Identifying Promising Novel Compounds Against Free-Living Amoebae: A Systematic Review of In Vitro and In Vivo Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Objectives of the Review
- -
- Which novel chemical compounds (those not yet established as drugs) have been tested in vitro and/or in vivo against FLA?
- -
- Which tested compounds demonstrate promising performance in terms of amoebicidal activity, effective concentration, and mammalian toxicological profile?
2.2. Data Collection
2.3. Screening Stages
2.4. Data Extraction Quantification of Compound Efficacy
2.5. Data Analysis Procedure
3. Results
3.1. Ranking of Tested Compounds Based on Their Amoebicidal Potency
3.2. In Vitro Amoebicidal Activity of Compounds
3.2.1. Amebicidal Activity Against Balamuthia mandrillaris
3.2.2. Compounds Exhibiting Trophocidal Activity Against Naegleria fowleri
Anti-N. fowleri Activity from 0.02 to 10 µM
Compounds Exhibiting ≥50% Cysticidal Activity Against N. fowleri
3.2.3. Compounds Exhibiting Trophocidal Activity Against Acanthamoeba spp.
Compounds Exhibiting Trophocidal Activity Against Acanthamoeba spp. at Concentrations ≤10 μM
Compounds with Anti-Acanthamoeba spp. Activity at Concentrations of 0.004–0.05 mg/mL
3.2.4. Compounds That Displayed Cysticidal Activity Against Acanthamoeba spp.
3.2.5. Photochemical Inactivation of Free-Living Amoebae
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 3T3 | Murine fibroblasts |
| A549 | Lung carcinoma cells |
| ADMET | Absorption, Distribution, Metabolism, Excretion, and Toxicity |
| C6 | Rat glial cells |
| CHO-K1 | Chinese Hamster Ovary cells |
| CT-toxicity | Highest concentration tested for toxicity in mammalian cells |
| ESRC | Epithelial and Stromal Rabbit Cells |
| FLA | Free-Living Amoebae |
| HaCaT | Human keratinocytes. |
| HBEC-5i | Human brain microvascular endothelial cell |
| HCEC | Human Corneal Epithelial Cells |
| HeLa | Human cervical adenocarcinoma |
| IC50 | Concentration causing half of mortality |
| J774A.1 | Murine macrophages |
| L6 | Rat skeletal muscle cell line |
| L929 | Fibroblastos de camundongos |
| MCF-7 | Human breast adenocarcinoma |
| MRC-5 | Epithelial lung cells. |
| NB1RGB | Human neonate dermal fibroblast |
| pHCEC | Primary corneal epithelial cell |
| RBCs | Horse Red Blood Cell |
| SH-SY5Y | Human neuroblastoma |
| SRB | Sheep Red Blood cells |
Appendix A
| Code | Name |
|---|---|
| 13 | (E)-2-(6,6-Dimethyl-1-phenyl-1,5,6,7-tetrahydro-4H-indazol-4-4ylidene)hydrazine-1-carbothioamide |
| 15 | (E)-3-Cyano-N-(4-methoxybenzyl)acrylamide |
| 16 | (E)-3-Cyano-N-(4-methoxyphenyl)acrylamide |
| 18 | (E)-3-phenylprop-2-enoic acid |
| 34 | 1-Benzyl-5-Imino-1H-Pyrrol-2(5H)-One |
| 46 | 2,3,9S,10R,11,12R-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3′,2′,1′-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid, methyl ester |
| 47 | 2,3-dimethylacridin-9(10H)-one |
| 53 | 2,6-dichlorobenzonitrile |
| 60 | 2-(3-Cyano-6-methyl-4,6-dip-tolyl-5,6-dihydropyridin-2(1H)-ylidene)malono-nitrile |
| 69 | 2-(N-methylazepanio-1-yl)ethyl pentadecyloxycarbonylphosphonate |
| 79 | 2-Bromo-4-(di (1H-indol-3-yl)methyl)-6-methoxyphenol |
| 83 | 2-N-tert-butyl-6-chloro-4-N-ethyl-1,3,5-triazine-2,4-diamine |
| 96 | 2-ethylacridin-9(10H)-one |
| 103 | 3,7-Dichloro-8-quinolinecarboxylic acid |
| 107 | 3-((4-(2-Cyclopropyl-6-morpholinopyrazolo[1,5-b]- pyridazin-3-yl)pyrimidin-2-yl)amino)benzonitrile |
| 111 | 3-((4-(tert-butyl)benzyl)amino)-5-chloropicolinic acid |
| 113 | 3-((4-(tert-butyl)benzyl)amino)-5-fluoropicolinic acid |
| 114 | 3-((4-(tert-butyl)benzyl)amino)-5-methoxypicolinic acid |
| 115 | 3-((4-(tert-butyl)benzyl)amino)-5-methylpicolinic acid |
| 116 | 3-((4-(tert-butyl)benzyl)amino)-5-morpholinopicolinic acid |
| 117 | 3-((4-(tert-butyl)benzyl)amino)-5-phenylpicolinic acid |
| 118 | 3-((4-(tert-butyl)benzyl)amino)picolinic acid |
| 119 | 3-((4-(tert-butyl)phenethyl)amino)-5-chloropicolinic acid |
| 120 | 3-((4-(tert-butyl)phenethyl)amino)-5-methoxypicolinic acid |
| 123 | 3-(2,3-Dichlorophenyl)-6,7-dimethoxyquinazolin-4(3H)-one |
| 125 | 3-(2,4-Difluorophenyl)-6,7-dimethoxyquinazolin-4(3H)-one |
| 127 | 3-(2,4-Dimethylphenyl)-6,7-dimethoxyquinazolin-4(3H)-one |
| 128 | 3-(2,5-Dimethoxyphenyl)-6,7-dimethoxyquinazolin-4(3H)-one |
| 129 | 3-(2,5-Dimethoxyphenyl)-8-methylquinazolin-4(3H)-one |
| 130 | 3-(2,6-Diethylphenyl)-6,7-dimethoxyquinazolin-4(3H)-one |
| 132 | 3-(2-Bromophenyl)-6,7-dimethoxyquinazolin-4(3H)-one |
| 133 | 3-(2-Chlorophenyl)-6,7-dimethoxyquinazolin-4(3H)-one |
| 134 | 3-(2-Iodophenyl)-8-methylquinazolin-4(3H)-one |
| 137 | 3-(3,4-Dichlorophenyl)-6,7-dimethoxyquinazolin-4(3H)-one |
| 138 | 3-(3,5-Dimethylphenyl)-6,7-dimethoxyquinazolin-4(3H)-one |
| 141 | 3-(3-Bromophenyl)-8-methylquinazolin-4(3H)-one |
| 143 | 3-(3-Fluorophenyl)-8-methylquinazolin-4(3H)-one |
| 148 | 3-(4-Bromophenyl)-6,7-dimethoxyquinazolin-4(3H)-one |
| 150 | 3-(4-Butylphenyl)-6,7-dimethoxyquinazolin-4(3H)-one |
| 152 | 3-(4-Chlorophenyl)-6,7-dimethoxyquinazolin-4(3H)-one |
| 155 | 3-(4-Fluorophenyl)-6,7-dimethoxyquinazolin-4(3H)-one |
| 156 | 3-(4-Fluorophenyl)-8-methylquinazolin-4(3H)-one |
| 157 | 3-(4-Iodophenyl)-8-methylquinazolin-4(3H)-one |
| 159 | 3-(4-Methoxyphenyl)-8-methylquinazolin-4(3H)-one |
| 164 | 3-([1,1′-Biphenyl]-4-yl)-2H-benzo[b] [1,4]thiazine |
| 167 | 3-Phenyl-2-thioxo-2,3-dihydroquinazolin-4(1H)-one |
| 200 | 4-(Cycloheptanecarboxamido)phenyl benzenesulfonate |
