Thiazolidine-Based Fluorescent Chiral Ionic Liquids for Trace Copper(II) Ion Sensing
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Methods
2.2. Synthesis of Thiazolidine Precursor (4)
2.3. General Procedure for Chiral Ionic Liquids
2.4. General Procedure for Anion Exchange
2.5. Metal Sensing Investigation
2.6. Theoretical Calculations
3. Results and Discussion
3.1. Synthesis
3.2. Photophysics
3.3. Theoretical Calculations
3.3.1. Molecular Geometries and Electronic Properties
3.3.2. Electronic Excitations
3.4. Optical Sensing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zumbrägel, N.; Merten, C.; Huber, S.M.; Gröger, H. Enantioselective reduction of sulfur-containing cyclic imines through biocatalysis. Nat. Commun. 2018, 9, 1949. [Google Scholar] [CrossRef]
- Elander, R.P. Industrial production of β-lactam antibiotics. Appl. Microbiol. Biotechnol. 2003, 61, 385–392. [Google Scholar] [CrossRef]
- Nakatani, S.; Hidaka, K.; Ami, E.; Nakahara, K.; Sato, A.; Nguyen, J.T.; Hamada, Y.; Hori, Y.; Ohnishi, N.; Nagai, A.; et al. Combination of non-natural D-amino acid derivatives and allophenylnorstatine-dimethylthioproline scaffold in HIV protease inhibitors have high efficacy in mutant HIV. J. Med. Chem. 2008, 51, 2992–3004. [Google Scholar] [CrossRef]
- Sahiba, N.; Sethiya, A.; Soni, J.; Agarwal, D.K.; Agarwal, S. Saturated five membered thiazolidines and their derivatives: From synthesis to biological applications. Top. Curr. Chem. 2020, 378, 34. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, B.; Koo, Y.M.; MacFarlane, D.R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef]
- Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2084. [Google Scholar] [CrossRef]
- Kaur, G.; Kumar, H.; Singla, M. Diverse applications of ionic liquids: A comprehensive review. J. Mol. Liq. 2022, 351, 118556. [Google Scholar] [CrossRef]
- Balakrishnan, C.; Theetharappan, M.; Natarajan, S.; Thalamuthu, S.; Neelakantan, M.A. Fluorescence response of a thiazolidine carboxylic acid derivative for the selective and nanomolar detection of Zn(II) ions: Quantum chemical calculations and application in real samples. RSC Adv. 2015, 5, 105453. [Google Scholar] [CrossRef]
- Bilgiçli, H.G.; Bilgiçli, A.T.; Günsel, A.; Tüzün, B.; Ergön, D.; Yarasir, M.N.; Zengin, M. Turn-on fluorescent probe for Zn2+ ions based on thiazolidine derivative. Appl. Organometal. Chem. 2020, 34, e5624. [Google Scholar]
- Aydin, D.; Karakilic, E.; Karakurt, S.; Baran, A. Thiazolidine based fluorescent chemosensors for aluminum ions and their applications in biological imaging. Spectrochim. Acta A 2020, 238, 118431. [Google Scholar] [CrossRef]
- Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112038. [Google Scholar] [CrossRef]
- Avtar, S.; Kumar, C.H. Chiral ionic liquids: Design, synthesis and applications in asymmetric organo-catalysis. Curr. Org. Synth. 2017, 14, 488–510. [Google Scholar]
- Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq. 2017, 227, 44–60. [Google Scholar] [CrossRef]
- Suzuki, Y.; Wakatsuki, J.; Tsubaki, M.; Sato, M. Imidazolium-based chiral ionic liquids: Synthesis and application. Tetrahedron 2013, 69, 9690–9700. [Google Scholar] [CrossRef]
- Rodríguez-Cárdenas, E.; Cardoso-Martínez, J.; Nieto-Camacho, A.; Frontana-Uribe, B.A. Physical-chemical properties of chiral ionic liquids derived from the phenylethylamine enantiomers. J. Mol. Liq. 2017, 236, 435–444. [Google Scholar] [CrossRef]
