Composition of the Scent in Some Ophrys Orchids Growing in Basilicata (Southern Italy): A Solid-Phase Microextraction Study Coupled with Gas Chromatography and Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Analysis of Volatile Organic Compounds
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhong, Y.; Jia, Z.; Zhou, H.; Zhang, D.; Li, G.; Yu, J. Comparative Analysis of Volatile Compounds from Four Radish Microgreen Cultivars Based on Ultrasonic Cell Disruption and HS-SPME/GC–MS. Int. J. Mol. Sci. 2023, 24, 14988. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Chen, M.; Zheng, T.; Tang, O.; Xu, H. Metabolomics Analysis Reveals the Accumulation Patterns of Flavonoids and Volatile Compounds in Camellia oleifera Petals with Different Color. Molecules 2023, 28, 7248. [Google Scholar] [CrossRef]
- Li, J.; Ye, S.; Zongo, A.W.-S.; Li, J.; Li, B. Basic amino acids treatment prior to spray drying improved the functional properties and flavor attributes of soy protein isolate. LWT Food Sci. Technol. 2023, 188, 115447. [Google Scholar] [CrossRef]
- Magalhães, S.P.; Guimarães da Silva, J.M.; Perez da Graça, J.; de Oliveira Nunes, E.; Zocolo, G.J.; Hoffmann-Campo, C.B.; Zeraik, M.L. Identification of volatile organic compounds in purple and white soybean flowers by HS-SPME/GC-MS. Nat. Prod. Res. 2023. [Google Scholar] [CrossRef]
- Kang, W.; Lin, H.; Ahmad, W.; Li, H.; Chen, Q. Determination of active constituents in kombucha fermentation broth using nano-composite colorimetric sensor based on selected volatile markers determined by GC–MS. Microchem. J. 2023, 195, 109493. [Google Scholar] [CrossRef]
- Flores, J.L.H.; Martínez, Y.J.; López, M.A.R.; Gutierrez, C.S.; Reyes, A.A.; Rosales, M.M.A.; Pérez, M.J.C.; Mendoza, M.F.; Ramírez, J.R.; Zavala, G.R.; et al. Volatile Organic Compounds Produced by Kosakonia cowanii Cp1 Isolated from the Seeds of Capsicum pubescens R & P Possess Antifungal Activity. Microorganisms 2023, 11, 2491. [Google Scholar]
- Song, C.; Zhang, Y.; Zhao, Q.; Chen, M.; Zhang, Y.; Gao, C.; Jia, Z.; Song, S.; Guan, J.; Shang, Z. Volatile organic compounds produced by Bacillus aryabhattai AYG1023 against Penicillium expansum causing blue mold on the Huangguan pear. Microbiol. Res. 2024, 278, 127531. [Google Scholar] [CrossRef]
- D’Eusanio, V.; Morelli, L.; Marchetti, A.; Tassi, L. Aroma Profile of Grapevine Chips after Roasting: A Comparative Study of Sorbara and Spergola Cultivars for More Sustainable Oenological Production. Separations 2023, 10, 532. [Google Scholar] [CrossRef]
- García-González, D.L.; Casadei, E.; Aparicio-Ruiz, R.; Romero, C.O.; Valli, E.; Brereton, P.; Koidis, A.; Korytkowska, M.; Servili, M.; Selvaggini, R.; et al. Multianalyte analysis of volatile compounds in virgin olive oils using SPME-GC with FID or MS detection: Results of an international interlaboratory validation. Eur. J. Lipid Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Liu, S.; Lou, Y.; Li, Y.; Zhao, Y.; Feng, X.; Capozzi, V.; Laaksonen, O.; Yang, B.; Li, P.; Gu, Q. Comparison of anthocyanin and volatile organic compounds in juices and fruit wines made from blood oranges (Citrus sinensis L. Osbeck) at different maturity stages. Food Biosci. 2023, 56, 103194. [Google Scholar] [CrossRef]