| 206 | 4-(Cyclohexanecarboxamido)phenyl dimethylsulfamate |
| 208 | 4-(Cyclohexanecarboxamido)phenyl methanesulfonate |
| 209 | 4-(Cyclohexanecarboxamido)phenyl methylsulfamate |
| 211 | 4-(Cyclohexanecarboxamido)phenyl sulfamate |
| 214 | 4-(Cyclopentanecarboxamido)phenyl 4-methylbenzenesulfonate |
| 218 | 4-(biphenyl-4-yl)-2-(2-(1-(pyridin-4-yl)ethylidene)hydrazinyl)thiazole |
| 223 | 5-(3-Chlorobenzyl)-1H-tetrazole |
| 226 | 5-Imino-1-Phenyl-1H-Pyrrol-2(5H)-One |
| 229 | 5-bromo-3-((4-(tert-butyl)benzyl)amino)picolinic acid |
| 237 | 6,7-Dimethoxy-3-(4-(methylthio)phenyl)quinazolin-4(3H)-one |
| 238 | 6,7-Dimethoxy-3-(4-methoxyphenyl)quinazolin-4(3H)-one |
| 239 | 6,7-Dimethoxy-3-(m-tolyl)quinazolin-4(3H)-one |
| 240 | 6,7-Dimethoxy-3-(o-tolyl)quinazolin-4(3H)-one |
| 241 | 6,7-Dimethoxy-3-(p-tolyl)quinazolin-4(3H)-one |
| 254 | 7-oxostaurosporine |
| 256 | 8-Methyl-3-(3-(Methylthio)Phenyl)QUINAZOLIN-4(3H)-One |
| 257 | 8-Methyl-3-(o-tolyl)quinazolin-4(3H)-one |
| 258 | 8-Methyl-3-(p-tolyl)quinazolin-4(3H)-one |
| 275 | Cationic Steroid Antibiotic—13 |
| 277 | Cellulase: (2S,3R,4S,5S,6R)-2-[(2R,3S,4R,5R,6S)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2R,3S,4R,5R,6R)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol |
| 279 | Chitosan |
| 284 | Co3(PO4)2•8H2O |
| 286 | Cobalt phosphate octahydrate (Co3(PO4)2⋅8H2O) |
| 294 | Dodecyltriphenylphosphonium Bromide |
| 299 | Ethyl(5-decyl-2-amino-1,3-thiazol-4-yl)acetate |
| 302 | Ethyl(5-octyl-2-amino-1,3-thiazol-4-yl)acetate |
| 306 | Gallic acid-ZnO |
| 318 | Isobenzofuran-1(3H)-one QOET-3 |
| 325 | Isobenzofuran-1(3H)-one QOET-1 |
| 338 | Methyl 4-chloro-1H-indole-3-carboxylate |
| 339 | Methyl 5-methyl-1H-indole-3-carboxylate |
| 340 | Methyl 6-chloro-1H-indole-3-carboxylate |
| 341 | Methyl 6-methyl-1H-indole-3-carboxylate |
| 342 | Methyl 7-chloro-4-fluoro-1H-indole-3-carboxylate |
| 343 | Methyl 7-fluoro-1H-indole-3-carboxylate |
| 344 | Methyl Indol-3-carboxylate |
| 347 | Methyltrioctylammonium chloride: Ethylene Glycol (1:1) |
| 348 | Methyltrioctylammonium chloride: Fructose (1:1.25) |
| 358 | N-(2,3-dihydro-2,6-dimethyl-1H-inden-1-yl)-6-(1-fluoroethyl)-1,3,5-triazine-2,4-diamine |
| 374 | Nano-chitosan |
| 377 | Oleic acid-AgNPs |
| 384 | PANI/MoS2 (1:5) |
| 385 | Patuletin |
| 392 | Polyaniline—hexagonal boron nitride (1:5) |
| 394 | Polyhomoarginine (10 homoarginines) |
| 396 | Polypyrrole |
| 397 | Polypyrrole-Co3O4 |
| 398 | Polypyrrole-Co3O4-AgNPs |
| 416 | Staurosporine |
| 421 | Tyrocidine-derived peptide |
| 498 | Mono-rhamnolipids-Arginine |
| 499 | Mono-rhamnolipids-Arginine + Di-rhamnolipids-Arginine |
| 500 | Mono-rhamnolipids-Lysine |
| 501 | Mono-rhamnolipids-Lysine + Di-rhamnolipids-Lysine |
| 515 | 1,1-dioxide 1-thioflavone |
| 518 | MMV1578884 |
| 522 | (2R)-2-(2,4-difluorophenyl)-1,1-difluoro-3-(tetrazol-1-yl)-1-[5-[4-(2,2,2-trifluoroethoxy)phenyl]pyridin-2-yl]propan-2-ol |
| 529 | MMV1580844 |
| 531 | MMV1582495 |
| 533 | MMV1634399 |
| 535 | MMV1582496 (4-(Benzylamino)-5-chloro-2,6-difluoro-benzene-1,3-dicarbonitrile) |
References
- Raghavan, A.; Rammohan, R. Acanthamoeba keratitis—A review. Indian J. Ophthalmol. 2024, 72, 473–482. [Google Scholar] [CrossRef]
- Aykur, M.; Selver, O.B.; Dagci, H.; Palamar, M. Vermamoeba vermiformis as the etiological agent in a patient with suspected non-Acanthamoeba keratitis. Parasitol. Res. 2024, 123, 323. [Google Scholar] [CrossRef]
- Hall, A.D.; Kumar, J.E.; Golba, C.E.; Luckett, K.M.; Bryant, W.K. Primary amebic meningoencephalitis: A review of Naegleria fowleri and analysis of successfully treated cases. Parasitol. Res. 2024, 123, 84. [Google Scholar] [CrossRef]
- Haston, J.C.; Cope, J.R. Amebic encephalitis and meningoencephalitis: An update on epidemiology, diagnostic methods, and treatment. Curr. Opin. Infect. Dis. 2023, 36, 186–191. [Google Scholar] [CrossRef]
- Schafer, K.R.; Shah, N.; Almira-Suarez, M.I.; Reese, J.M.; Hoke, G.M.; Mandell, J.W.; Roy, S.L.; Visvesvara, G. Disseminated Balamuthia mandrillaris Infection. J. Clin. Microbiol. 2015, 53, 3072–3076. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, W.; Li, B.; Jian, Z.; Qi, X.; Sun, D.; Gao, J.; Lu, X.; Yang, Y.; Lin, K.; et al. Balamuthia mandrillaris infection in China: A retrospective report of 28 cases. Emerg. Microbes Infect. 2020, 9, 2348–2357. [Google Scholar] [CrossRef] [PubMed]
- Kot, K.; Łanocha-Arendarczyk, N.; Kosik-Bogacka, D. Immunopathogenicity of Acanthamoeba spp. in the Brain and Lungs. Int. J. Mol. Sci. 2021, 22, 1261. [Google Scholar] [CrossRef] [PubMed]
- Stetkevich, S.A.; Le, S.T.; Ford, A.R.; Brassard, A.; Kiuru, M.; Fung, M.A.; Tartar, D.M. Isolated cutaneous acanthamoebiasis under prophylactic anticryptococcal treatment in an immunocompromised patient. JAAD Case Rep. 2022, 28, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Haston, J.C.; O’Laughlin, K.; Matteson, K.; Roy, S.; Qvarnstrom, Y.; Ali, I.K.M.; Cope, J.R. The Epidemiology and Clinical Features of Non-Keratitis Acanthamoeba Infections in the United States, 1956–2020. Open Forum Infect. Dis. 2023, 10, ofac682. [Google Scholar] [CrossRef]
- Aksozek, A.; McClellan, K.; Howard, K.; Niederkorn, J.Y.; Alizadeh, H. Resistance of Acanthamoeba castellanii cysts to physical, chemical, and radiological conditions. J. Parasitol. 2002, 88, 621–623. [Google Scholar] [CrossRef]