- Klejdysz, T.; Łęgosz, B.; Czuryszkiewicz, D.; Czerniak, K.; Pernak, J. Biobased ionic liquids with abietate anion. ACS Sustain. Chem. Eng. 2016, 4, 6543–6550. [Google Scholar] [CrossRef]
- Hulsbosch, J.; De Vos, D.E.; Binnemans, K.; Ameloot, R. Biobased ionic liquids: Solvents for a green processing industry? ACS Sustain. Chem. Eng. 2016, 4, 2917–2931. [Google Scholar] [CrossRef]
- Fukaya, Y.; Iizuka, Y.; Sekikawa, K.; Ohno, H. Bio ionic liquids: Room temperature ionic liquids composed wholly of biomaterials. Green Chem. 2007, 9, 1155–1157. [Google Scholar] [CrossRef]
- Cravotto, G.; Boffa, L.; Lévêque, J.M.; Estager, J.; Draye, M.; Bonrath, W. A speedy one-pot synthesis of second-generation ionic liquids under ultrasound and/or microwave irradiation. Aust. J. Chem. 2007, 60, 946–950. [Google Scholar] [CrossRef]
- Rahman, M.B.A.; Jumbri, K.; Basri, M.; Abdulmalek, E.; Sirat, K.; Salleh, A.B. Synthesis and physico-chemical properties of new tetraethylammonium-based amino acid chiral ionic liquids. Molecules 2010, 15, 2388. [Google Scholar] [CrossRef]
- Bach, M.F.; Griebeler, C.H.; Jacoby, C.G.; Schneider, P.H. Design of a chiral ionic liquid system for the enantioselective addition of diethylzinc to aldehydes. Eur. J. Org. Chem. 2017, 2017, 6997–7004. [Google Scholar] [CrossRef]
- Jordan, A.; Haiß, A.; Spulak, M.; Karpichev, Y.; Kümmerer, K.; Gathergood, N. Synthesis of a series of amino acid derived ionic liquids and tertiary amines: Green chemistry metrics including microbial toxicity and preliminary biodegradation data analysis. Green Chem. 2016, 18, 4374–4392. [Google Scholar] [CrossRef]
- Borba, L.C.; Griebeler, C.H.; Bach, M.F.; Barboza, C.A.; Nogara, P.A.; da Rocha, G.B.T.; Amaral, S.S.; Rodembusch, F.S.; Schneider, P.H. Non-traditional intrinsic luminescence of amphiphilic-based ionic liquids from oxazolidines: Interaction studies in phosphatidylcholine-composed liposomes and BSA optical sensing in solution. J. Mol. Liq. 2020, 313, 113525. [Google Scholar] [CrossRef]
- Vidal, M.; Schmitzer, A.R. Thermophysical properties of imidazolium-functionalized binols and their application in asymmetric catalysis. Organometallics 2014, 33, 3328–3340. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Neese, F. The ORCA Program System. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software Update: The ORCA Program System, version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Pracht, P.; Bohle, F.; Grimme, S. Automated Exploration of the Low-Energy Chemical Space with Fast Quantum Chemical Methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192. [Google Scholar] [CrossRef]
- Lin, Y.S.; Li, G.D.; Mao, S.P.; Chai, J.D. Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. J. Chem. Theory Comput. 2013, 9, 263–272. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Lechner, M.H.; Neese, F.; Izsák, R. An excited state coupled-cluster study on indigo dyes. Mol. Phys. 2021, 119, 21–22. [Google Scholar] [CrossRef]
- Martin, R.L. Natural transition orbitals. J. Chem. Phys. 2003, 118, 4775–4777. [Google Scholar] [CrossRef]
- Glendening, E.D.; Landis, C.R.; Weinhold, F. NBO 6.0: Natural Bond Orbital Analysis Program. J. Comput. Chem. 2013, 34, 1429–1437. [Google Scholar] [CrossRef]
- Stewart, J.J.P. MOPAC2016, Computational Chemistry, Colorado Springs, CO, USA. Available online: http://OpenMOPAC.net (accessed on 29 June 2023).
