89] |
| Sn-SnO2/CNF-2 | PAN, PVP | SnCl2 | 250 °C, 2 h, air 700 °C, 2 h, N2 | LIB | 543.78 @ 0.5 A/g | 200 | [90] |
| NF-FTO | PAN, PVP | Fe(acac)3, TBOT, CH3COOH | 280 °C, 3 h, air 600 °C, 3 h, Ar | LIB | 731.3 @ 0.1 A/g | 150 | [91] |
| MnOx-MXene/CNFs | PAN | C4H6MnO4, Ti3C2 | 280 °C, 1 h, air 600 °C, 3 h, Ar | LIB | 1098 @ 2 A/g | 2000 | [92] |
| CFO@PNCFM | PAN, PMMA | Fe(NO3)3, Co(NO3)2 | 220 °C, 3 h, air 600 °C, 1 h, N2 | LIB | 755.8 @ 0.1 A/g | 200 | [93] |
| SnS-C/NS@CNFs | PAN | Sn-MOF | 280 °C, 1.5 h, air 650 °C, 2 h, Ar/H2 300 °C, 4 h, N2 (close to thiourea) | LIB | 735 @ 0.1 A/g | 150 | [94] |
| CoSx/MCF | PAN, PS | Co(Ac)2 | 250 °C, 2 h 700 °C, 2 h, Ar 350 °C, 3 h (close to sulfur) | LIB | 737 @ 0.2 A/g | 100 | [95] |
| ZCS@PCNFM | PAN, PMMA, | PTA | 230 °C, 2 h, air 700 °C, 2 h, N2 Hydrothermal growth ZnCo2S4 (ZCS) | LIB | 662.3 @ 0.1 A/g | 100 | [96] |
| ZnSe@CNFs | PAN | ZIF-8 | 240 °C, 6 h 700 °C, 2 h, H2/Ar (close to Se) | LIB | 938.3 @ 0.1 A/g | 50 | [97] |
| Si@CNFs@1T/2H MoS2 | PAN | Si NPs | 260 °C, 2 h, air 900 °C, 1 h, Ar Hydrothermal growth of 1T/2H MoS2 | LIB | 976.1 @ 0.1 A/g | 100 | [69] |
| ST-NCF-40%TBT | Core: PVP Shell: PVP | Core: SnCl2 Shell: Ti(OBu)4, CH3COOH, | 280 °C, 1 h, air 500 °C, 2 h, Ar 700 °C, 2 h, Ar | LIB | 1336 @ 0.5 A/g | 100 | [98] |
| NiFe2O4/Fe0.64Ni0.36@CNFs | PAN | Fe(acac)3, Ni(acac)2 | 230 °C, 2 h, air 500 °C, Ar | LIB | 431.1 @ 0.2 A/g | 200 | [99] |
| Sn/MoO3@NPCNF@rGO | PAN | SnCl2, NaMoO4 | 300 °C, 2 h,air 700 °C, 2 h, Ar Washing with HNO3 300 °C, 3 h, Ar (close to NaH2PO2) Hydrothermal coating with rGO | LIB | 895.1 @ 0.5 A/g | 100 | [100] |
| N,S,Sb-CNFs | PAN | Sb2S3 NRs | 250 °C, 1 h, air 700 °C, 6 h, Ar | SIB | 287.8 @ 1 A/g | 3500 | [101] |
| Sb@N/S-CNF | PAN | C6H9O6Sb, thiourea | 300 °C, 2 h 900 °C, Ar | SIB | 263.46 @ 0.1 A/g 221.1 @ 0.5 A/g | 150 750 | [102] |
| SnS/N-CNFs | PAN, | SnCl2 | 280 °C, 1.5 h, air 650 °C, 3 h, N2 300 °C, 4 h, N2 (close to thiourea) | SIB | 422 @ 0.1 mA/g 292 @ 0.5 mA/g | 150 500 | [103] |
| SnSx/NC@N-CNFs | PAN | Sn-MOF | Dipping in dopamine solution 250 °C, 2 h, N2 600 °C, 2 h, N2 | SIB | 328 @ 2 A/g | 3500 | [104] |
| MCPS | PVP | CuSO4, SnCl2, PMo12, PA, Py | 230 °C 800 °C, 2 h, N2 | SIB | ~120 @ 1 A/g | 1000 | [105] |