- Chaúque, B.J.M.; Dos Santos, D.L.; Anvari, D.; Rott, M.B. Prevalence of free-living amoebae in swimming pools and recreational waters, a systematic review and meta-analysis. Parasitol. Res. 2022, 121, 3033–3050. [Google Scholar] [CrossRef]
- Chaúque, B.J.M.; da Silva, T.C.B.; Dos Santos, D.L.; Benitez, G.B.; Chaúque, L.G.H.; Benetti, A.D.; Zanette, R.A.; Rott, M.B. Global prevalence of free-living amoebae in solid matrices—A systematic review with meta-analysis. Acta Trop. 2023, 247, 107006. [Google Scholar] [CrossRef]
- da Silva, T.C.B.; Chaúque, B.J.M.; Benitez, G.B.; Rott, M.B. Global prevalence of potentially pathogenic free-living amoebae in sewage and sewage-related environments—Systematic review with meta-analysis. Parasitol. Res. 2024, 123, 148. [Google Scholar] [CrossRef]
- Glotova, A.A.; Loiko, S.V.; Istigechev, G.I.; Kulemzina, A.A.; Abakumov, E.V.; Raiko, M.V.; Lapidus, A.L.; Smirnov, A.V. Diversity and abundance of naked lobose amoebae (Amoebozoa: Tubulinea, Discosea, Variosea) in highly productive soil of Chernevaya taiga (Western Siberia, Russia). Protistology 2024, 18, 22–30. [Google Scholar] [CrossRef]
- Pérez-Pérez, P.; Reyes-Batlle, M.; Rodríguez-Expósito, R.L.; Perdomo-González, A.; Sifaoui, I.; Díaz-Peña, F.J.; Morchón, R.; Maciver, S.K.; Piñero, J.E.; Lorenzo-Morales, J. First Report of Acanthamoeba Genotype T4 from the Newly Formed Tajogaite Volcano Tephra (La Palma, Canary Islands). Pathogens 2024, 13, 626. [Google Scholar] [CrossRef]
- Mahdavi, F.; Fatemi, M.; Mohammad Rahimi, H.; Niyyati, M.; Yadegar, A.; Mirjalali, H. Identification of Candida albicans and non-MRSA Staphylococcus aureus in free-living amoebae isolated from the hospital wards; an alarm for distribution of nosocomial infections via FLA. Int. J. Environ. Health Res. 2024, 34, 3749–3759. [Google Scholar] [CrossRef]
- Chaúque, B.J.M.; Rott, M.B. Photolysis of Sodium Chloride and Sodium Hypochlorite by Ultraviolet Light Inactivates the Trophozoites and Cysts of Acanthamoeba castellanii in the Water Matrix. J. Water Health 2021, 19, 190–202. [Google Scholar] [CrossRef]
- Ramírez-Flores, E.; Bonilla-Lemus, P.; Carrasco-Yépez, M.M.; Ramírez-Flores, M.A.; Barrón-Graciano, K.A.; Rojas-Hernández, S.; Reyes-Batlle, M.; Lorenzo-Morales, J. Saline-Tolerant Pathogenic Acanthamoeba spp. Isolated from a Geothermal Power Plant. Pathogens 2023, 12, 1363. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.L.; Chaúque, B.J.M.; Matiazo, F.F.; de Miranda Ribeiro, L.; Rott, M.B. Agar dehydration: A simple method for long-term storage of Acanthamoeba spp. collection at room temperature. Parasitol. Res. 2024, 123, 153. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, Y.; Zhou, Z.; Wang, S.; Wei, Z.; Ravanbakhsh, M.; Shen, Q.; Xiong, W.; Kowalchuk, G.A.; Jousset, A. Protist predation promotes antimicrobial resistance spread through antagonistic microbiome interactions. ISME J. 2024, 18, wrae169. [Google Scholar] [CrossRef]
- Ali, M.; Rice, C.A.; Byrne, A.W.; Paré, P.E.; Beauvais, W. Modelling dynamics between free-living amoebae and bacteria. Environ. Microbiol. 2024, 26, e16623. [Google Scholar] [CrossRef]
- Choi, A.; Seong, J.W.; Kim, J.H.; Lee, J.Y.; Cho, H.J.; Kang, S.A.; Park, M.K.; Jeong, M.J.; Choi, S.Y.; Jeong, Y.J.; et al. Presence and diversity of free-living amoebae and their potential application as water quality indicators. Parasites Hosts Dis. 2024, 62, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Spottiswoode, N.; Haston, J.C.; Hanners, N.W.; Gruenberg, K.; Kim, A.; DeRisi, J.L.; Wilson, M.R. Challenges and advances in the medical treatment of granulomatous amebic encephalitis. Ther. Adv. Infect. Dis. 2024, 11, 20499361241228340. [Google Scholar] [CrossRef]
- Lemke, A.; Kiderlen, A.F.; Petri, B.; Kayser, O. Delivery of amphotericin B nanosuspensions to the brain and determination of activity against Balamuthia mandrillaris amebas. Nanomedicine 2010, 6, 597–603. [Google Scholar] [CrossRef]
- Aqeel, Y.; Iqbal, J.; Siddiqui, R.; Gilani, A.H.; Khan, N.A. Anti-Acanthamoebic properties of resveratrol and demethoxycurcumin. Exp. Parasitol. 2012, 132, 519–523. [Google Scholar] [CrossRef]
- Tiewcharoen, S.; Phurttikul, W.; Rabablert, J.; Auewarakul, P.; Roytrakul, S.; Chetanachan, P.; Atithep, T.; Junnu, V. Effect of synthetic antimicrobial peptides on Naegleria fowleri trophozoites. Southeast Asian J. Trop. Med. Public Health 2014, 45, 537–546. [Google Scholar]
- Rabablert, J.; Tiewcharoen, S.; Auewarakul, P.; Atithep, T.; Lumlerdkij, N.; Vejaratpimol, R.; Junnu, V. Anti-amebic activity of diosgenin on Naegleria fowleri trophozoites. Southeast Asian J. Trop. Med. Public Health 2015, 46, 827–834. [Google Scholar]
- Wehelie, Y.I.; Khan, N.A.; Fatima, I.; Anwar, A.; Kanwal, K.; Khan, K.M.; Siddiqui, R.; Tong, Y.K.; Anwar, A. Novel Tetrazoles against Acanthamoeba castellanii Belonging to the T4 Genotype. Chemotherapy 2022, 67, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Akbar, N.; El-Gamal, M.I.; Saeed, B.Q.; Oh, C.H.; Abdel-Maksoud, M.S.; Khan, N.A.; Alharbi, A.M.; Alfahemi, H.; Siddiqui, R. Antiamoebic Activity of Imidazothiazole Derivatives against Opportunistic Pathogen Acanthamoeba castellanii. Antibiotics 2022, 11, 1183. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.; El-Gamal, M.I.; Boghossian, A.; Saeed, B.Q.; Oh, C.H.; Abdel-Maksoud, M.S.; Alharbi, A.M.; Alfahemi, H.; Khan, N.A. Imidazothiazole Derivatives Exhibited Potent Effects against Brain-Eating Amoebae. Antibiotics 2022, 11, 1515. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Chaúque, B.J.M.; da Silva, T.C.B.; Rott, E.B.; Rott, F.B.; Leite, A.P.M.C.; Benitez, G.B.; Neuana, N.F.; Goldim, J.R.; Rott, M.B.; Zanette, R.A. Effectiveness of phytoproducts against pathogenic free-living amoebae—A scoping and critical review paving the way toward plant-based pharmaceuticals. Fitoterapia 2025, 182, 106404. [Google Scholar] [CrossRef] [PubMed]