- Hirata, S.; Head-Gordon, M. Time-Dependent Density Functional Theory within the Tamm–Dancoff Approximation. Chem. Phys. Lett. 1999, 314, 291–299. [Google Scholar] [CrossRef]
- Parker, T.M.; Burns, L.A.; Parrish, R.M.; Ryno, A.G.; Sherrill, C.D. Levels of Symmetry Adapted Perturbation Theory (SAPT). I. Efficiency and performance for interaction energies. J. Chem. Phys. 2014, 140, 094106. [Google Scholar] [CrossRef]
- Smith, D.G.A.; Burns, L.A.; Simmonett, A.C.; Parrish, R.M.; Schieber, M.C.; Galvelis, R.; Kraus, P.; Kruse, H.; Di Remigio, R.; Alenaizan, A.; et al. Psi4 1.4: Open-source software for high-throughput quantum chemistry. J. Chem. Phys. 2020, 152, 184108. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Vishnumaya, M.R.; Singh, V.K. Highly efficient small organic molecules for enantioselective direct aldol reaction in organic and aqueous media. J. Org. Chem. 2009, 74, 4289–4297. [Google Scholar] [CrossRef]
- Vishnumaya, M.R.; Ginotra, S.K.; Singh, V.K. Highly enantioselective direct aldol reaction catalyzed by organic molecules. Org. Lett. 2006, 8, 4097–4099. [Google Scholar]
- Zhu, S.; Song, Y.; Shao, J.; Zhao, X.; Yang, B. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew. Chem. Int. Ed. 2015, 54, 14626–14637. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Yang, T.; Zhao, Z.; Zhu, T.; Zhang, Q.; Hou, W.; Yuan, W.Z. Nonconventional luminophores: Characteristics, advancements and perspectives. Chem. Soc. Rev. 2021, 50, 12616–12655. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Jia, H.; Xie, W.; Wu, H.; Li, J.; Wang, H. Nontraditional organic/polymeric luminogens with red-shifted fluorescence emissions. Macromol. Chem. Phys. 2022, 223, 2100425. [Google Scholar] [CrossRef]
- Tomalia, D.A.; Klajnert-Maculewicz, B.; Johnson, K.A.M.; Brinkman, H.F.; Janaszewsk, A.; Hedstrand, D.M. Non-traditional intrinsic luminescence: Inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores. Progr. Polym. Sci. 2019, 90, 35–117. [Google Scholar] [CrossRef]
- Chen, X.; Luo, W.; Ma, H.; Peng, Q.; Yuan, W.Z.; Zhang, Y. Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci. China Chem. 2018, 61, 351–359. [Google Scholar] [CrossRef]
- Yi, M.; Qi, P.; Fan, Q.; Hao, J. Ionic liquid crystals based on amino acids and gemini surfactants: Tunable phase structure, circularly polarized luminescence and emission color. J. Mater. Chem. C 2022, 10, 1645–1652. [Google Scholar] [CrossRef]
- Zhou, Q.; Cao, B.; Zhu, C.; Xu, S.; Gong, Y.; Yuan, W.Z.; Zhang, Y. Clustering-triggered emission of nonconjugated polyacrylonitrile. Small 2016, 12, 6586–6592. [Google Scholar] [CrossRef]
- Ji, X.; Tian, W.; Jin, K.; Diao, H.; Huang, X.; Song, G.; Zhang, J. Anionic polymerization of nonaromatic maleimide to achieve full-color nonconventional luminescence. Nat. Commun. 2022, 13, 3717. [Google Scholar] [CrossRef]
- Lee, W.I.; Bae, Y.; Bard, A.J. Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. J. Am. Chem. Soc. 2004, 126, 8358–8359. [Google Scholar] [CrossRef]
- Mingkang, S.; Francesca, L.; Rui, Y.; Sajjad, D.S.; Tomasz, K.; Krzysztof, M. Assemblies of polyacrylonitrile-derived photoactive polymers as blue and green light photo-cocatalysts for Cu-catalyzed ATRP in water and organic solvents. Front. Chem. 2021, 9, 734076. [Google Scholar]
- Sun, M.; Hong, C.Y.; Pan, C.Y. A unique aliphatic tertiary amine chromophore: Fluorescence, polymer structure, and application in cell imaging. J. Am. Chem. Soc. 2012, 134, 20581–20584. [Google Scholar] [CrossRef]