- Chen, S.; Xiao, Y.; Tang, W.; Jiang, F.; Zhu, J.; Zhou, Y.; Ye, L. Evaluation of Physicochemical Characteristics and Sensory Properties of Cold Brew Coffees Prepared Using Ultrahigh Pressure under Different Extraction Conditions. Foods 2023, 12, 3857. [Google Scholar] [CrossRef] [PubMed]
- Zor, M.; Bulut, M.; Karagöz, S.G.; Çetintaş, Y.; Alwazeer, D. Use of Hydrogen-Rich water in rice milk preparation improves the nutritional and sensory properties of product. Food Chem. 2024, 437, 137821. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Ma, Y.; Li, L.; Cheng, Y.; Huang, Y. Comparative characterization and contribution of key aroma compounds in the typical base liquor of Jiang-flavor Baijiu from different distributions in the Chinese Chishui River basin. Food Chem. X 2023, 20, 100932. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, Z.; Seo, J.-K.; Eom, J.-U.; Yang, H.-S. Optimization of volatile compound extraction on cooked meat using HS-SPME-GC-MS, and evaluation of diagnosis to meat species using volatile compound by multivariate data analysis. LWT Food Sci. Technol. 2023, 188, 115374. [Google Scholar] [CrossRef]
- Pawliszyn, J. Applications of Solid Phase Microextraction; Royal Society of Chemistry: London, UK, 1999. [Google Scholar]
- D’Auria, M.; Lorenz, R.; Racioppi, R.; Romano, V.A. Fragrance components of Platanthera bifolia subsp. osca. Nat. Prod. Res. 2017, 31, 1612–1619. [Google Scholar] [CrossRef]
- D’Auria, M.; Lorenz, R.; Mecca, M.; Racioppi, R.; Romano, V.A.; Viggiani, L. Fragrance components of Platanthera bifolia subsp. osca and Platanthera chlorantha collected in several sites in Italy. Nat. Prod. Res. 2020, 34, 2857–2861. [Google Scholar] [CrossRef]
- D’Auria, M.; Lorenz, R.; Mecca, M.; Racioppi, R.; Romano, V.A. Aroma components of Cephalanthera orchids. Nat. Prod. Res. 2021, 35, 174–177. [Google Scholar] [CrossRef]
- Mecca, M.; Racioppi, R.; Romano, V.A.; Viggiani, L.; Lorenz, R.; D’Auria, M. Volatile organic compounds from Orchis species found in Basilicata (Southern Italy). Compounds 2021, 1, 83–93. [Google Scholar] [CrossRef]
- D’Auria, M.; Lorenz, R.; Mecca, M.; Racioppi, R.; Romano, V.A. The composition of the aroma of Serapias orchids in Basilicata (Southern Italy). Nat. Prod. Res. 2021, 35, 4068–4072. [Google Scholar] [CrossRef]
- Mecca, M.; Racioppi, R.; Romano, V.A.; Viggiani, L.; Lorenz, R.; D’Auria, M. The scent of Himantoglossum species found in Basilicata (Southern Italy). Compounds 2021, 1, 164–173. [Google Scholar] [CrossRef]
- Romano, V.A.; Rosati, L.; Fascetti, S.; Cittadini, A.M.R.; Racioppi, R.; Lorenz, R.; D’Auria, M. Spatial and temporal Variability of the floral scent emitted by Barlia robertiana (Loisel.) Greuter, a Mediterranean food-deceptive orchid. Compounds 2022, 2, 37–53. [Google Scholar] [CrossRef]