| CNF-SnSe | PAN | 280 °C, 2 h 800 °C, 2 h, Ar Synthesis of SnSe | SIB | 355.7 @ 0.1 A/g | 200 | [106] | |
| NiSe2@N-TCF/CNT | PVP | TBT, Ni(CH3COO)2, CH3COOH | 280 °C, 2 h, air 900 °C, 2 h, N2 growth of CNTs, 900 °C, 2 h, Ar/H2 350 °C, 8h, Ar/H2 (close to Se) | SIB | 392.1 @ 0.2 A/g | 1000 | [107] |
| CoSe2@CNFs | PAN | Co(NO3)2 | 220 °C, 5 h, O2 500 °C, 2 h, N2 (close to Se) 800 °C, 2 h, N2 (close to Se) | SIB | 202.1 @ 10 A/g | 3000 | [108] |
| Se, N-FeSe2CNFs | PAN, | Fe2O3 | 270 °C, 2 h 500 °C, 4 h, H2 (close to Se) | SIB | 480.9 @ 0.1 A/g | 200 | [58] |
| Bi/PCNFs | PAN, PVP | Bi(NO3)3 | 250 °C, 2 h 700 °C, 2 h, Ar/H2 | PIB | 276 @ 0.5 A/g 171 @ 1 A/g | 100 1000 | [109] |
| SnSe@CNF | PAN | SnCl2, Se | 200 °C, 2 h, air 600 °C, 2 h, H2/Ar | PIB | 260 @ 0.1A/g | 150 | [110] |
| H–NiSe/SnSe@NC | PAN, PVP | hollow NiSn(OH)6@PDA, Se | 250 °C, 2 h, air 700 °C, 2 h, Ar | PIB | 412.8 @ 0.2 A/g 226.3 @ 2 A/g | 400 1000 | [111] |
| Sn/MoO3@NPCNF@ rGO | PAN | SnCl2, NaMoO4 | 300 °C, 2 h, air 700 °C, 2 h, Ar Washing with HNO3 300 °C, 3 h, Ar (close to NaH2PO2) Hydrothermal coating with rGO | PIB | 302.9 @ 0.5 A/g | 120 | [100] |
| NC@Ge | PAN | Se, GeO2 | 150 °C, 4 h, air 200 °C, 2 h, air 600 °C, 4 h, Ar/H2 | PIB | 318.3 @ 0.1 A/g 194.3 @ 1 A/g | 300 900 | [112] |
| Materials | ES Solution: Polymer | ES Solution: Other Components | Steps of Post-ES Treatments | Application | Capacity After Cycles (mAh/g) | Number of Cycles | Ref. |
|---|---|---|---|---|---|---|---|
| LiFePO4@rGO/CNFs | PVP | FeC6H5O7, LiH2PO4, rGO | 150 °C, 12 h, Ar 360 °C, 4 h, Ar 690 °C, 20 h, Ar | LIB | 150 @ 1 C | 200 | [31] |
| MoS2/PAN | PAN | MoS2 | 600 °C, 1 h, N2 | LIB | ~600 @ 0.1 mA/g | 160 | [122] |
| PVDH-HFP/CNT/LFP | PVDH-HFP | CNT, LiFePO4/C | LIB | ~130 @ 1 C | 200 | [32] | |
| Na3MnTi(PO4)3/C | PVP | C12H28O4Ti, (CH3COO)2Mn, NaH2PO4 | 250 °C, 1 h, air 650 °C, 12 h, Ar | SIB | ~80 @ 1 C | 6300 | [123] |
| NPV/CNF | PAN | NPV precursor | 200 °C, 2 h, air 800 °C, 2 h, Ar | SIB | ~100 @ 0.5 C | 800 | [124] |
| Na4Fe3(PO4)2P2O7/C | PAN | Fe(NO3)3, NaH2PO | 300 °C, 2 h, air 600 °C, 12 h, H2/Ar | SIB | ~120 @ 0.1 C | 500 | [125] |
| NaCrO2 @C | PAN | NaCrO2 | 280 °C, 2 h, O2 600 °C, 8 h, Ar/H2 | SIB | ~85 @ 1 C | 1000 | [126] |
