Mechanical and Candida albicans Response of Bombyx mori Silk Fibroin Nanoparticles Incorporated into Self-Curing Poly(methylmethacrylate) (PMMA)
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Silk Fibroin Nanoparticles
2.2. Incorporation of Silk Fibroin Nanoparticles into PMMA
2.3. Preparation of Acrylic Resin Specimens
2.4. Scanning Electron Microscopy (SEM) Analysis
2.5. Surface Roughness Measurement
2.6. Three-Point Bending Resistance Test
2.7. Knoop Microhardness Test
2.8. Microbiological Test
2.9. Statistical Analysis
3. Results
3.1. SEM Morphological Analysis
3.2. Surface Roughness Results
3.3. Flexural Strength
3.4. Knoop Microhardness
3.5. Antifungal Activity by Inhibition Zones
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PMMA | Polymethyl methacrylate |
| SEM | Scanning electron microscopy |
| Ra | Arithmetic mean surface roughness |
| BHI | Brain Heart Infusion |
| CFU | Colony-forming units |
| ANOVA | Analysis of variance |
| DLS | Dynamic Light Scattering |
| MPa | Megapascal |
| g | Gram |
| L | Liter |
| °C | Degrees Celsius |
| rpm | Revolutions per minute |
| w/v | Weight/volume |
| v/v | Volume/volume |
| α | Significance level |
References
- Lauritano, D.; Moreo, G.; Della Vella, F.; Di Stasio, D.; Carinci, F.; Lucchese, A.; Petruzzi, M. Oral Health Status and Need for Oral Care in an Aging Population: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 4558. [Google Scholar] [CrossRef]
- Alla, R.K.; Sajjan, S.; Alluri, V.R.; Ginjupalli, K.; Upadhya, N. Influence of Fiber Reinforcement on the Properties of Denture Base Resins. J. Biomater. Nanobiotechnol. 2013, 4, 91–97. [Google Scholar] [CrossRef]
- Rickman, L.J.; Padipatvuthikul, P.; Satterthwaite, J.D. Contemporary Denture Base Resins: Part 1. Dent. Update 2012, 39, 25–30. [Google Scholar] [CrossRef]
- Jagger, D.C.; Harrison, A.; Jandt, K.D. The Reinforcement of Dentures. J. Oral Rehabil. 1999, 26, 185–194. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M.; Al-Harbi, F.A.; Näpänkangas, R.; Raustia, A. PMMA Denture Base Material Enhancement: A Review of Fiber, Filler, and Nanofiller Addition. Int. J. Nanomed. 2017, 12, 3801–3812. [Google Scholar] [CrossRef]
- Sasaki, H.; Hamanaka, I.; Takahashi, Y.; Kawaguchi, T. Effect of Long-Term Water Immersion or Thermal Shock on Mechanical Properties of High-Impact Acrylic Denture Base Resins. Dent. Mater. J. 2016, 35, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Goiato, M.C.; dos Santos, D.M.; Haddad, M.F.; Pesqueira, A.A. Effect of Accelerated Aging on the Microhardness and Color Stability of Flexible Resins for Dentures. Braz. Oral Res. 2010, 24, 114–119. [Google Scholar] [CrossRef]
- Narva, K.K.; Lassila, L.V.; Vallittu, P.K. The Static Strength and Modulus of Fiber Reinforced Denture Base Polymer. Dent. Mater. 2005, 21, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Kostoulas, I.; Kavoura, V.T.; Frangou, M.J.; Polyzois, G.L. Fracture Force, Deflection, and Toughness of Acrylic Denture Repairs Involving Glass Fiber Reinforcement. J. Prosthodont. 2008, 17, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.H.; Lee, Y.; Oh, S.; Cho, H.W.; Oda, Y.; Bae, J.M. Reinforcing Effects of Different Fibers on Denture Base Resin Based on the Fiber Type, Concentration, and Combination. Dent. Mater. J. 2012, 31, 1039–1046. [Google Scholar] [CrossRef]
- Al-Thobity, A.M.; Al-Khalifa, K.S.; Gad, M.M.; Al-Hariri, M.; Ali, A.A.; Alnassar, T.; Al-Thobity, A.M.; Al-Khalifa, K.S.; Gad, M.M.; Al-Hariri, M.; et al. In Vitro Evaluation of the Inhibitory Activity of Thymoquinone in Combatting Candida Albicans in Denture Stomatitis Prevention. Int. J. Environ. Res. Public Health 2017, 14, 743. [Google Scholar] [CrossRef] [PubMed]
