Facile Synthesis of Pyrrolyl-Containing Semisquaraines in Water as Precursors for Non-Symmetric Squaraines
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Synthesis of Compound 1a
2.3. Synthesis of Compound 4a
2.4. General Synthetic Procedure for Synthesis of Compounds 6–18
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ilina, K.; MacCuaig, W.M.; Laramie, M.; Jeouty, J.N.; McNally, L.R.; Henary, M. Squaraine dyes: Molecular design for different applications and remaining challenges. Bioconjug. Chem. 2020, 31, 194–213. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Jo, Y.J.; Sun, X.; Qiao, W.; Ok, J.; Kim, T.-I.; Li, Z. Squaraine dyes for photovoltaic and biomedical applications. Adv. Funct. Mater. 2021, 31, 2008201. [Google Scholar] [CrossRef]
- Ta, D.D.; Dzyuba, S.V. Squaraine-based optical sensors: Designer toolbox for exploring ionic and molecular recognitions. Chemosensors 2021, 9, 302. [Google Scholar] [CrossRef]
- Qiao, W.; Li, Z. Recent progress of squaraine-based fluorescent materials and their biomedical applications. Symmetry 2022, 14, 966. [Google Scholar] [CrossRef]
- Khopkar, S.; Shankarling, G. Synthesis, photophysical properties and applications of NIR absorbing unsymmetrical squaraines: A review. Dyes Pigment. 2019, 170, 107645. [Google Scholar] [CrossRef]
- Lynch, D.E.; Hamilton, D.G. Microreview: Pyrrol-3-yl squaraines (including indol-3-yl-squaraines). J. Heterocycl. Chem. 2018, 55, 1249–1262. [Google Scholar] [CrossRef]
- Khopkar, S.; Deshpande, S.; Shankarling, G. Greener protocol for the synthesis of NIR fluorescent indolenine-based symmetrical squaraine colorants. ACS Sustain. Chem. Eng. 2018, 6, 10798–10805. [Google Scholar] [CrossRef]
- Zappimbulso, N.; Capozzi, M.A.M.; Porcheddu, A.; Farinola, G.M.; Punzi, A. Solvent-free reactions for the synthesis of indolenine-based squaraines and croconaines: Comparison of thermal heating, mechanochemical milling, and IR irradiation. ChemSusChem 2021, 14, 1363–1369. [Google Scholar] [CrossRef]
- Minkovska, S.; Burdzhiev, N.; Alexiev, A.; Deligeogiev, T. A novel fast green method for the preparation of the squaraine dye 3-oxo-4[(1,3,3-trimethyl-3Hindol-1-ium-2-yl)methylene]-2-[(1,3,3-trimethylindolin-2-ylidene)methyl]cyclobut-1-enolate, inner salt. Chem. Papers 2018, 72, 1549–1552. [Google Scholar] [CrossRef]
- Xie, J.; Comeau, A.B.; Seto, C.T. Squaric acid-based peptidic inhibitors of matrix metalloprotease-1 (MMP-1). Org. Lett. 2004, 6, 83–86. [Google Scholar] [CrossRef]
- Lopez, C.; Vega, M.; Sanna, E.; Rotger, C.; Costa, A. Efficient microwave-assisted preparation of squaric acid monoamides in water. RSC Adv. 2013, 3, 7249–7253. [Google Scholar] [CrossRef]
- Bagnis, D.; Beverina, L.; Huang, H.; Silvestri, F.; Yao, Y.; Yan, H.; Pagani, G.A.; Marks, T.J.; Facchetti, A. Marked alkyl- vs alkenyl-substitutent effect on squaraine dye solid-state structure, carrier mobility, and bulk-heterojunction solar cell efficiency. J. Am. Chem. Soc. 2010, 132, 4074–4075. [Google Scholar] [CrossRef] [PubMed]