| PB@CNFs | PAN | 280 °C, 2 h, air 800 °C, 3 h, Ar 24h soaking in FeCl3, K3Fe(CN)6, KCl solution | SIB | ~85 @ 1 A/g | 2000 | [127] | |
| KMF-ES | PVDF | K2Mn[Fe(CN)6], Super P | PIB | 63.24 @ 0.05 A/g | 600 | [128] | |
| V2O5-CFC | PAN | V2O5 | 700 °C, 2 h, Ar | ZIB | 154 @ 0.5 A/g | 1000 | [129] |
| V2O3@CNFs | PAN | C15H21O6V | 235 °C 700 °C, Ar | ZIB | 220 @ 50 mA/g 120 @ 0.2 A/g 65 @ 2 A/g | 100 1000 1000 | [130] |
| V2O3@NHCNFs | PVP, PTFE, | oxalic acid, NH4VO3 | 160 °C, 2 h, air 800 °C, 2 h | ZIB | 282.9 @ 2 A/g 158.1 @ 20 A/g | 500 4000 | [131] |
| ε -MnO2/CPAN | PAN | 270 °C, 2 h, air 500 °C, 1 h, N2 700 °C, 2 h, N2 Hydrothermal growth of ε-MnO2 | ZIB | ~270 @ 0.2 A/g | 1000 | [132] | |
| MnXOy@PCNF | Sequential spinning 1. PAN 2. PVA | 2. boric acid, PTFE, Mn(Ac)2 | 200 °C, 3 h 600 °C, 2 h, N2 | ZIB | 124 @ 0.6 A/g | 400 | [133] |
| BiOCl@CF | PAN | BiCl3 | 250 °C, 2 h 700 °C, 2 h, N2 | ZIB | 118.8 @ 0.2 A/g ~80 @ 1 A/g | 200 2000 | [134] |
| NiCo2S4/HCS@CFs | PAN | NiCo-MOF | 250 °C, 2 h 750 °C, 2 h, N2 Hydrothermal sulfurization | ZIB | ~140 @ 5 A/g | 1000 | [116] |
| VN/N-CNFs | PAN | H2BDC, VCl3 | 100 °C, 4 h, air 200 °C, 4 h, air 800 °C, 2 h, N2 | ZIB | 482 @ 50 A/g | 30,000 | [135] |
| Materials | ES Solution: Polymer | ES Solution: Other Components | Steps of Post-ES Treatments | Capacity After Cycles (mAh/g) | Number of Cycles | Ref. |
|---|---|---|---|---|---|---|
| CoNCNFs/S | PAN | ZIF-67 | 235 °C, 2 h 700 °C, 2 h, Ar (close to sintered urea) Dropping sulfur solution 155 °C, 12 h, Ar | 1030.2 @ 0.2 C | 300 | [143] |
| S/NiSA-NiNP-CDs@CNF | PVP | Ni@CDs | 150 °C, 2 h 250 °C, 20 min 700 °C, 3 h, Ar Dropping sulfur solution 155 °C, 12 h (in autoclave) | 823.5 @ 1C | 500 | [144] |
| Cu-Mo@NPCN/S | PAN | FJU-14-MoO4 | 550 °C, 1 h, N2 900 °C, 2 h Dropping sulfur solution 155 °C, 12 h | 935 @ 0.2 C 828 @ 1 C | 100 500 | [145] |
| CFOANF/Li2S6 | PAN | ZIF-8 | 260 °C, 2 h 950 °C, 2 h, N2 Soaking in PAMAM solution Hydrothermal growth of CoFe2O4 NPs Addition Li2S6 catholyte | 690 @ 0.1 C | 450 | [146] |
| S/Co2P@PCNFs | PAN, PMMA | Co(CH3COO)2, P2O5 | 250 °C, 2 h, air 800 °C, Ar/H2 Dipping in sulfur solution 155 °C, 12 h, N2 (in autoclave) | 576.6 @ 1 C | 500 | [147] |
| S@TiC/CNFs | PAN | TiC NPs | 250 °C, 2 h, air 900 °C, 2 h, Ar Dropping sulfur solution | 672 @ 1C | 1000 | [148] |