- Mecca, M.; Racioppi, R.; Romano, V.A.; Viggiani, L.; Lorenz, R.; D’Auria, M. Volatile organic compounds in Dactylorhiza species. Compounds 2022, 2, 121–130. [Google Scholar] [CrossRef]
- D’Auria, M.; Lorenz, R.; Mecca, M.; Racioppi, R.; Romano, V.A.; Viggiani, L. Fragrance components of Gymnadenia conopsea and Gymnadenia odoratissima collected at several sites in Italy and Germany. Nat. Prod. Res. 2022, 36, 3435–3439. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, M.; Lorenz, R.; Mecca, M.; Racioppi, R.; Romano, V.A.; Viggiani, L. The scent of Neotinea orchids from Basilicata (Southern Italy). Nat. Prod. Res. 2022, 36, 3741–3743. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, M.; Emanuele, L.; Lorenz, R.; Mecca, M.; Racioppi, R.; Romano, V.A.; Viggiani, L. HS-SPME-GC-MS determination of the scent of Anacamptis taxa (fam. Orchidadìceae) from Basilicata (Southern Italy). Nat. Prod. Res. 2023. [Google Scholar] [CrossRef]
- GIROS. Orchidee d’Italia. Guida Alle Orchidee Spontanee; Il Castello: Milan, Italy, 2016. [Google Scholar]
- Schiestl, F.P. On the success of a swindle: Pollination by deception in. orchids. Sci. Nat. 2005, 92, 255–264. [Google Scholar] [CrossRef]
- Ayasse, M.; Stökl, J.; Francke, W. Chemical ecology and pollinator-driven speciation in sexually deceptive orchids. Phytochemistry 2011, 72, 1667–1677. [Google Scholar] [CrossRef]
- Gaskett, A.C. Orchid pollination by sexual deception: Pollinator perspectives. Biol. Rev. 2011, 86, 33–75. [Google Scholar] [CrossRef]
- Borg-Karlson, A.-K.; Bergström, G.; Kullenberg, B. Chemical basis for the relationship between Ophrys orchids and their pollinators. I. Volatile compounds of O. insectifera and O. speculum as insect mimetic attractans/excitans. Chemica Scripta 1987, 27, 303–311. [Google Scholar]
- Gervasi, D.D.L.; Selosse, M.-A.; Sauve, M.; Francke, W.; Vereecken, N.J.; Cozzolino, S.; Schiestl, F.P. Floral scent and species divergence in a pair of sexually deceptive orchids. Ecol. Evol. 2017, 7, 6023–6034. [Google Scholar] [CrossRef]
- Borg-Karlson, A.-K.; Growth, I.; Ågren, L.; Kullenberd, B. Form-specific fragances from Ophrys insectifera L. (Orchisaceae) attract species of different pollinator genera. Evidence of sympatric speciation? Chemoecology 1993, 4, 39–45. [Google Scholar] [CrossRef]
- Ayasse, M.; Schiestl, F.P.; Paulus, H.F.; Löfstedt, C.; Hansson, B.; Ibarra, F.; Francke, W. Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: How does flower -specific variation of odor signals influence reproductive success? Evolution 2000, 54, 1995–2006. [Google Scholar] [PubMed]
- Robustelli della Cuna, F.S.; Cortis, P.; Esposito, F.; De Agostini, A.; Sottani, C.; Sanna, C. Chemical composition of essential oil from four sympatric orchids in NW-Italy. Plants 2022, 11, 826. [Google Scholar] [CrossRef]