- Abdelnasir, S.; Mungroo, M.R.; Shahabuddin, S.; Siddiqui, R.; Khan, N.A.; Anwar, A. Polyaniline-Conjugated Boron Nitride Nanoparticles Exhibiting Potent Effects against Pathogenic Brain-Eating Amoebae. ACS Chem. Neurosci. 2021, 12, 3579–3587. [Google Scholar] [CrossRef] [PubMed]
- Abdelnasir, S.; Mungroo, M.R.; Shahabuddin, S.; Siddiqui, R.; Khan, N.A.; Ahmad, I.; Anwar, A. Polyaniline (PANI)-conjugated tungsten disulphide (WS2) nanoparticles as potential therapeutics against brain-eating amoebae. Appl. Microbiol. Biotechnol. 2022, 106, 3279–3291. [Google Scholar] [CrossRef]
- Abdelnasir, S.; Mungroo, M.R.; Chew, J.; Siddiqui, R.; Khan, N.A.; Ahmad, I.; Shahabuddin, S.; Anwar, A. Applications of Polyaniline-Based Molybdenum Disulfide Nanoparticles against Brain-Eating Amoebae. ACS Omega 2023, 8, 8237–8247. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, U.; Ho, K.Y.; Simon, S.E.; Saad, S.M.; Ong, S.K.; Anwar, A.; Tan, K.O.; Sridewi, N.; Khan, K.M.; Khan, N.A.; et al. Potential anti-acanthamoebic effects through inhibition of CYP51 by novel quinazolinones. Acta Trop. 2022, 231, 106440. [Google Scholar] [CrossRef]
- Ahmed, U.; Manzoor, M.; Qureshi, S.; Mazhar, M.; Fatima, A.; Aurangzeb, S.; Hamid, M.; Khan, K.M.; Khan, N.A.; Rashid, Y.; et al. Anti-amoebic effects of synthetic acridine-9(10H)-one against brain-eating amoebae. Acta Trop. 2023, 239, 106824. [Google Scholar] [CrossRef]
- Ahmed, U.; Ong, S.K.; Khan, K.M.; Siddiqui, R.; Khan, N.A.; Shaikh, M.F.; Alawfi, B.S.; Anwar, A. Effect of embelin on inhibition of cell growth and induction of apoptosis in A. castellanii. Arch. Microbiol. 2023, 205, 360. [Google Scholar] [CrossRef]
- Ahmed, U.; Ong, S.K.; Tan, K.O.; Khan, K.M.; Khan, N.A.; Siddiqui, R.; Alawfi, B.S.; Anwar, A. Alpha-Mangostin and its nano-conjugates induced programmed cell death in Acanthamoeba castellanii belonging to the T4 genotype. Int. Microbiol. 2024, 27, 1063–1081. [Google Scholar] [CrossRef]
- Akbar, N.; Kaman, W.E.; Sarink, M.; Nazmi, K.; Bikker, F.J.; Khan, N.A.; Siddiqui, R. Novel Antiamoebic Tyrocidine-Derived Peptide against Brain-Eating Amoebae. ACS Omega 2022, 7, 28797–28805. [Google Scholar] [CrossRef]
- Akbar, N.; Siddiqui, R.; El-Gamal, M.I.; Zaraei, S.O.; Alawfi, B.S.; Khan, N.A. The anti-amoebic potential of carboxamide derivatives containing sulfonyl or sulfamoyl moieties against brain-eating Naegleria fowleri. Parasitol. Res. 2023, 122, 2539–2548. [Google Scholar] [CrossRef] [PubMed]
- Akbar, N.; Siddiqui, R.; El-Gamal, M.I.; Zaraei, S.O.; Saeed, B.Q.; Alawfi, B.S.; Khan, N.A. Potential anti-amoebic activity of sulfonate- and sulfamate-containing carboxamide derivatives against pathogenic Acanthamoeba castellanii belonging to the genotype T4. Parasitol. Int. 2024, 98, 102814. [Google Scholar] [CrossRef]
- Alishba; Ahmed, U.; Taha, M.; Khan, N.A.; Salar, U.; Khan, K.M.; Anwar, A.; Siddiqui, R. Potential anti-amoebic effects of synthetic 1,4-benzothiazine derivatives against Acanthamoeba castellanii. Heliyon 2024, 10, e23258. [Google Scholar] [CrossRef]
- Anwar, A.; Siddiqui, R.; Shah, M.R.; Khan, N.A. Gold Nanoparticle-Conjugated Cinnamic Acid Exhibits Antiacanthamoebic and Antibacterial Properties. Antimicrob. Agents Chemother. 2018, 62, e00630-18. [Google Scholar] [CrossRef]
- Anwar, A.; Abdalla, S.A.O.; Aslam, Z.; Shah, M.R.; Siddiqui, R.; Khan, N.A. Oleic acid-conjugated silver nanoparticles as efficient antiamoebic agent against Acanthamoeba castellanii. Parasitol. Res. 2019, 118, 2295–2304. [Google Scholar] [CrossRef] [PubMed]
- Anwar, A.; Chi Fung, L.; Anwar, A.; Jagadish, P.; Numan, A.; Khalid, M.; Shahabuddin, S.; Siddiqui, R.; Khan, N.A. Effects of Shape and Size of Cobalt Phosphate Nanoparticles against Acanthamoeba castellanii. Pathogens 2019, 8, 260. [Google Scholar] [CrossRef]
- Anwar, A.; Numan, A.; Siddiqui, R.; Khalid, M.; Khan, N.A. Cobalt nanoparticles as novel nanotherapeutics against A. castellanii. Parasites Vectors 2019, 12, 280. [Google Scholar] [CrossRef] [PubMed]
- Anwar, A.; Shahbaz, M.S.; Saad, S.M.; Kanwal; Khan, K.M.; Siddiqui, R.; Khan, N.A. Novel antiacanthamoebic compounds belonging to quinazolinones. Eur. J. Med. Chem. 2019, 182, 111575. [Google Scholar] [CrossRef]
- Anwar, A.; Mungroo, M.R.; Khan, S.; Fatima, I.; Rafique, R.; Kanwal; Khan, K.M.; Siddiqui, R.; Khan, N.A. Novel Azoles as Antiparasitic Remedies against Brain-Eating Amoebae. Antibiotics 2020, 9, 188. [Google Scholar] [CrossRef]
- Anwar, A.; Siddiqui, R.; Hameed, A.; Shah, M.R.; Khan, N.A. Synthetic Dihydropyridines as Novel Antiacanthamoebic Agents. Med. Chem. 2020, 16, 841–847. [Google Scholar] [CrossRef]
- Aqeel, Y.; Siddiqui, R.; Anwar, A.; Shah, M.R.; Khoja, S.; Khan, N.A. Photochemotherapeutic strategy against Acanthamoeba infections. Antimicrob. Agents Chemother. 2015, 59, 3031–3041. [Google Scholar] [CrossRef]
- Atalay, H.T.; Dogruman-Al, F.; Sarzhanov, F.; Özmen, M.C.; Tefon, A.B.; Arıbaş, Y.K.; Bilgihan, K. Effect of Riboflavin/Rose Bengal-Mediated PACK-CXL on Acanthamoeba Trophozoites and Cysts in vitro. Curr. Eye Res. 2018, 43, 1322–1325. [Google Scholar] [CrossRef] [PubMed]