- Al-Fouzan, A.F.; Al-Mejrad, L.A.; Albarrag, A.M. Adherence of Candida to Complete Denture Surfaces in Vitro: A Comparison of Conventional and CAD/CAM Complete Dentures. J. Adv. Prosthodont. 2017, 9, 402–408. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M. Current Perspectives and the Future of Candida Albicans-Associated Denture Stomatitis Treatment. Dent. Med. Probl. 2020, 57, 95–102. [Google Scholar] [CrossRef]
- Ali, I.L.; Yunus, N.; Abu-Hassan, M.I. Hardness, Flexural Strength, and Flexural Modulus Comparisons of Three Differently Cured Denture Base Systems. J. Prosthodont. 2008, 17, 545–549. [Google Scholar] [CrossRef]
- Al-Dwairi, Z.N.; Tahboub, K.Y.; Baba, N.Z.; Goodacre, C.J. A Comparison of the Flexural and Impact Strengths and Flexural Modulus of CAD/CAM and Conventional Heat-Cured Polymethyl Methacrylate (PMMA). J. Prosthodont. 2020, 29, 341–349. [Google Scholar] [CrossRef]
- John, J.; Gangadhar, S.A.; Shah, I. Flexural Strength of Heat-Polymerized Polymethyl Methacrylate Denture Resin Reinforced with Glass, Aramid, or Nylon Fibers. J. Prosthet. Dent. 2001, 86, 424–427. [Google Scholar] [CrossRef]
- Karatepe, U.Y.; Ozdemir, T. Improving Mechanical and Antibacterial Properties of PMMA via Polyblend Electrospinning with Silk Fibroin and Polyethyleneimine towards Dental Applications. Bioact. Mater. 2020, 5, 510–515. [Google Scholar] [CrossRef]
- Peter, M.; Bembalagi, M.; Kanathila, H.; Santhosh, V.N.; Roy, T.R.; Monsy, M. Comparative Evaluation of Antifungal Property of Acrylic Resin Reinforced with Magnesium Oxide and Silver Nanoparticles and Their Effect on Cytotoxic Levels: An In Vitro Study. J. Microsc. Ultrastruct. 2023, 13, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.P.; Nguyen, Q.V.; Nguyen, V.H.; Le, T.H.; Huynh, V.Q.N.; Vo, D.V.N.; Trinh, Q.T.; Kim, S.Y.; Van Le, Q. Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review. Polymers 2019, 11, 1933. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, D.N.; Preda, R.C.; Yücel, T.; Wang, X.; Lovett, M.L.; Kaplan, D.L. Materials Fabrication from Bombyx Mori Silk Fibroin. Nat. Protoc. 2011, 6, 1612–1631. [Google Scholar] [CrossRef]
- Murphy, A.R.; Kaplan, D.L. Biomedical Applications of Chemically-Modified Silk Fibroin. J. Mater. Chem. 2009, 19, 6443–6450. [Google Scholar] [CrossRef]
- Torres, A.d.S.; Silveira, J.V.W.d.; Torres, M.d.M.; Araujo, C.T.P.d.; Galo, R.; Oliveira, S.G.D.d. Composite Resin Reinforced with Silk Nanoparticles from Bombyx Mori Cocoon for Dental Applications. Braz. Dent. J. 2023, 34, 67–74. [Google Scholar] [CrossRef]
- Ghalei, S.; Handa, H. A Review on Antibacterial Silk Fibroin-Based Biomaterials: Current State and Prospects. Mater. Today Chem. 2022, 23, 100673. [Google Scholar] [CrossRef] [PubMed]
- Al–Mashhadane, F.A. Tea Tree Oil: Anew Antifungal Agents Against Candida Albicans Cells on Heat– Cured Acrylic Resin Denture Base Material. An In Vitro Study. Al-Rafidain Dent. J. 2007, 7, 54–57. [Google Scholar] [CrossRef]
- Amirabad, L.M.; Tahriri, M.; Zarrintaj, P.; Ghaffari, R.; Tayebi, L. Preparation and Characterization of TiO2-Coated Polymerization of Methyl Methacrylate (PMMA) for Biomedical Applications: In Vitro Study. Asia-Pac. J. Chem. Eng. 2022, 17, e2761. [Google Scholar] [CrossRef] [PubMed]
- JIS Z 2801:2010; Antibacterial Products—Test for Antibacterial Activity and Efficacy. Japanese Standards Association: Tokyo, Japan, 2010.