- Stökl, J.; Schlüter, P.M.; Stuessy, T.F.; Paulus, H.F.; Assum, G.; Ayasse, M. Scent variation and hybridization cause the displacement of a sexually deceptive orchid species. Am. J. Bot. 2008, 95, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Stökl, J.; Schlüter, P.M.; Stuessy, T.F.; Paulus, H.F.; Fraberger, R.; Erdmann, D.; Schulz, C.; Francke, W.; Assum, G.; Ayasse, M. Speciation in sexually deceptive orchids: Pollinator-driven selection maintains discrete odour phenotypes in hybridizing species. Biol. J. Linnean Soc. 2009, 98, 439–451. [Google Scholar] [CrossRef]
- Gögler, J.; Stökl, J.; Sramkova, A.; Twele, R.; Francke, W.; Cozzolino, S.; Cortis, P.; Scrugli, A.; Ayasse, M. Ménage à trois—Two endemic species of deceptive orchids and one pollinator species. Evolution 2009, 63, 2222–2234. [Google Scholar] [CrossRef] [PubMed]
- Gallego, E.; Gelabert, A.; Roca, F.J.; Perales, J.F.; Guardino, X. Identification of volatile organic compounds (VOC) emitted from three European orchid species with different pollination strategies: Two deceptive orchids (Himantoglossum robertianum and Ophrys apifera) and rewardin orchid (Gymnadenia conopsea). J. Biodiv. Environ. Sci. 2012, 2, 18–29. [Google Scholar]
- Robustelli della Cuna, F.S.; Calevo, J.; Bari, E.; Giovannini, A.; Boselli, C.; Tava, A. Characterization and antioxidant activity of essential oil of four sympatric orchid species. Molecules 2019, 24, 3878. [Google Scholar] [CrossRef]
- Borg-Karlson, A.-K.; Bergström, G.; Growth, I. Chemical basis for the relationship between Ophrys orchids and their pollinators. II. Volatile compounds of Ophrys lutea and O. fusca as insect mimetic attractants/excitants. Chemica Scriptai 1985, 25, 283–294. [Google Scholar]
- Manzo, A.; Panseri, S.; Vagge, I.; Giorgi, A. Volatile fingerprint of Italian population of orchids using solid phase microextraction and gas chromatography coupled with mass spectrometry. Molecules 2014, 19, 7913–7936. [Google Scholar] [CrossRef]
- Borg-Karlson, A.-K. Chemical and ethological studies of pollination in the genus Ophrys (Orchidaceae). Phytochemistry 1990, 29, 1359–1387. [Google Scholar] [CrossRef]
- Kovats, E. Gas-chromatographische Charakterisierung organischer Verbindungen, Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. Chim. Acta 1958, 41, 1915–1932. [Google Scholar] [CrossRef]
- D’Auria, M.; Racioppi, R. Characterization of volatile fraction of mastic oil and mastic gum. Nat. Prod. Res. 2022, 36, 3460–3463. [Google Scholar] [CrossRef] [PubMed]
Species | Subgenus | Section | Subsection |
---|---|---|---|
O. apifera | Fuciflorae | Apiferae | |
O. crabronifera subsp. biscutella | Fuciflorae | Araniferae | Sphegodes |
O. bertolonii subsp. bertolonii | Fuciflorae | Araniferae | Bertoloniorum |
O. passionis subsp. garganica | Fuciflorae | Araniferae | Sphegodes |
O. holosericea subsp. apulica | Fuciflorae | Fuciflorae | |
O. lacaita | Fuciflorae | Fuciflorae | |