| S/NiS2/Ni3S4@NCNF | PAN, PMMA | Ni(CH3COO)2 | 270 °C, 1 h 900 °C, 1 h 350 °C, 6 h, Ar (close to sulfur) Dipping in sulfur solution 155 °C, 12 h, vacuum | 913.3 @ 0.2 C | 100 | [149] |
| PEDOT@CNFs@Fe3C/Li2S | PAN | Fe(acac)3 | 200 °C, 2 h 700 °C, 1 h, Ar Synthesis of PEDOT Dropping Li2S solution | 366 @ 0.5 C | 1000 | [117] |
| Materials | ES Solution: Polymer | ES Solution: Other Components | Steps of Post-ES Treatments | Functionality (Ambient) | Performance Metrics | Ref. |
|---|---|---|---|---|---|---|
| Co/CSNF | Core: PAN Shell: PAN | Shell: Co(NO3)2 | 250 °C, 1 h, air 1000 °C, 1 h, N2 | OER (1 M KOH) ORR (0.1M KOH) | η10 = 322 mV vs. RHE E1/2 = 0.86 V vs. RHE (10 mV/s) | [161] |
| Co/CNT/CNF | PAN | Co-PB NPs | 280 °C, 2 h, air 1000, 3 h, N2 | OER (1 M KOH) HER (1 M KOH) | η10 = 162 mV vs. RHE η10 = 129 mV vs. RHE | [183] |
| Co3Mo3N-Mo2C/CNFs | PAN | MoCo-MOF | 280 °C, 2 h, air 500 °C, 1 h, Ar 800 °C, 2 h, Ar | HER (0.5 M H2SO4) | η10 = 76 mV vs. RHE | [184] |
| ZnCo-C/CA-PANI@NF | PANI, CA | Drop casting ZnCo-C slurry | OER (1 M KOH) | Eonset = 1.34 V vs. RHE (5 mV/s) | [185] | |
| NiCo–NCNF | PAN, PMMA | NiCl2, CoCl2 | 250 °C. 2 h, air 800 °C, 2 h, N2 | HER (1 M KOH) OER (1 M KOH) | η10 = 65 mV vs. RHE η10 = 124 mV vs. RHE | [186] |
| CoSANi-NCNT/CNF | PAN, PMMA | Co(NO3)2, Ni(NO3)2 | Solvothermal treatment with 2-aminoteraphtalic acid 950 °C, 2 h, Ar | OER (1 M KOH) ORR (0.1 M KOH) | η10 = 240 mV vs. RHE E1/2 = 0.86 V vs. RHE (10 mV/s) | [187] |
| Ru–Co@CNS/CNFs | PAN | C4H6CoO4 | Soaking in 2-MeIM, Co(NO3)2, RuCl3 solution (growth of Ru-ZIF) 230 °C, 4 h 900 °C, 3 h, Ar | HER (1 M KOH) | η10 = 78 mV vs. RHE | [188] |
| RuCoNi/CNFs | Core: PMMA Shell: PAN | Core: C2H4NiO Shell: C4H6CoO4, RuCl3 | 230 °C, 4 h 900 °C, 3 h, Ar | HER (1 M KOH) | η10 = 48 mV vs. RHE η100 = 186 mV vs. RHE | [189] |
| CoS/CNF | RSF, PEO | KCl, formic acid | 250 °C, 2 h, air 900 °C, 1.5 h, Hydrothermal growth of CoS | HER (1 M KOH) HER (0.5 M H2SO4) | η10 = 157 mV vs. RHE η10 = 139 mV vs. RHE | [190] |
| Cu3P/Co2P/C-CFs | PAN | coal | 280 °C, 2 h Hydrothermal growth of CuCo-MOF 300 °C, 2 h, Ar (close to NaH2PO2) 900 °C, 2 h. Ar (close to NaH2PO2) | HER (0.5 M H2SO4) | η10 = 83 mV vs. RHEpo | [191] |
