Predicting the Average Composition of an AlFeNiTiVZr-Cr Alloy with Machine Learning and X-ray Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ruiz-Yi, B.; Williams, T.; Bunn, J.K.; Ren, F.; Hasan, N.A.; Takeuchi, I.; Hattrick-Simpers, J.; Mehta, A. Characterization Data of an (AlFeNiTiVZr)1-xCrx Multi-Principal Element Alloy Continuous Composition Spread Library. Data Brief 2021, 34, 106758. [Google Scholar] [CrossRef]
- Ruiz-Yi, B.; Williams, T.; Bunn, J.K.; Ren, F.; Hasan, N.A.; Takeuchi, I.; Hattrick-Simpers, J.; Mehta, A. Phase Stabilization and Oxidation of a Continuous Composition Spread Multi-Principal Element (AlFeNiTiVZr)1-xCrx Alloy. J. Alloys Compd. 2021, 861, 158565. [Google Scholar] [CrossRef]
- Birbilis, N.; Choudhary, S.; Scully, J.R.; Taheri, M.L. A Perspective on Corrosion of Multi-Principal Element Alloys. Mater. Degrad. 2021, 5, 1–8. [Google Scholar] [CrossRef]
- Ben Chaabene, W.; Flah, M.; Nehdi, M.L. Machine Learning Prediction of Mechanical Properties of Concrete: Critical Review. Constr. Build. Mater. 2020, 260, 119889. [Google Scholar] [CrossRef]
- Celik, B.; Vanschoren, J. Adaptation Strategies for Automated Machine Learning on Evolving Data. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3067–3078. [Google Scholar] [CrossRef] [PubMed]
- Güçlüer, K.; Özbeyaz, A.; Göymen, S.; Günaydın, O. A Comparative Investigation Using Machine Learning Methods for Concrete Compressive Strength Estimation. Mater. Today Commun. 2021, 27, 102278. [Google Scholar] [CrossRef]
- Liu, X.; Long, Z.; Peng, L. Prediction of Vickers Hardness of Amorphous Alloys Based on Interpretable Machine Learning. J. Non-Cryst. Solids 2023, 602, 122095. [Google Scholar] [CrossRef]
- Pan, S.; Yu, J.; Han, J.; Zhang, Y.; Peng, Q.; Yang, M.; Chen, Y.; Huang, X.; Shi, R.; Wang, C.; et al. Customized Development of Promising Cu-Cr-Ni-Co-Si Alloys Enabled by Integrated Machine Learning and Characterization. Acta Mater. 2023, 243, 118484. [Google Scholar] [CrossRef]
- Gao, Y.; Bai, S.; Chong, K.; Liu, C.; Cao, Y.; Zou, Y. Machine Learning Accelerated Design of Non-Equiatomic Refractory High Entropy Alloys Based on First Principles Calculation. Vacuum 2023, 207, 111608. [Google Scholar] [CrossRef]
- Islam, N.; Huang, W.; Zhuang, H.L. Machine Learning for Phase Selection in Multi-Principal Element Alloys. Comput. Mater. Sci. 2018, 150, 230–235. [Google Scholar] [CrossRef]
- Wu, L.; Wei, G.; Wang, G.; Wang, H.; Ren, J. Creating Win-Wins from Strength–Ductility Trade-off in Multi-Principal Element Alloys by Machine Learning. Mater. Today Commun. 2022, 32, 104010. [Google Scholar] [CrossRef]
- Roy, A.; Taufique, M.F.N.; Khakurel, H.; Devanathan, R.; Johnson, D.D.; Balasubramanian, G. Machine-Learning-Guided Descriptor Selection for Predicting Corrosion Resistance in Multi-Principal Element Alloys. Npj Mater. Degrad. 2022, 6, 9. [Google Scholar] [CrossRef]
- Manzoor, A.; Arora, G.; Jerome, B.; Linton, N.; Norman, B.; Aidhy, D.S. Machine Learning Based Methodology to Predict Point Defect Energies in Multi-Principal Element Alloys. Front. Mater. 2021, 8, 673574. [Google Scholar] [CrossRef]
- Sai, N.J.; Rathore, P.; Chauhan, A. Machine Learning-Based Predictions of Fatigue Life for Multi-Principal Element Alloys. Scr. Mater. 2023, 226, 115214. [Google Scholar] [CrossRef]
- Seydi, S.T.; Kanani-Sadat, Y.; Hasanlou, M.; Sahraei, R.; Chanussot, J.; Amani, M. Comparison of Machine Learning Algorithms for Flood Susceptibility Mapping. Remote Sens. 2022, 15, 192. [Google Scholar] [CrossRef]
- Helmersson, U.; Lattemann, M.; Bohlmark, J.; Ehiasarian, A.P.; Gudmundsson, J.T. Ionized Physical Vapor Deposition (IPVD): A Review of Technology and Applications. Thin Solid Films 2006, 513, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Yuan, F.; Li, M.; Xue, M.; Zhou, D.; Chen, Y.; Liu, X.; Luo, Y.; Hong, Z.; Xie, C.; et al. Self-Cleaning, Underwater Writable, Heat-Insulated and Photocatalytic Cellulose Membrane for High-Efficient Oil/Water Separation and Removal of Hazardous Organic Pollutants. Prog. Org. Coat. 2021, 157, 106311. [Google Scholar] [CrossRef]
- Yin, Z.; Xue, M.; Luo, Y.; Hong, Z.; Xie, C.; Ren, Z.; Wang, H. Excellent Static and Dynamic Anti-Icing Properties of Hierarchical Structured ZnO Superhydrophobic Surface on Cu Substrates. Chem. Phys. Lett. 2020, 755, 137806. [Google Scholar] [CrossRef]