O. bombyliflora | Ophrys | Bomyliflorae | |
O. insectifera | Ophrys | Ophrys | |
O. lutea subsp. lutea | Ophrys | Pseudophrys | Fusci-luteae |
O. tenthredinifera subsp. neglecta | Ophrys | Tenthrediniferae |
Compound | r.t. [min.] | KI a | Area% ± 0.03 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
O. apifera | O. crabronifera subsp. biscutella | O. bertolonii subsp. bertolonii | O. passionis subsp. Garganica | O. holosericea subsp. apulica | O. lacaitae | O. bombyliflora | O. insectifera | O. lutea subsp. lutea | O. tenthredinifera subsp. neglecta | |||
Octanol | 10.82 | 1072 | 4.69 | |||||||||
Undecane | 11.31 | 1100 | 1.05 | |||||||||
Decanal | 13.17 | 1195 | 0.70 | 0.74 | 0.48 | |||||||
Dodecane | 13.27 | 1200 | 0.58 | 0.45 | 0.53 | |||||||
Nonanoic acid | 14.38 | 1272 | 2.00 | |||||||||
Isobornyl acetate | 14.97 | 1285 | 1.65 | 0.96 | 1.27 | |||||||
2-Undecanone | 15.01 | 1291 | 5.18 | |||||||||
Tridecane | 15.05 | 1300 | 3.37 | 4.48 | 3.63 | 0.56 | 3.08 | 1.90 | 1.56 | 2.32 | ||
Decanoic acid | 16.02 | 1335 | 3,30 | |||||||||
Cyclosativene | 16.38 | 1344 | 6.97 | 5.15 | 6.79 | 10.09 | 0.96 | 1.09 | ||||
a-Copaene | 16.52 | 1353 | 9.11 | 3.81 | 11.30 | 12.08 | 3.15 | 11.61 | ||||
Tetradecane | 16.74 | 1400 | 0.86 | 1.81 | 6.36 | 3.72 | 4.47 | 3.17 | 3.47 | 2.13 | 1.09 | 3.60 |
Dodecanal | 16.86 | 1407 | 3.49 | |||||||||
Caryophyllene | 17.28 | 1428 | 8.07 | 1.08 | 1.72 | 8.34 | 7.90 | 6.68 | 4.38 | 1.23 | 11.73 | |
Geranylacetone | 17.46 | 1451 | 0.88 | 1.62 | ||||||||
b-Farnesene | 17.62 | 1454 | 3.58 | |||||||||
Alloaromadendrene | 17.76 | 1456 | 0.86 | |||||||||
Epi-b-santalene | 17.80 | 1460 | 0.74 | |||||||||
2,6-Di-t-butyl-p-benzoquinone | 17.96 | 1458 | 1.97 | 1.69 | 1.77 | 0.80 | 1.06 | |||||
1-Pentadecene | 17.99 | 1489 | 6.43 | |||||||||
Pentadecane | 18.30 | 1500 | 2.52 | 8.06 | 28.62 | 8.69 | 11.48 | 13.40 | 10.33 | 13.73 | 5.53 | 5.04 |
b-Cadinene | 18.65 | 1507 | 2.52 | |||||||||
Methyl dodecanoate | 18.68 | 1509 | 1.00 | 1.09 | ||||||||
d-Cadinene | 18.82 | 1524 | 1.27 | 6.94 | 1.04 | |||||||
Dodecanoic acid | 19.11 | 1559 | 1.78 | 0.71 | 0.98 | |||||||
Cyclotridecane | 19.46 | 1565 | 0.64 | |||||||||
Ethyl dodecanoate | 19.75 | 1579 | 1.40 | 4.16 | 1.83 | 5.31 | 9.46 | 5.18 | 0.99 | 4.16 | ||
Hexadecane | 19.80 | 1600 | 2.86 | 3.58 | 6.38 | 6.16 | 4.17 | 6.97 | 3.38 | 2.08 | 4.03 | |
Tetradecanal | 20.01 | 1611 | 1.63 | 2.03 | 4.10 | 3.72 | 2.93 | 1.02 | ||||
i-Propyl dodecanoate | 20.06 | 1618 | 0.86 | |||||||||
Isolongifolen-5-one | 20.17 | 1622 | 3.81 | |||||||||
Benzophenone | 20.28 | 1625 | 1.97 | |||||||||
Unidentified | 20.62 | 8.52 | ||||||||||
Methyl dihydrojasmonate | 20.66 | 1648 | 3.15 | 2.93 | ||||||||
8-Heptadecene | 20.91 | 1664 | 3.12 | 2.20 | 4.61 | 3.91 | 18.88 | 7.25 | ||||
Heptadecane | 21.22 | 1700 | 4.78 | 8.37 | 7.23 | 9.22 | 8.15 | 14.43 | 6.67 | 7.98 | 39.37 | 4.40 |
Pristane | 21.30 | 1709 | 1.14 | 1.89 | 5.49 | 2.39 | 1.86 | 2.12 | 1.90 | 1.57 | ||