| Co/Co2P-NCNFs-H | Core: PAN, PMMA Shell: PAN | Core: Zn(Ac)2 Shell: Co(Ac)2, H3PO4 | 280 °C, 1 h 900 °C, 3 h, Ar | HER (1 M KOH) OER (1 M KOH) | η100 = 247.9 mV vs. RHE η100 = 405.6 mV vs. RHE | [192] |
| Co2P-CNFs | PAN | PA, Co(NO3)2, | 280 °C, 1.5 h, air 1000 °C, 2 h, Ar | HER (1 M KOH) | η10 = 140 mV vs. RHE | [193] |
| CoMoS@CNF | PAN | DA | 250 °C, 10 h, air 900 °C, 2 h, N2 Hydrothermal growth of CoMoS | HER (1 M KOH) | η10 = 105.2 mV vs. RHE | [194] |
| Co0.4Mo0.6P@CL-NCNF | PAN, PVP | Co(acac)2, MoO2(acac)2, phenylphosphinic acid | 800 °C, 2 h, H2/Ar | OER (1 M KOH) HER (1 M KOH) | η10 = 219 mV vs. RHE η10 = 81 mV vs. RHE | [175] |
| NiCoP@C-CNFs | PAN | OC, NiCo-PA complex | 280 °C, 2 h 900 °C, 2 h, Ar | OER (1 M KOH) HER (1 M KOH) | η10 = 259 mV vs. RHE η10 = 121 mV vs. RHE | [195] |
| Co-MoC/NCNFs | PAN | MoO2(acac)2, ZIF-67 | 250 °C, 2 h, air 550 °C, 1 h, Ar 900 °C, 2 h, Ar | HER (1 M KOH) HER (1 M PBS) HER (0.5 M H2SO4) OER (1 M KOH) | η10 = 86 mV vs. RHE η10 = 145 mV vs. RHE η10 = 116 mV vs. RHE η10 = 254 mV vs. RHE | [196] |
| CoNC-HCNF | PAN, PMMA | MeIM | Growth of Zn/Co-ZIF 800 °C, N2 | HER (1 M KOH) OER (1 M KOH) ORR (0.1M KOH) | η10 = 186 mV vs. RHE E10 = 1.58 V vs. RHE E1/2 = 0.83 V vs. RHE | [162] |
| Co3O4/ Fe2O3NAs@CNFs | PAN, MeIM | MeIM | Dipping for growing Fe-Co/Zn-ZIF 900 °C, 1 h, Ar/H2 350 °C, 3 h, air | ORR (0.1 M KOH) OER (1 M KOH) | Eonset = 1.01 V vs. RHE (10 mV/s) Eonset = 1.60 V vs. RHE (10 mV/s) | [169] |
| Pt@Ru/CTS | PAN | H2PtCl6, RuCl3 | 230 °C, 3 h 800 °C, 3 h | HER (1 M KOH) | η10 = 57 mV vs. RHE | [197] |
| RuMn/CNFs | PAN | RuCl3, (C2H3O2)2Mn, hexadecyl trimethyl ammonium bromide | 230 °C, 3 h, air 1000 °C, 3 h, Ar | HER (1.0 M KOH) | η100 = 80 mV vs. RHE | [178] |
| Ni-MNCNF | Core: PAN, PMMA Shell: PAN | Shell: NiCl2 | 250 °C, 2 h 800 °C, 2 h, N2 | HER (1 M KOH) HER (0.5 M H2SO4) OER (1 M KOH) | η10 = 65 mV vs. RHE η10 = 203 mV vs. RHE η10 = 193 mV vs. RHE | [198] |
| [Ni/C]@[MoC/C]-PCNFs | Core: PAN, PS, Shell: PAN | Core: Ni(acac)2 Shell: MoO2(acac)2 | 250 °C, 1.5 h 800 °C, 2 h, N2 | HER (1 M KOH) HER (0.5 M H2SO4) | η10 = 84 mV vs. RHE η10 = 160 mV vs. RHE | [199] |
| [Mo2C/C]//[Ni/C]-NMCFs | Parallel spinning 1. PAN, PS 2. PAN, PS | Parallel spinning 1. MoO2(acac)2 2. Ni(acac)2 | 800 °C, 2 h, N2 | HER (1M KOH) OER (1M KOH) | η10 = 24 mV vs. RHE η10 = 324 mV vs. RHE | [200] |