- Bittner Fialová, S.; Kello, M.; Čoma, M.; Slobodníková, L.; Drobná, E.; Holková, I.; Garajová, M.; Mrva, M.; Zachar, V.; Lukáč, M. Derivatization of Rosmarinic Acid Enhances its in vitro Antitumor, Antimicrobial and Antiprotozoal Properties. Molecules 2019, 24, 1078. [Google Scholar] [CrossRef] [PubMed]
- Boonman, N.; Prachya, S.; Boonmee, A.; Kittakoop, P.; Wiyakrutta, S.; Sriubolmas, N.; Warit, S.; Chusattayanond, A.S.-A. In vitro acanthamoebicidal activity of fusaric acid and dehydrofusaric acid from an endophytic fungus Fusarium sp. Tlau3. Planta Med. 2012, 78, 1562–1567. [Google Scholar] [PubMed]
- Borase, H.P.; Patil, C.D.; Sauter, I.P.; Rott, M.B.; Patil, S.V. Amoebicidal activity of phytosynthesized silver nanoparticles and their in vitro cytotoxicity to human cells. FEMS Microbiol. Lett. 2013, 345, 127–131. [Google Scholar] [CrossRef]
- Cariello, A.J.; de Souza, G.F.; Foronda, A.S.; Yu, M.C.; Hofling-Lima, A.L.; de Oliveira, M.G. In vitro amoebicidal activity of S-nitrosoglutathione and S-nitroso-N-acetylcysteine against trophozoites of Acanthamoeba castellanii. J. Antimicrob. Chemother. 2010, 65, 588–591. [Google Scholar] [CrossRef]
- Chao-Pellicer, J.; Delgado-Hernández, S.; Arberas-Jiménez, I.; Sifaoui, I.; Tejedor, D.; García-Tellado, F.; Piñero, J.E.; Lorenzo-Morales, J. Synthesis and Biological Evaluation of Cyanoacrylamides and 5-Iminopyrrol-2-Ones Against Naegleria fowleri. ACS Infect. Dis. 2024, 10, 3332–3345. [Google Scholar] [CrossRef]
- Chao-Pellicer, J.; Arberas-Jiménez, I.; Sifaoui, I.; Piñero, J.E.; Lorenzo-Morales, J. Exploring therapeutic approaches against Naegleria fowleri infections through the COVID box. Int. J. Parasitol. Drugs Drug Resist. 2024, 25, 100545. [Google Scholar] [CrossRef]
- Chen, Z.; Xuguang, S.; Zhiqun, W.; Ran, L. In vitro amoebacidal activity of photodynamic therapy on Acanthamoeba. Br. J. Ophthalmol. 2008, 92, 1283–1286. [Google Scholar] [CrossRef]
- Chuprom, J.; Sangkanu, S.; Mitsuwan, W.; Boonhok, R.; Mahabusarakam, W.; Singh, L.R.; Dumkliang, E.; Jitrangsri, K.; Paul, A.K.; Surinkaew, S.; et al. Anti-Acanthamoeba activity of a semi-synthetic mangostin derivative and its ability in removal of Acanthamoeba triangularis WU19001 on contact lens. PeerJ 2022, 10, e14468. [Google Scholar] [CrossRef]
- Corrêa, T.Q.; Geralde, M.C.; Carvalho, M.T.; Bagnato, V.S.; Kurachi, C.S.; Clovis, W.O. Photodynamic inactivation of Acanthamoeba polyphaga with curcuminoids: An in vitro study. Proc. SPIE 2016, 9694, 969415. [Google Scholar]
- da Silva, A.; Nobre, H., Jr.; Sampaio, L.; Nascimento, B.D.; da Silva, C.; de Andrade Neto, J.B.; Manresa, Á.; Pinazo, A.; Cavalcanti, B.; de Moraes, M.O.; et al. Antifungal and antiprotozoal green amino acid-based rhamnolipids: Mode of action, antibiofilm efficiency and selective activity against resistant Candida spp. strains and Acanthamoeba castellanii. Colloids Surf. B Biointerfaces 2020, 193, 111148. [Google Scholar] [CrossRef]
- Debnath, A.; Tunac, J.B.; Silva-Olivares, A.; Galindo-Gómez, S.; Shibayama, M.; McKerrow, J.H. In vitro efficacy of corifungin against Acanthamoeba castellanii trophozoites and cysts. Antimicrob. Agents Chemother. 2014, 58, 1523–1528. [Google Scholar] [CrossRef]
- Debnath, A.; Nelson, A.T.; Silva-Olivares, A.; Shibayama, M.; Siegel, D.; McKerrow, J.H. In vitro Efficacy of Ebselen and BAY 11-7082 Against Naegleria fowleri. Front. Microbiol. 2018, 9, 414. [Google Scholar] [CrossRef]
- Fabres, L.F.; da Costa Gonçalves, F.; Duarte, E.O.S.; Berté, F.K.; da Conceição, D.K.S.L.; Ferreira, L.A.; Schrekker, H.S.; Rott, M.B. In vitro Amoebicidal Activity of Imidazolium Salts Against Trophozoites. Acta Parasitol. 2020, 65, 317–326. [Google Scholar] [CrossRef]
- Ferrante, A.; Lederer, E. Curative properties of muramyl dipeptide in experimental Naegleria meningoencephalitis. Trans. R. Soc. Trop. Med. Hyg. 1986, 80, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, A.; Abell, T.J.; Robinson, B.; Lederer, E. Effects of sinefungin and difluoromethylornithine on pathogenic free-living amoebae in vitro. FEMS Microbiol. Lett. 1987, 40, 1. [Google Scholar] [CrossRef]
- Ferrins, L.; Buskes, M.J.; Kapteyn, M.M.; Engels, H.N.; Enos, S.E.; Lu, C.; Klug, D.M.; Singh, B.; Quotadamo, A.; Bachovchin, K.; et al. Corrigendum: Identification of novel anti-amoebic pharmacophores from kinase inhibitor chemotypes. Front. Microbiol. 2023, 14, 1304196. [Google Scholar] [CrossRef] [PubMed]
- Ferro, S.; Coppellotti, O.; Roncucci, G.; Ben Amor, T.; Jori, G. Photosensitized inactivation of Acanthamoeba palestinensis in the cystic stage. J. Appl. Microbiol. 2006, 101, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Garajová, M.; Mrva, M.; Timko, L.; Lukáč, M.; Ondriska, F. Cytomorphological changes and susceptibility of clinical isolates of Acanthamoeba spp. to heterocyclic alkylphosphocholines. Exp. Parasitol. 2014, 145, S102–S110. [Google Scholar] [CrossRef]
- González-Fernández, S.; Lozano-Iturbe, V.; Menéndez, M.F.; Ordiales, H.; Fernández-Vega, I.; Merayo, J.; Vazquez, F.; Quirós, L.M.; Martín, C. A Promising Antifungal and Antiamoebic Effect of Silver Nanorings, a Novel Type of AgNP. Antibiotics 2022, 11, 1054. [Google Scholar] [CrossRef]