- Yuan, W.Z.; Zhang, Y. Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 560–574. [Google Scholar] [CrossRef]
- Zhao, E.; Lam, J.W.Y.; Meng, L.; Hong, Y.; Deng, H.; Bai, G.; Huang, X.; Hao, J.; Tang, B.Z. Poly[(maleic anhydride)-alt-(vinyl acetate)]: A pure oxygenic nonconjugated macro-molecule with strong light emission and solvatochromic effect. Macromolecules 2015, 48, 64–71. [Google Scholar] [CrossRef]
- Li, W.; Wu, X.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B.Z. Catalyst-free, atom-economic, multicomponent polymerizations of aromatic diynes, elemental sulfur, and aliphatic diamines toward luminescent polythioamides. Macromolecules 2015, 48, 7747–7754. [Google Scholar] [CrossRef]
- Miao, X.; Liu, T.; Zhang, C.; Geng, X.; Meng, Y.; Li, X. Fluorescent aliphatic hyperbranched polyether: Chromophore-free and without any N and P atoms. Phys. Chem. Chem. Phys. 2016, 18, 4295–4299. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.G.; Li, N.; Ling, Y.; Hua, K.B.; Geng, S.; Li, N.B.; Luo, H.Q. pH-mediated fluorescent polymer particles and gel from hyperbranched polyethylenimine and the mechanism of intrinsic fluorescence. Langmuir 2016, 32, 1881–1889. [Google Scholar] [CrossRef]
- Larson, C.L.; Tucker, S.A. Intrinsic fluorescence of carboxylated-terminated polyamido amine dendrimers. Appl. Spectrosc. Rev. 2001, 55, 679–683. [Google Scholar] [CrossRef]
- Katoh, R. Absorption spectra of imidazolium ionic liquids. Chem. Lett. 2007, 36, 1256–1257. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, L.; Wang, Y.; Xu, X.; Peng, X. Interactions between pyrene and pyridinium ionic liquids studied by ultraviolet–visible spectroscopy. J. Mol. Liq. 2016, 213, 289–293. [Google Scholar] [CrossRef]
- Ogura, T.; Akai, N.; Shibuya, K.; Kawai, A. Charge-transfer electronic absorption spectra of 1-ethylpyridinium cation and halogen anion pairs in dichloromethane and as neat ionic liquids. J. Phys. Chem. B 2013, 117, 8547–8554. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, R.; Cao, L.; Wang, H.; Zhang, L.; Lan, S.; Peng, F.; Liu, C.; Jia, D.; Wang, D. Three distinct concentration-dependent chromophores of non-traditional intrinsic luminescence: The mechanism and special properties. J. Lumin. 2021, 239, 118401. [Google Scholar] [CrossRef]
- Ahmad, M.G.; Chanda, K. Ionic liquid coordinated metal-catalyzed organic transformations: A comprehensive review. Coord. Chem. Rev. 2022, 472, 214769. [Google Scholar] [CrossRef]
- Abbott, A.P.; Frisch, G.; Ryder, K.S. Metal complexation in ionic liquids. Annu. Rep. Prog. Chem. Sect. A Inorg. Chem. 2008, 104, 21–45. [Google Scholar] [CrossRef]
- Pearson, R.G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740. [Google Scholar] [CrossRef]
- Juliá, F. Ligand-to-metal charge transfer (LMCT) photochemistry at 3d-metal complexes: An emerging tool for sustainable organic synthesis. ChemCatChem 2022, 14, e202200916. [Google Scholar] [CrossRef]
- Fedorova, O.A.; Shepel, N.E.; Tokarev, S.D.; Lukovskaya, E.V.; Sotnikova, Y.A.; Moiseeva, A.A.; D’Aléo, A.; Fages, F.; Maureld, F.; Fedorov, Y.V. Intramolecular electron transfer in Cu(II) complexes with aryl-imidazo-1,10-phenanthroline derivatives: Experimental and quantum chemical calculation studies. New J. Chem. 2019, 43, 2817–2827. [Google Scholar] [CrossRef]