2-(Phenylmethylene)-octanal | 21.87 | 1728 | 1.34 | |||||||||
Farnesal | 21.89 | 1738 | 0.54 | |||||||||
Tetradecanoic acid | 21.91 | 1761 | 1.89 | 1.60 | ||||||||
Benzyl benzoate | 22.16 | 1768 | 22.52 | |||||||||
3,5-Di-t-butyl-4-hydroxybenzaldehyde | 22.24 | 1771 | 0.80 | |||||||||
Ethyl tetradecanoate | 22.51 | 1774 | 0.90 | 1.08 | 1.53 | 1.49 | 0.59 | 1.47 | ||||
Octadecane | 22.57 | 1800 | 2.18 | 1.89 | 1.66 | 2.07 | 2.07 | 3.51 | 2.91 | 1.81 | 1.55 | 1.71 |
Phytane | 22.64 | 1814 | 0.99 | |||||||||
Hexadecanal | 22.82 | 1819 | 1.60 | 1.24 | 1.08 | 4.04 | 0.83 | |||||
Farnesyl acetaldehyde | 23.18 | 1855 | 1.81 | 2.26 | 1.09 | |||||||
Nonadecane | 23.85 | 1900 | 1.85 | 8.18 | 6.30 | 1.72 | 4.28 | 6.81 | 2.80 | 2.99 | 8.87 | 1.65 |
b-Springene | 24.16 | 1922 | 1.60 | |||||||||
Methyl hexadecanoate | 24.20 | 1927 | 0.74 | |||||||||
Hexadecanoic acid | 24.58 | 1935 | 1.95 | 0.83 | ||||||||
a-Springene | 24.78 | 1940 | 5.45 | |||||||||
Ethyl 11-hexadecenoate | 24.80 | 1974 | 2.58 | |||||||||
Eicosane | 25.06 | 2000 | 1.82 | 1.15 | 1.32 | 1.18 | 1.57 | 1.06 | 1.56 | 0.74 | ||
Geranyl-a-terpinene | 25.15 | 2005 | 5.66 | |||||||||
i-Propyl palmitate | 25.40 | 2013 | 0.96 | 5.06 | 2.24 | 29.62 | 5.56 | 2.73 | 2.26 | 14.73 | ||
Heinecosane | 26.25 | 2100 | 5.12 | 3.26 | 4.85 | 3.95 | 4.13 | 1.38 | 1.50 | |||
Ethyl oleate | 26.98 | 2169 | 0.92 | 1.81 | ||||||||
Docosane | 27.38 | 2200 | 1.52 | 1.30 | 0.87 | 1.81 | 9.94 | 0.71 | ||||
1-Heneicosyl formate | 28.10 | 2250 | 0.77 | |||||||||
9-Tricosene | 28.14 | 2270 | 4.26 | |||||||||
Tricosane | 28.47 | 2300 | 1.04 | 2.97 | 1.44 | 2.45 | 0.62 | 1.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Auria, M.; Lorenz, R.; Mecca, M.; Racioppi, R.; Romano, V.A. Composition of the Scent in Some Ophrys Orchids Growing in Basilicata (Southern Italy): A Solid-Phase Microextraction Study Coupled with Gas Chromatography and Mass Spectrometry. Compounds 2023, 3, 573-583. https://doi.org/10.3390/compounds3040041
D’Auria M, Lorenz R, Mecca M, Racioppi R, Romano VA. Composition of the Scent in Some Ophrys Orchids Growing in Basilicata (Southern Italy): A Solid-Phase Microextraction Study Coupled with Gas Chromatography and Mass Spectrometry. Compounds. 2023; 3(4):573-583. https://doi.org/10.3390/compounds3040041
Chicago/Turabian StyleD’Auria, Maurizio, Richard Lorenz, Marisabel Mecca, Rocco Racioppi, and Vito Antonio Romano. 2023. "Composition of the Scent in Some Ophrys Orchids Growing in Basilicata (Southern Italy): A Solid-Phase Microextraction Study Coupled with Gas Chromatography and Mass Spectrometry" Compounds 3, no. 4: 573-583. https://doi.org/10.3390/compounds3040041
APA StyleD’Auria, M., Lorenz, R., Mecca, M., Racioppi, R., & Romano, V. A. (2023). Composition of the Scent in Some Ophrys Orchids Growing in Basilicata (Southern Italy): A Solid-Phase Microextraction Study Coupled with Gas Chromatography and Mass Spectrometry. Compounds, 3(4), 573-583. https://doi.org/10.3390/compounds3040041