- Hendiger, E.B.; Padzik, M.; Sifaoui, I.; Reyes-Batlle, M.; López-Arencibia, A.; Rizo-Liendo, A.; Bethencourt-Estrella, C.J.; Nicolás-Hernández, D.S.; Chiboub, O.; Rodríguez-Expósito, R.L.; et al. Silver Nanoparticles as a Novel Potential Preventive Agent against Acanthamoeba Keratitis. Pathogens 2020, 9, 350. [Google Scholar] [CrossRef] [PubMed]
- Heredero-Bermejo, I.; Copa-Patiño, J.L.; Soliveri, J.; García-Gallego, S.; Rasines, B.; Gómez, R.; de la Mata, F.J.; Pérez-Serrano, J. In vitro evaluation of the effectiveness of new water-stable cationic carbosilane dendrimers against Acanthamoeba castellanii UAH-T17c3 trophozoites. Parasitol. Res. 2013, 112, 961–969. [Google Scholar] [CrossRef]
- Heredero-Bermejo, I.; Copa-Patiño, J.L.; Soliveri, J.; Fuentes-Paniagua, E.; de la Mata, F.J.; Gomez, R.; Perez-Serrano, J. Evaluation of the activity of new cationic carbosilane dendrimers on trophozoites and cysts of Acanthamoeba polyphaga. Parasitol. Res. 2015, 114, 473–486. [Google Scholar] [CrossRef]
- Heredero-Bermejo, I.; Martín-Pérez, T.; Copa-Patiño, J.L.; Gómez, R.; de la Mata, F.J.; Soliveri, J.; Pérez-Serrano, J. Ultrastructural Study of Acanthamoeba polyphaga Trophozoites and Cysts Treated In vitro with Cationic Carbosilane Dendrimers. Pharmaceutics 2020, 12, 565. [Google Scholar] [CrossRef]
- Hezarjaribi, H.Z.; Toluee, E.; Saberi, R.; Dadi Moghadam, Y.; Fakhar, M.; Akhtari, J. In vitro anti-Acanthamoeba activity of commercial chitosan and nano-chitosan against pathogenic Acanthamoeba genotype T4. J. Parasit. Dis. 2021, 45, 921–929. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Yusof, M.S.; Amin, N.M. Anti-amoebic properties of carbonyl thiourea derivatives. Molecules 2014, 19, 5191–5204. [Google Scholar] [CrossRef] [PubMed]
- Kanwal; Mungroo, M.R.; Anwar, A.; Ali, F.; Khan, S.; Abdullah, M.A.; Siddiqui, R.; Khan, K.M.; Khan, N.A. Synthetic nanoparticle-conjugated bisindoles and hydrazinyl arylthiazole as novel antiamoebic agents against brain-eating amoebae. Exp. Parasitol. 2020, 218, 107979. [Google Scholar] [CrossRef]
- Kassab, K.; Dei, D.; Roncucci, G.; Jori, G.; Coppellotti, O. Phthalocyanine-photosensitized inactivation of a pathogenic protozoan, Acanthamoeba palestinensis. Photochem. Photobiol. Sci. 2003, 2, 668–672. [Google Scholar] [CrossRef]
- Kennedy, S.M.; Deshpande, P.; Gallagher, A.G.; Horsburgh, M.J.; Allison, H.E.; Kaye, S.B.; Wellings, D.A.; Williams, R.L. Amoebicidal Activity of Poly-Epsilon-Lysine Functionalized Hydrogels. Investig. Ophthalmol. Vis. Sci. 2022, 63, 11. [Google Scholar] [CrossRef] [PubMed]
- Khairul, W.M.; Goh, Y.-P.; Daud, A.I.; Nakisah, M.A. Cytotoxicity effects of alkoxy substituted thiourea derivatives towards Acanthamoeba sp. Arab. J. Chem. 2015, 10, 532–538. [Google Scholar]
- Khairul, W.M.; Goh, Y.-P.; Daud, A.I.; Nakisah, M.A. Bringing Forward the New Generation of Alkoxy-Thiourea as Potential Treatment for Acanthamoeba Keratitis. AIP Conf. Proc. 2017, 1817, 030001-1–030001-8. [Google Scholar]
- Kopańska, K.; Najda, A.; Zebrowska, J.; Chomicz, L.; Piekarczyk, J.; Myjak, P.; Bretner, M. Synthesis and activity of 1H-benzimidazole and 1H-benzotriazole derivatives as inhibitors of A. castellanii. Bioorg. Med. Chem. 2004, 12, 2617–2624. [Google Scholar] [CrossRef]
- Kusrini, E.; Hashim, F.; Azmi, W.N.; Amin, N.M.; Estuningtyas, A. A novel antiamoebic agent against Acanthamoeba sp.—A causative agent for eye keratitis infection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 153, 714–721. [Google Scholar] [CrossRef]
- Kusrini, E.; Hashim, F.; Gunawan, C.; Mann, R.; Azmi, W.N.; Amin, N.M. Anti-amoebic activity of acyclic and cyclic-samarium complexes on Acanthamoeba. Parasitol. Res. 2018, 117, 1409–1417. [Google Scholar] [CrossRef]
- Kusrini, E.; Hashim, F.; Saleh, M.I.; Adnan, R.; Usman, A.; Zakaria, I.N.; Prihandini, W.W.; Putra, N.; Prasetyanto, E.A. Monoclinic cerium(III) picrate tetraethylene glycol complex: Design, synthesis and biological evaluation as anti-amoebic activity against Acanthamoeba sp. J. Mater. Sci. 2020, 55, 9795–9811. [Google Scholar] [CrossRef]
- Lê, H.G.; Kang, J.M.; Võ, T.C.; Na, B.K. Kaempferol induces programmed cell death in Naegleria fowleri. Phytomedicine 2023, 119, 154994. [Google Scholar] [CrossRef] [PubMed]
- López-Arencibia, A.; Reyes-Batlle, M.; Freijo, M.B.; McNaughton-Smith, G.; Martín-Rodríguez, P.; Fernández-Pérez, L.; Sifaoui, I.; Wagner, C.; García-Méndez, A.B.; Liendo, A.R.; et al. In vitro activity of 1H-phenalen-1-one derivatives against Acanthamoeba castellanii Neff and their mechanisms of cell death. Exp. Parasitol. 2017, 183, 218–223. [Google Scholar] [CrossRef] [PubMed]
- López-Barona, P.; Verdú-Expósito, C.; Martín-Pérez, T.; Gómez-Casanova, N.; Lozano-Cruz, T.; Ortega, P.; Gómez, R.; Pérez-Serrano, J.; Heredero-Bermejo, I. Amoebicidal activity of cationic carbosilane dendrons derived with 4-phenylbutyric acid against Acanthamoeba griffini and Acanthamoeba polyphaga trophozoites and cysts. Sci. Rep. 2022, 12, 14926. [Google Scholar] [CrossRef]
- Lukáč, M.; Timko, L.; Mrva, M.; Ondriska, F.; Karlovská, J.; Valentová, J.; Lacko, I. Synthesis, aggregation properties, and antiprotozoal activity of heterocyclic heterogemini surfactants. Heteroat. Chem. 2010, 21, 203–209. [Google Scholar] [CrossRef]
- Lukáč, M.; Mrva, M.; Garajová, M.; Mojžišová, G.; Varinská, L.; Mojžiš, J.; Sabol, M.; Kubincová, J.; Haragová, H.; Ondriska, F.; et al. Synthesis, self-aggregation and biological properties of alkylphosphocholine and alkylphosphohomocholine derivatives of cetyltrimethylammonium bromide, cetylpyridinium bromide, benzalkonium bromide (C16) and benzethonium chloride. Eur. J. Med. Chem. 2013, 66, 46–55. [Google Scholar] [CrossRef]