- Gad, M.M.; Al-Thobity, A.M.; Rahoma, A.; Abualsaud, R.; Al-Harbi, F.A.; Akhtar, S. Reinforcement of PMMA Denture Base Material with a Mixture of ZrO2 Nanoparticles and Glass Fibers. Int. J. Dent. 2019, 2019, 2489393. [Google Scholar] [CrossRef]
- Al-Harbi, F.A.; Abdel-Halim, M.S.; Gad, M.M.; Fouda, S.M.; Baba, N.Z.; AlRumaih, H.S.; Akhtar, S. Effect of Nanodiamond Addition on Flexural Strength, Impact Strength, and Surface Roughness of PMMA Denture Base. J. Prosthodont. 2019, 28, e417–e425. [Google Scholar] [CrossRef]
- Pal, R.K.; Kurland, N.E.; Wang, C.; Kundu, S.C.; Yadavalli, V.K. Biopatterning of Silk Proteins for Soft Micro-Optics. ACS Appl. Mater. Interfaces 2015, 7, 8809–8816. [Google Scholar] [CrossRef]
- Hu, X.; Kaplan, D.; Cebe, P. Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy. Macromolecules 2006, 39, 6161–6170. [Google Scholar] [CrossRef]
- Barbosa, D.B.; De Souza, R.F.; Pero, A.C.; Marra, J.; Compagnoni, M.A. Flexural Strength of Acrylic Resins Polymerized by Different Cycles. J. Appl. Oral Sci. 2007, 15, 424–428. [Google Scholar] [CrossRef]
- Mosharraf, R.; Givehchian, P.; Ansaripour, F. Comparison of Color Stability and Fracture Resistance of Two Temporary Fiber-Reinforced Fixed Partial Denture Materials. Dent. Res. J. 2019, 16, 185. [Google Scholar] [CrossRef]
- Alqahtani, M.; Alqahtani, M. Effect of Hexagonal Boron Nitride Nanopowder Reinforcement and Mixing Methods on Physical and Mechanical Properties of Self-Cured PMMA for Dental Applications. Materials 2020, 13, 2323. [Google Scholar] [CrossRef] [PubMed]
- Alhotan, A.; Yates, J.; Zidan, S.; Haider, J.; Silikas, N. Flexural Strength and Hardness of Filler-Reinforced PMMA Targeted for Denture Base Application. Materials 2021, 14, 2659. [Google Scholar] [CrossRef] [PubMed]
- Dorishetty, P.; Dutta, N.K.; Choudhury, N.R. Silk Fibroins in Multiscale Dimensions for Diverse Applications. RSC Adv. 2020, 10, 33227–33247. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.Y.; Feng, X.Q.; Lauke, B.; Mai, Y.W. Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate–Polymer Composites. Compos. Part B Eng. 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Jordan, J.; Jacob, K.I.; Tannenbaum, R.; Sharaf, M.A.; Jasiuk, I. Experimental Trends in Polymer Nanocomposites—A Review. Mater. Sci. Eng. A 2005, 393, 1–11. [Google Scholar] [CrossRef]
- Sezavar, A.; Zebarjad, S.M.; Sajjadi, S.A.; Sezavar, A.; Zebarjad, S.M.; Sajjadi, S.A. A Study on the Effect of Nano Alumina Particles on Fracture Behavior of PMMA. Technologies 2015, 3, 94–102. [Google Scholar] [CrossRef]
- Muhammad Firdaus, S.; Sheng, T.J.; Ariffin, Z.; Mariatti, M. Properties Improvement of Acrylic Resin for Denture Application: Effect of Single and Hybrid Types of Fillers with Different Weight Loadings. Plast. Rubber Compos. 2021, 50, 329–339. [Google Scholar] [CrossRef]
- Quirynen, M.; Van Der Mei, H.C.; Bollen, C.M.L.; Van Den Bossche, L.H.; Doornbusch, G.I.; van Steenberghe, D.; Busscher, H.J. The Influence of Surface-Free Energy on Supra- and Subgingival Plaque Microbiology. An In Vivo Study on Implants. J. Periodontol. 1994, 65, 162–167. [Google Scholar] [CrossRef]
- Bollen, C.M.L.; Papaioanno, W.; Van Eldere, J.; Schepers, E.; Quirynen, M.; Van Steenberghe, D. The Influence of Abutment Surface Roughness on Plaque Accumulation and Peri-Implant Mucositis. Clin. Oral Implant. Res. 1996, 7, 201–211. [Google Scholar] [CrossRef]