| Mo2C@CoO/N-CNFs | PVP, PAN | MoCl5, Co(CH3COO)2 | 250 °C, 3 h, air 800 °C, 3 h, N2 | OER (1 M KOH) HER (1 M KOH) | η10 = 222 mV vs. RHE η10 = 115 mV vs. RHE | [182] |
| Co/Zn@NCF | PAN | ZIF8, ZIF67 | 280 °C, 1 h, air 850 °C, 1 h, Ar/H2 | OER (0.1 MKOH) ORR (0.1 M KOH) | E10 = 1.69 V vs. RHE E1/2 = 0.84 V vs. RHE (5 mV/s) | [201] |
| Fe/NCNFs | PAN | Fe complex | 280 °C, 2 h, air 900 °C, 2 h, N2 | ORR (0.1 M KOH) | Eonset = 0.94 V vs. RHE | [202] |
| NiFe-N@CNF | PAN, PMMA | Py, Ni(acac)2, Fe(acac)3 | 200 °C, 2 h 800 °C, 2 h, N2 | OER (1 M KOH) | η10 = 351 mV vs. RHE | [203] |
| Fe2P/Co2P@C | PAN | Co(NO3)2, Fe(NO3)3, E.coli, CNT | 280 °C, 2 h, air 900 °C, 3 h, Ar | ORR (0.1 M KOH) OER (1 M KOH) | Eonset = 0.94 V vs. RHE (3 mV/s) Eonset = 1.41 V vs. RHE (3 mV/s) η10 = 320 mV vs. RHE | [204] |
| Pd/CNFs | Lignin | Pd(acac)2 | 200 °C, 48 h, air 900 °C, 2 h, CO2 | ORR (0.1 M KOH) | Eonset = 0.86 V vs. RHE (5 mV/s) | [205] |
| NM@CCNF | PAN | CoCo3 | 280 °C, 5 h, air 900 °C, 1 h, N2 Solvothermal deposition of Ni-MOF | ORR (0.1 M KOH) OER (0.1 M KOH) | Eonset = 0.906 V vs. RHE (5 mV/s) Eonset = 1.489 V vs. RHE (5 mV/s) | [206] |
| Materials | Preparation Procedure | Electrolyte Uptake (%) | Ionic Conductivity (mS/cm) | Thermal Shrinkage (%) | LIB Operating Potential Window | Ref. |
|---|---|---|---|---|---|---|
| PAN/CNTs@PVDF-HFP/Uio-66-NH2 | Core–shell elettrospinning Core: PAN, CNTs Shell: PVDF-HFP, Uio-66-NH2 Pressing between two glass plates, 100 °C, 2 h, 75 N | 545.7 | 3.43 | 15 @ 150 °C | 2.5–4.2 V | [210] |
| (PAN containing CuO/TiO2 nanowires)/(PVDF-HFP + PMMA)/(PAN containing CuO/TiO2 nanowires) | Sequenzial electrospinning 1. PAN, CuO/TiO2 NWs 2. PVDF-HFP, PMMA 3. PAN, CuO/TiO2 NWs | ~1100 | 2.91 | 5 @ 150 °C | 3.0–4.3 V | [211] |
| GOP-PH-ATP | Electrospinning PVDF-HFP Blade coating ATP, SBR NPs Lamination GOP, PVDF-HFP-ATP | ~760 | 2.38 | 0 @ 150 °C | 2.5–4.2 V | [212] |
| PMMA/PVDF-HFP/AlO(OH)//PEO/PVDF-CTFE/LiTFSI/AlO(OH) | Elettrospinning PVDF-HFP, AlO(OH) Blade coating PVDF-CTFE, PEO, LiTFSI, AlO(OH) Integration of electrospun and blade-coated film through bilateral pressure application Electron beams irradiation | 421 | 1.42 | 26.3 @ 160 °C | 2.5–3.9 V | [213] |