- Lukáč, M.; Garajová, M.; Mrva, M.; Devínsky, F.; Ondriska, F.; Kubincová, J. Novel fluorinated dialkylphosphonatocholines: Synthesis, physicochemical properties and antiprotozoal activities against Acanthamoeba spp. J. Fluor. Chem. 2014, 164, 10–17. [Google Scholar] [CrossRef]
- Lukáč, M.; Pisárčik, M.; Garajová, M.; Mrva, M.; Dušeková, A.; Vrták, A.; Horáková, R.; Horváth, B.; Devínsky, F. Synthesis, Surface Activity, and Biological Activities of Phosphonium and Metronidazole Salts. J. Surfactants Deterg. 2020, 23, 1025–1032. [Google Scholar] [CrossRef]
- Lukáč, M.; Slobodníková, L.; Mrva, M.; Dušeková, A.; Garajová, M.; Kello, M.; Šebová, D.; Pisárčik, M.; Kojnok, M.; Vrták, A.; et al. Caffeic Acid Phosphanium Derivatives: Potential Selective Antitumor, Antimicrobial and Antiprotozoal Agents. Int. J. Mol. Sci. 2024, 25, 1200. [Google Scholar] [CrossRef]
- Mahboob, T.; Nawaz, M.; Tian-Chye, T.; Samudi, C.; Wiart, C.; Nissapatorn, V. Preparation of Poly (dl-Lactide-co-Glycolide) Nanoparticles Encapsulated with Periglaucine A and Betulinic Acid for In Vitro Anti-Acanthamoeba and Cytotoxicity Activities. Pathogens 2018, 7, 62. [Google Scholar] [CrossRef]
- Martín-Navarro, C.M.; López-Arencibia, A.; Lorenzo-Morales, J.; Oramas-Royo, S.; Hernández-Molina, R.; Estévez-Braun, A.; Ravelo, A.G.; Valladares, B.; Piñero, J.E. Acanthamoeba castellanii Neff: In vitro activity against the trophozoite stage of a natural sesquiterpene and a synthetic cobalt(II)-lapachol complex. Exp. Parasitol. 2010, 126, 106–108. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Castillo, M.; Ramírez-Rico, G.; Shibayama, M.; de la Garza, M.; Serrano-Luna, J. Lactoferrin and Lysozyme Inhibit the Proteolytic Activity and Cytopathic Effect of Naegleria fowleri Enzymes. Pathogens 2024, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Martín-Pérez, T.; Lozano-Cruz, T.; Criado-Fornelio, A.; Ortega, P.; Gómez, R.; de la Mata, F.J.; Pérez-Serrano, J. Synthesis and in vitro activity of new biguanide-containing dendrimers on pathogenic isolates of Acanthamoeba polyphaga and Acanthamoeba griffini. Parasitol. Res. 2019, 118, 1953–1961. [Google Scholar] [CrossRef]
- Masri, A.; Abdelnasir, S.; Anwar, A.; Iqbal, J.; Numan, A.; Jagadish, P.; Shahabuddin, S.; Khalid, M. Antimicrobial properties of multifunctional polypyrrole-cobalt oxide-silver nanocomposite against pathogenic bacteria and parasite. Appl. Microbiol. Biotechnol. 2021, 105, 3315–3325. [Google Scholar] [CrossRef] [PubMed]
- Mito, T.; Suzuki, T.; Kobayashi, T.; Zheng, X.; Hayashi, Y.; Shiraishi, A.; Ohashi, Y. Effect of photodynamic therapy with methylene blue on Acanthamoeba in vitro. Investig. Ophthalmol. Vis. Sci. 2012, 53, 6305–6313. [Google Scholar] [CrossRef]
- Osuna, A.; Rodriguez-Santiago, J.I.; Ruiz-Perez, L.M.; Gamarro, F.; Castanys, S.; Giovannangeli, G.; Galy, A.M.; Galy, J.P.; Soyfer, J.C.; Barbe, J. Antiamebic activity of new acridinic derivatives against Naegleria and Acanthamoeba species in vitro. Chemotherapy 1987, 33, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Padzik, M.; Hendiger, E.B.; Chomicz, L.; Grodzik, M.; Szmidt, M.; Grobelny, J.; Lorenzo-Morales, J. Tannic acid-modified silver nanoparticles as a novel therapeutic agent against Acanthamoeba. Parasitol. Res. 2018, 117, 3519–3525. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Park, C.Y. Effects of In vitro Combination of Nitric Oxide Donors and Hypochlorite on Acanthamoeba castellanii Viability. Transl. Vis. Sci. Technol. 2023, 12, 23. [Google Scholar] [CrossRef]
- Peguda, H.K.; Carnt, N.A.; Gu, Z.; Kumar, N.; Willcox, M.D.P.; Kuppusamy, R. The Anti-Amoebic Activity of a Peptidomimetic against Acanthamoeba castellanii. Microorganisms 2022, 10, 2377. [Google Scholar] [CrossRef]
- Peguda, H.K.; Lakshminarayanan, R.; Carnt, N.A.; Gu, Z.; Willcox, M.D.P. The Activity of Polyhomoarginine against A. castellanii. Biology 2023, 11, 1726. [Google Scholar]
- Polat, Z.A.; Savage, P.B.; Genberg, C. In vitro amoebicidal activity of a ceragenin, cationic steroid antibiotic-13, against Acanthamoeba castellanii and its cytotoxic potential. J. Ocul. Pharmacol. Ther. 2011, 27, 1–5. [Google Scholar] [CrossRef]
- Pomeroy, J.M.; Khalifa, M.M.; Milanes, J.E.; Palmentiero, C.M.; Morris, J.C.; Golden, J.E. Synthesis and Evaluation of Benzylamine Inhibitors of Neuropathogenic Naegleria fowleri “Brain-Eating” Amoeba. ACS Med. Chem. Lett. 2023, 15, 87–92. [Google Scholar] [CrossRef]
- Rajendran, K.; Anwar, A.; Khan, N.A.; Shah, M.R.; Siddiqui, R. trans-Cinnamic Acid Conjugated Gold Nanoparticles as Potent Therapeutics against Brain-Eating Amoeba Naegleria fowleri. ACS Chem. Neurosci. 2019, 10, 2692–2696. [Google Scholar] [CrossRef]
- Rajendran, K.; Anwar, A.; Khan, N.A.; Aslam, Z.; Shah, M.R.; Siddiqui, R. Oleic Acid Coated Silver Nanoparticles Showed Better in vitro Amoebicidal Effects against Naegleria fowleri than Amphotericin B. ACS Chem. Neurosci. 2020, 11, 2431–2437. [Google Scholar] [CrossRef]
- Rajendran, K.; Ahmed, U.; Meunier, A.C.; Shaikh, M.F.; Siddiqui, R.; Anwar, A. Nanoparticle-Terpene Fusion: A Game-Changer in Combating Primary Amoebic Meningoencephalitis Caused by Naegleria fowleri. ACS Omega 2024, 9, 11597–11607. [Google Scholar] [CrossRef]