- Chen, Y.; Long, Z.; Wang, C.; Zhu, J.; Wang, S.; Liu, Y.; Wei, P.; Yi, T. A lysosome-targeted near-infrared fluorescent probe for cell imaging of Cu2+. Dyes Pigm. 2022, 204, 110472. [Google Scholar] [CrossRef]
- Cheng, D.; Liu, X.; Yang, H.; Zhang, T.; Han, A.; Zang, L. A Cu2+-selective probe based on phenanthro-imidazole derivative. Sensors 2017, 17, 35. [Google Scholar] [CrossRef]
- Duarte, L.G.T.A.; Coelho, F.L.; Germino, J.C.; da Costa, G.G.; Berbigier, J.F.; Rodembusch, F.S.; Atvars, T.D.Z. A selective proton transfer optical sensor for copper II based on chelation enhancement quenching effect (CHEQ). Dyes Pigm. 2020, 181, 108566. [Google Scholar] [CrossRef]
- Gehlen, M.H. The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J. Photochem. Photobiol. C Photochem. Rev. 2020, 42, 100338. [Google Scholar] [CrossRef]
- Chatterjee, S.; Gohil, H.; Suresh, E.; Paital, A.R. Copper(II)-specific fluorogenic task-specific ionic liquids as selective fluorescence probes and recyclable extractants. Chem. Eur. J. 2015, 21, 13943–13948. [Google Scholar] [CrossRef]
- Gohil, H.; Yadav, S.; Rajpurohit, D.; Bhojani, G.; Chatterjee, S.; Paital, A.R. Sensing vs. extraction: Functionalized ionic liquid as a single platform for dual applications with biological implications. ACS Sustain. Chem. Eng. 2021, 9, 13096–13105. [Google Scholar] [CrossRef]
- Available online: http://supramolecular.org (accessed on 1 December 2022).
- Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 2011, 40, 1305–1323. [Google Scholar] [CrossRef] [PubMed]
- Hibbert, D.B.; Thordarson, P. The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis. Chem. Commun. 2016, 52, 12792–12805. [Google Scholar] [CrossRef] [PubMed]
Compound | Solvent | λabs (nm) | ε × 103 (M−1·cm−1) | λem (nm) 1 |
---|---|---|---|---|
5a | Ethanol | 204 | 6.2 | 327 |
Acetonitrile | 208/241 | 7.4/0.6 | 334 | |
5b | Ethanol | 204 | 8.4 | 329 |
Acetonitrile | 207 | 24.3 | 329 | |
5c | Ethanol | 204/259 | 9.1/1.4 | 354/456 |
Acetonitrile | 207/257 | 27.4/4.1 | - 2 | |
6a | Ethanol | 207 | 13.8 | 330 |
Acetonitrile | 206 | 20.1 | 331 | |
6b | Ethanol | 206 | 9.9 | 339 |
Acetonitrile | 208 | 36.2 | 329 | |
6c | Ethanol | 208/258 | 14.4/3.4 | - 2 |
Acetonitrile | 207/257 | 11.4/4.1 | - 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griebeler, C.H.; Bach, M.F.; Silva, H.C., Jr.; Rodembusch, F.S.; Coelho, F.L.; Schneider, P.H. Thiazolidine-Based Fluorescent Chiral Ionic Liquids for Trace Copper(II) Ion Sensing. Compounds 2023, 3, 430-446. https://doi.org/10.3390/compounds3030032
Griebeler CH, Bach MF, Silva HC Jr., Rodembusch FS, Coelho FL, Schneider PH. Thiazolidine-Based Fluorescent Chiral Ionic Liquids for Trace Copper(II) Ion Sensing. Compounds. 2023; 3(3):430-446. https://doi.org/10.3390/compounds3030032
Chicago/Turabian StyleGriebeler, Cassiana H., Mariana F. Bach, Henrique C. Silva, Jr., Fabiano S. Rodembusch, Felipe L. Coelho, and Paulo H. Schneider. 2023. "Thiazolidine-Based Fluorescent Chiral Ionic Liquids for Trace Copper(II) Ion Sensing" Compounds 3, no. 3: 430-446. https://doi.org/10.3390/compounds3030032
APA StyleGriebeler, C. H., Bach, M. F., Silva, H. C., Jr., Rodembusch, F. S., Coelho, F. L., & Schneider, P. H. (2023). Thiazolidine-Based Fluorescent Chiral Ionic Liquids for Trace Copper(II) Ion Sensing. Compounds, 3(3), 430-446. https://doi.org/10.3390/compounds3030032