- Anees, P.; Sreejith, S.; Ajayahgosh, A. Self-assembled near-infrared dye nanoparticles as a selective protein sensor by activation of a dormant fluorophore. J. Am. Chem. Soc. 2014, 136, 13233–13239. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Guo, H.; Wang, Z.; Dong, G. Narrowband organic photodiodes based on green light sensitive squarylium. J. Phys. Chem. C 2017, 121, 15333–15338. [Google Scholar] [CrossRef]
- Chua, M.H.; Zhou, H.; Lin, T.T.; Wu, J.; Xu, J. Triphenylethylene- and tetraphenylethylene-functionalized 1,3-bis(pyrrol-2-ul)squaraine dyes: Synthesis, aggregation-caused quenching to aggregation-induced emission, and thiol detection. ACS Omega 2018, 3, 16424–16435. [Google Scholar] [CrossRef]
- Balcerak, A.; Kwiatkowska, D.; Kabatc, J. Novel photoinitiators based on difluoroborate complexes of squaraine dyes for radical polymerization of acrylates upon visible light. Polym. Chem. 2022, 13, 220–234. [Google Scholar] [CrossRef]
- Triebs, V.A.; Jacob, K. Cyclobutenederivate der pyrrolreihe II. Liebigs Ann. Chem. 1968, 712, 123–137. [Google Scholar]
- Kiel, D.; Hartmann, H. Synthesis and characterization of a new class of unsymmetrical squaraine dyes. Dyes Pigment. 2001, 49, 161–179. [Google Scholar] [CrossRef]
- Beverina, L.; Ruffo, R.; Patriarca, G.; De Angelis, F.; Roberto, D.; Righetto, S.; Ugo, R.; Pagani, G.A. Second harmonic generation in nonsymmetrical squaraines: Tuning of the directional charge transfer character in highly delocalized dyes. J. Mater. Chem. 2009, 19, 8190–8197. [Google Scholar] [CrossRef]
- Beverina, L.; Ruffo, R.; Salamone, M.M.; Ronchi, E.; Binda, M.; Natali, D.; Sampietro, M. Panchromatic squaraine compounds for broad band light harvesting electronic devices. J. Mater. Chem. 2012, 22, 6704–6710. [Google Scholar] [CrossRef]
- Salice, P.; Arnbjerg, J.; Pedersen, B.W.; Toftegaard, R.; Beverina, L.; Pagani, G.A.; Ogilby, P.R. Photophysics of squaraine dyes: Role of charge-transfer in singlet oxygen production and removal. J. Phys. Chem. A 2010, 114, 2518–2525. [Google Scholar] [CrossRef]
- Triebs, V.A.; Jacob, K. Cyclobutenderivate der perrolreihe. Liebigs Ann. Chem. 1966, 691, 153–167. [Google Scholar] [CrossRef]
- Sheldon, R.A. Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustain. Chem. Eng. 2018, 6, 32–48. [Google Scholar] [CrossRef] [Green Version]
- Constable, D.J.C.; Curzons, A.D.; Cunningham, V.L. Metrics to ‘green’ chemistry—Which are the best? Green Chem. 2002, 4, 521–527. [Google Scholar] [CrossRef]
- Nigst, T.A.; Westermaier, M.; Ofial, A.R.; Mayr, H. Nucleophilic reactivities of pyrroles. Eur. J. Org. Chem. 2008, 2008, 2369–2374. [Google Scholar] [CrossRef]
- Yu, F.; Yan, Q.; Liang, K.; Cong, Z.; Shao, Q.; Wang, Y.; Hong, L.; Jiang, L.; Ye, G.; Wang, H.; et al. Dual-state emission and solvatofluorochromism properties of facile squaraine dyes with cis-3,5-dimethylpiperidine. J. Lumin. 2021, 233, 117882. [Google Scholar] [CrossRef]
- Xia, G.; Shao, Q.; Liang, K.; Wang, Y.; Jiang, L.; Wang, H. A phenyl-removal strategy for accessing an efficient dual-state emitter in the red/NIR region guided by TDDFT calculations. J. Mater. Chem. C 2020, 8, 13621–13626. [Google Scholar] [CrossRef]