- Chomchalao, P.; Saelim, N.; Lamlertthon, S.; Sisopa, P.; Tiyaboonchai, W.; Chomchalao, P.; Saelim, N.; Lamlertthon, S.; Sisopa, P.; Tiyaboonchai, W. Mucoadhesive Hybrid System of Silk Fibroin Nanoparticles and Thermosensitive In Situ Hydrogel for Amphotericin B Delivery: A Potential Option for Fungal Keratitis Treatment. Polymers 2024, 16, 148. [Google Scholar] [CrossRef] [PubMed]
- Tuwalska, A.; Grabska-Zielińska, S.; Sionkowska, A. Chitosan/Silk Fibroin Materials for Biomedical Applications—A Review. Polymers 2022, 14, 1343. [Google Scholar] [CrossRef]
- Schäfer, S.; Aavani, F.; Köpf, M.; Drinic, A.; Stürmer, E.K.; Fuest, S.; Grust, A.L.C.; Gosau, M.; Smeets, R. Silk Proteins in Reconstructive Surgery: Do They Possess an Inherent Antibacterial Activity? A Systematic Review. Wound Repair Regen. 2023, 31, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Traitanon, N.; Dechkunakorn, S.; Tantivitayakul, P.; Punnakitikashem, P.; Wichai, W.; Whitis, P.P.; Anuwongnukroh, N. Antibacterial Effect of Gold Nanoparticles Coated Dental Floss against Cariogenic Bacteria. Key Eng. Mater. 2021, 904, 293–300. [Google Scholar] [CrossRef]



| Group | n (64.0 × 10.0 × 3.0 mm) | n (4.0 × 6.0 mm) | Intervention |
|---|---|---|---|
| G1 | 10 | 3 | Self-curing acrylic resin without nanoparticle addition |
| G2 | 10 | 3 | Self-curing acrylic resin modified with 0.5% silk fibroin nanoparticles |
| G3 | 10 | 3 | Self-curing acrylic resin modified with 1% silk fibroin nanoparticles |
| Groups | Means and Standard Errors (Ra) |
|---|---|
| Without nanoparticles | 0.4118 ± 0.100 a |
| 0.5% nanoparticles | 0.3245 ± 0.072 a |
| 1.0% nanoparticles | 0.3269 ± 0.076 a |
| Groups | Mean ± SD (MPa) | Median | 95% CI (MPa) |
|---|---|---|---|
| Without nanoparticles | 79.142 ± 3.202 a | 78.275 | 76.85–81.43 |
| 0.5% nanoparticles | 87.089 ± 2.756 b | 86.635 | 85.12–89.06 |
| 1.0% nanoparticles | 92.412 ± 1.963 b | 91.737 | 91.01–93.82 |
| Groups | Means and Standard Errors (KN) |
|---|---|
| Without nanoparticles | 12.21 ± 0.351 a |
| 0.5% nanoparticles | 12.72 ± 0.213 a |
| 1.0% nanoparticles | 12.53 ± 0.177 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Botelho, L.P.; Dias, D.M.; Tavano, K.T.A.; Torres, A.d.S.; Torres, M.d.M.; Almeida e Silva, L.D.; Rigotti, R.L.d.O.; Galo, R. Mechanical and Candida albicans Response of Bombyx mori Silk Fibroin Nanoparticles Incorporated into Self-Curing Poly(methylmethacrylate) (PMMA). Compounds 2026, 6, 15. https://doi.org/10.3390/compounds6010015
Botelho LP, Dias DM, Tavano KTA, Torres AdS, Torres MdM, Almeida e Silva LD, Rigotti RLdO, Galo R. Mechanical and Candida albicans Response of Bombyx mori Silk Fibroin Nanoparticles Incorporated into Self-Curing Poly(methylmethacrylate) (PMMA). Compounds. 2026; 6(1):15. https://doi.org/10.3390/compounds6010015
Chicago/Turabian StyleBotelho, Letícia Pena, Daniele Morais Dias, Karine Taís Aguiar Tavano, Adriana da Silva Torres, Moisés de Matos Torres, Larissa Doalla Almeida e Silva, Renan Leonardi de Oliveira Rigotti, and Rodrigo Galo. 2026. "Mechanical and Candida albicans Response of Bombyx mori Silk Fibroin Nanoparticles Incorporated into Self-Curing Poly(methylmethacrylate) (PMMA)" Compounds 6, no. 1: 15. https://doi.org/10.3390/compounds6010015
APA StyleBotelho, L. P., Dias, D. M., Tavano, K. T. A., Torres, A. d. S., Torres, M. d. M., Almeida e Silva, L. D., Rigotti, R. L. d. O., & Galo, R. (2026). Mechanical and Candida albicans Response of Bombyx mori Silk Fibroin Nanoparticles Incorporated into Self-Curing Poly(methylmethacrylate) (PMMA). Compounds, 6(1), 15. https://doi.org/10.3390/compounds6010015