| PAF | Electrospinning PAN Blade coating ATP, Fe3O4, SBR | / | 1.07 | 0 @ 180 °C | [214] | |
| PSN | Elettrospinning TEOS 300 °C, 3 h, air | 1566 | 3.59 | 1 @ 200 °C | 2.5–3.8 V | [215] |
| Material | Preparation Procedure | Application | Ionic Conductivity (mS/cm) | Ref. |
|---|---|---|---|---|
| SPEEK/SFN | Elettrospinning SPEEK, SrFeO3-NH2 Pore filling with SPEEK | Cation exchange membrane for fuel cells | 94.87 | [219] |
| LLTO | Electrospinning PAN, LLTO NPs Casting of LiTFSI, PEO, SN solution | Solid state electrolyte for LIB | 0.0987 | [220] |
| BIT NFs | Elettrospinning PAN, PS, Bi(NO3)3, Ti(OC4H9)4 600 °C, 2 h, air Casting of LiTFSI, PEO solution | Solid state electrolyte for LIB | 0.625 | [221] |
| ZnO@PMIA-PVA | Electrospinning PMIA Dipping in Zn(Ac)2 solution 130 °C, 12 h, vacuum Hydrothermal growth of ZnO NRs Casting of PVA, Zn/CF3SO3)2 solution Three freezing and thawing cycles | Gel electrolyte for ZIB | 18.3 | [222] |
| PAN/PEG/LiTFSI/Gd2O3 | Electrospinning PAN, PEG, LiTFSI, Gd2O3 | Solid state electrolyte for LIB | 0.1026 | [223] |
| CPZ-SSE | Core–shell elettrospinning Core: PAN, 2-MI Shell: PAN, Zn(acac)2 Dripping polymer electrolyte precursor solution 60 °C, 6 h | Solid state electrolyte for LIB | 1.29 | [224] |
| PVDF-HFP/SiO2 | Electrospinning PVDF-HFP, SiO2 | Solid state electrolyte for LIB | 0.409 | [225] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
De Riccardis, M.F.; Prontera, C.T. Direct Use in Electrochemical Energy Devices of Electrospun Nanofibres with Functional Nanostructures. Compounds 2026, 6, 3. https://doi.org/10.3390/compounds6010003
De Riccardis MF, Prontera CT. Direct Use in Electrochemical Energy Devices of Electrospun Nanofibres with Functional Nanostructures. Compounds. 2026; 6(1):3. https://doi.org/10.3390/compounds6010003
Chicago/Turabian StyleDe Riccardis, Maria Federica, and Carmela Tania Prontera. 2026. "Direct Use in Electrochemical Energy Devices of Electrospun Nanofibres with Functional Nanostructures" Compounds 6, no. 1: 3. https://doi.org/10.3390/compounds6010003
APA StyleDe Riccardis, M. F., & Prontera, C. T. (2026). Direct Use in Electrochemical Energy Devices of Electrospun Nanofibres with Functional Nanostructures. Compounds, 6(1), 3. https://doi.org/10.3390/compounds6010003