- Shao, Q.; Liang, K.; Ling, H.; Wang, Y.; Yan, Z.; Xia, G.; Wang, H. Tetraphenylethylene-incorporated squaraine dyes: Structural and theoretical insights into the diverse emission behaviors in solution and solid state. J. Mater. Chem. C 2020, 8, 4549–4556. [Google Scholar] [CrossRef]
- Yang, S.; Yin, P.-A.; Li, L.; Peng, Q.; Gu, X.; Gao, G.; You, J.; Tang, B.Z. Crystallization-induced reversal from dark to bright excited states for construction of solid-emission-tunable squaraines. Angew. Chem. Int. Ed. 2020, 59, 10136–10142. [Google Scholar] [CrossRef]
- Barbero, N.; Magistris, C.; Park, J.; Saccone, D.; Quagliotto, P.; Buscaino, R.; Medana, C.; Barolo, C.; Viscardi, G. Microwave-assisted synthesis of near-infrared fluorescent indole-based squaraines. Org. Lett. 2015, 17, 3306–3309. [Google Scholar] [CrossRef]
- Prat, D.; Hayler, J.; Wells, A. A survey of solvent selection guides. Green Chem. 2014, 16, 4546–4551. [Google Scholar] [CrossRef]
- Kazmaier, P.M.; Hamer, G.K.; Burt, R.A. Conformational isomerism in squaraines: Saturation transfer NMR studies on hydroxy squaraines. Can. J. Chem. 1990, 68, 530–536. [Google Scholar] [CrossRef]
- Gu, Y.; Fei, X.; Liu, Y.; Wang, Y.; Yang, X. Trimethine cyanine dyes with an indole nucleus: Synthesis and spectral properties studies. J. Lumin. 2013, 134, 184–190. [Google Scholar] [CrossRef]
- Law, K.Y.; Bailey, F.C. Squaraine chemistry. Synthesis of bis (4-dimethylaminophenyl) squaraine from dialkyl squarates. Mechanism and scope of the synthesis. Can. J. Chem. 1986, 64, 2267–2273. [Google Scholar] [CrossRef]
Entry | Squaric Acid, eq. | Reaction Time, min | Yield, % b (1a:1b) c |
---|---|---|---|
1 | 1 | 120 | 80 (75:25) |
2 | 2 | 120 | 91 (98:2) |
3 | 3 | 120 | 87 (98:2) |
4 | 4 | 120 | 97 (98:2) |
5 | 5 | 120 | 95 (100:0) |
6 | 5 | 30 | 91 (100:0) |
7 | 5 | 15 | 92 (100:0) |
8 | 5 | 5 | 84 (100:0) |
9 d | 5 | 5 | 15 (95:5) |
10 e | 5 | 300 | 47 (97:3) |
11 f | 5 | 15 | 99 (100:0) |
12 g | 5 | 15 | 97 (100:0) |
Metrics | Literature Procedure [18] | Our Procedure |
---|---|---|
E-factor | 6.2 | 0.2 a |
Atom economy | 63.0 | 92.4 |
Mass intensity | 75.6 | 3.1 a |
Process mass intensity | 82.3 | 44.8 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ta, D.D.; Favret, J.M.; Dzyuba, S.V. Facile Synthesis of Pyrrolyl-Containing Semisquaraines in Water as Precursors for Non-Symmetric Squaraines. Compounds 2023, 3, 17-26. https://doi.org/10.3390/compounds3010002
Ta DD, Favret JM, Dzyuba SV. Facile Synthesis of Pyrrolyl-Containing Semisquaraines in Water as Precursors for Non-Symmetric Squaraines. Compounds. 2023; 3(1):17-26. https://doi.org/10.3390/compounds3010002
Chicago/Turabian StyleTa, Daniel D., Jeanne M. Favret, and Sergei V. Dzyuba. 2023. "Facile Synthesis of Pyrrolyl-Containing Semisquaraines in Water as Precursors for Non-Symmetric Squaraines" Compounds 3, no. 1: 17-26. https://doi.org/10.3390/compounds3010002
APA StyleTa, D. D., Favret, J. M., & Dzyuba, S. V. (2023). Facile Synthesis of Pyrrolyl-Containing Semisquaraines in Water as Precursors for Non-Symmetric Squaraines. Compounds, 3(1), 17-26. https://doi.org/10.3390/compounds3010002