- Yin, Z.; Yuan, F.; Xue, M.; Xue, Y.; Xie, Y.; Ou, J.; Luo, Y.; Hong, Z.; Xie, C. A Multifunctional and Environmentally Safe Superhydrophobic Membrane with Superior Oil/Water Separation, Photocatalytic Degradation and Anti-Biofouling Performance. J. Colloid Interface Sci. 2022, 611, 93–104. [Google Scholar] [CrossRef]
- Tanaka, M.; Takeguchi, M.; Furuya, K. X-Ray Analysis and Mapping by Wavelength Dispersive X-ray Spectroscopy in an Electron Microscope. Ultramicroscopy 2008, 108, 1427–1431. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron Sputtering: A Review of Recent Developments and Applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Sadat, T. Prediction of Concrete Peak Load and Compressive Failure Strength Using Machine Learning. Key Eng. Mater. 2022, 938, 235–245. [Google Scholar] [CrossRef]
- Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An Introduction to Decision Tree Modeling. J. Chemom. 2004, 18, 275–285. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Ketkar, N. Introduction to Keras. In Deep Learning with Python: A Hands-On Introduction; Apress: Berkeley, CA, USA, 2017; pp. 97–111. ISBN 978-1-4842-2766-4. [Google Scholar]
- Hao, J.; Ho, T.K. Machine Learning Made Easy: A Review of Scikit-Learn Package in Python Programming Language. J. Educ. Behav. Stat. 2019, 44, 348–361. [Google Scholar] [CrossRef]
- Bisong, E. Introduction to Scikit-Learn. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners; Bisong, E., Ed.; Apress: Berkeley, CA, USA, 2019; pp. 215–229. ISBN 978-1-4842-4470-8. [Google Scholar]
- Nhu, V.H.; Hoang, N.D.; Nguyen, H.; Ngo, P.T.T.; Thanh Bui, T.; Hoa, P.V.; Samui, P.; Tien Bui, D. Effectiveness Assessment of Keras Based Deep Learning with Different Robust Optimization Algorithms for Shallow Landslide Susceptibility Mapping at Tropical Area. Catena 2020, 188, 104458. [Google Scholar] [CrossRef]
- Braun, R.; Kelm, K.; Fröhlich, M.; Leyens, C. Oxidation Resistance of γ-TiAl Based Alloy Ti–45Al–8Nb Coated with Intermetallic Ti–Al–Cr–Y Layers and EB-PVD Zirconia Topcoats at 950 °C in Air. Surf. Coat. Technol. 2013, 222, 128–134. [Google Scholar] [CrossRef]
- Mu, Y.; Liu, X.; Wang, L. A Pearson’s Correlation Coefficient Based Decision Tree and Its Parallel Implementation. Inf. Sci. 2018, 435, 40–58. [Google Scholar] [CrossRef]
- Higham, N.J. Computing the Nearest Correlation Matrix—A Problem from Finance. IMA J. Numer. Anal. 2002, 22, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.; Witz, J.F.; El Bartali, A.; Sadat, T.; Limodin, N.; Dubar, M.; Najjar, D. Experimental Investigation of Early Strain Heterogeneities and Localizations in Polycrystalline α-Fe during Monotonic Loading. Int. J. Plast. 2022, 153, 103253. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Coefficient of Determination R-Squared Is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Sadat, T.; Hayashi, K.; Haugou, G.; Morvan, H.; Markiewicz, E.; Dubar, L.; Bigerelle, M.; Ameyama, K.; Dirras, G. Mechanical Properties of Spark Plasma Sintering-Processed Pure Ti and Ti-6Al-4V Alloys: A Comparative Study between Harmonic and Non-Harmonic Microstructures. Compounds 2021, 1, 41–57. [Google Scholar] [CrossRef]
- Qian, B.; Mantri, S.A.; Dasari, S.; Zhang, J.; Lilensten, L.; Sun, F.; Vermaut, P.; Banerjee, R.; Prima, F. Mechanisms Underlying Enhanced Strength-Ductility Combinations in TRIP/TWIP Ti-12Mo Alloy Engineered via Isothermal Omega Precipitation. Acta Mater. 2023, 245, 118619. [Google Scholar] [CrossRef]
Attribute | Range |
---|---|
Al (at. %) | 13.7–23.6 |
Fe (at. %) | 10.6–13.9 |
Ni (at. %) | 10–17 |
Ti (at. %) | 10.6–17.1 |
V (at. %) | 9.4–16.2 |
Zr (at. %) | 9.2–13.2 |
Cr (at. %) | 6.1–36.6 |
Position (mm) | 0–68.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadat, T. Predicting the Average Composition of an AlFeNiTiVZr-Cr Alloy with Machine Learning and X-ray Spectroscopy. Compounds 2023, 3, 224-232. https://doi.org/10.3390/compounds3010018
Sadat T. Predicting the Average Composition of an AlFeNiTiVZr-Cr Alloy with Machine Learning and X-ray Spectroscopy. Compounds. 2023; 3(1):224-232. https://doi.org/10.3390/compounds3010018
Chicago/Turabian StyleSadat, Tarik. 2023. "Predicting the Average Composition of an AlFeNiTiVZr-Cr Alloy with Machine Learning and X-ray Spectroscopy" Compounds 3, no. 1: 224-232. https://doi.org/10.3390/compounds3010018
APA StyleSadat, T. (2023). Predicting the Average Composition of an AlFeNiTiVZr-Cr Alloy with Machine Learning and X-ray Spectroscopy. Compounds, 3(1), 224-232. https://doi.org/10.3390/compounds3010018