- Raza, R.; Matin, A.; Sarwar, S.; Barsukova-Stuckart, M.; Ibrahim, M.; Kortz, U.; Iqbal, J. Polyoxometalates as potent and selective inhibitors of alkaline phosphatases with profound anticancer and amoebicidal activities. Dalton Trans. 2012, 41, 14329–14336. [Google Scholar] [CrossRef]
- Reyes-Batlle, M.; Freijo, M.B.; López-Arencibia, A.; Lorenzo-Morales, J.; McNaughton-Smith, G.; Piñero, J.E.; Abad-Grillo, T. Identification of N-acyl quinolin-2(1H)-ones as new selective agents against clinical isolates of Acanthamoeba keratitis. Bioorg. Chem. 2020, 99, 103791. [Google Scholar] [CrossRef]
- Rice, C.A.; Troth, E.V.; Russell, A.C.; Kyle, D.E. Discovery of Anti-Amoebic Inhibitors from Screening the MMV Pandemic Response Box on Balamuthia mandrillaris, Naegleria fowleri, and Acanthamoeba castellanii. Pathogens 2020, 9, 476. [Google Scholar] [CrossRef] [PubMed]
- Rizo-Liendo, A.; Sifaoui, I.; Cartuche, L.; Arberas-Jiménez, I.; Reyes-Batlle, M.; Fernández, J.J.; Piñero, J.E.; Díaz-Marrero, A.R.; Lorenzo-Morales, J. Evaluation of Indolocarbazoles from Streptomyces sanyensis as a Novel Source of Therapeutic Agents against the Brain-Eating Amoeba Naegleria fowleri. Microorganisms 2020, 8, 789. [Google Scholar] [CrossRef]
- Rizo-Liendo, A.; Arberas-Jiménez, I.; Sifaoui, I.; Gkolfi, D.; Santana, Y.; Cotos, L.; Tejedor, D.; García-Tellado, F.; Piñero, J.E.; Lorenzo-Morales, J. The therapeutic potential of novel isobenzofuranones against Naegleria fowleri. Int. J. Parasitol. Drugs Drug Resist. 2021, 17, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Rizo-Liendo, A.; Arberas-Jiménez, I.; Martin-Encinas, E.; Sifaoui, I.; Reyes-Batlle, M.; Chao-Pellicer, J.; Alonso, C.; Palacios, F.; Piñero, J.E.; Lorenzo-Morales, J. Naphthyridine Derivatives Induce Programmed Cell Death in Naegleria fowleri. Pharmaceuticals 2021, 14, 1013. [Google Scholar] [CrossRef]
- Rodríguez-Expósito, R.L.; Reyes-Batlle, M.; Sifaoui, I.; Tejedor, D.; García-Tellado, F.; Piñero, J.E.; Lorenzo-Morales, J. Isobenzofuran-1(3H)-one derivatives: Amoebicidal activity and program cell death in Acanthamoeba castellanii Neff. Biomed. Pharmacother. 2022, 150, 113062. [Google Scholar] [CrossRef] [PubMed]
- Saeed, B.Q.; Hussain, K.; Akbar, N.; Khan, H.; Siddiqui, R.; Shah, M.R.; Khan, N.A. Nanovesicles containing curcumin hold promise in the development of new formulations of anti-Acanthamoebic agents. Mol. Biochem. Parasitol. 2022, 247, 111430. [Google Scholar] [CrossRef]
- Shahbaz, M.S.; Anwar, A.; Saad, S.M.; Kanwal; Anwar, A.; Khan, K.M.; Siddiqui, R.; Khan, N.A. Antiamoebic activity of 3-aryl-6,7-dimethoxyquinazolin-4(3H)-one library against Acanthamoeba castellanii. Parasitol. Res. 2020, 119, 2327–2335. [Google Scholar] [CrossRef]
- Shirai, A.; Endo, T.; Maseda, H.; Omasa, T. Synthesis of thiazole derivatives and evaluation of their antiamoebic activity and cytotoxicity. Biocontrol Sci. 2013, 18, 183–191. [Google Scholar] [CrossRef]
- Siddiqui, R.; Khan, N.A. Photochemotherapeutic strategies against Acanthamoeba keratitis. AMB Express 2012, 2, 47. [Google Scholar] [CrossRef]
- Siddiqui, R.; Abjani, F.; Yeo, C.I.; Tiekink, E.R.; Khan, N.A. The effects of phosphanegold(I) thiolates on the biological properties of Acanthamoeba castellanii belonging to the T4 genotype. J. Negat. Results Biomed. 2017, 16, 6. [Google Scholar] [CrossRef]
- Siddiqui, R.; Boghossian, A.; Khatoon, B.; Kawish, M.; Alharbi, A.M.; Shah, M.R.; Alfahemi, H.; Khan, N.A. Antiamoebic Properties of Metabolites against Naegleria fowleri and Balamuthia mandrillaris. Antibiotics 2022, 11, 539. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.; Boghossian, A.; Akbar, N.; Jabri, T.; Aslam, Z.; Shah, M.R.; Alharbi, A.M.; Alfahemi, H.; Khan, N.A. Zinc Oxide Nanoconjugates against Brain-Eating Amoebae. Antibiotics 2022, 11, 1281. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.; Mungroo, M.R.; Anuar, T.S.; Alharbi, A.M.; Alfahemi, H.; Elmoselhi, A.B.; Khan, N.A. Antiamoebic Properties of Laboratory and Clinically Used Drugs against Naegleria fowleri and Balamuthia mandrillaris. Antibiotics 2022, 11, 749. [Google Scholar] [CrossRef]
- Siddiqui, R.; Makhlouf, Z.; Akbar, N.; Khamis, M.; Ibrahim, T.; Khan, A.S.; Khan, N.A. Antiamoebic properties of Methyltrioctylammonium chloride based deep eutectic solvents. Cont. Lens Anterior Eye 2023, 46, 101758. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.; El-Gamal, M.I.; Sajeev, S.; Zaraei, S.O.; Khan, N.A. Novel anti-Acanthamoebic properties of raloxifene sulfonate/sulfamate derivatives. Mol. Biochem. Parasitol. 2023, 256, 111582. [Google Scholar] [CrossRef]
- Siddiqui, R.; Rawas-Qalaji, M.; El-Gamal, M.I.; Sajeev, S.; Jagal, J.; Zaraei, S.O.; Sbenati, R.M.; Anbar, H.S.; Dohle, W.; Potter, B.V.L.; et al. Novel Anti-Acanthamoebic Activities of Irosustat and STX140 and Their Nanoformulations. Antibiotics 2023, 12, 561. [Google Scholar] [CrossRef]
- Siddiqui, R.; Khatoon, B.; Kawish, M.; Sajeev, S.; Faizi, S.; Shah, M.R.; Alharbi, A.M.; Khan, N.A. The potential of nanocomposites (patuletin-conjugated with gallic acid-coated zinc oxide) against free-living amoebae pathogens. Int. Microbiol. 2024, 28, 929–939. [Google Scholar] [CrossRef]
- Sifaoui, I.; Rodríguez-Expósito, R.L.; Reyes-Batlle, M.; Rizo-Liendo, A.; Piñero, J.E.; Bazzocchi, I.L.; Lorenzo-Morales, J.; Jiménez, I.A. Ursolic Acid Derivatives as Potential Agents Against Acanthamoeba spp. Pathogens 2019, 8, 130. Pathogens 2019, 8, 130. [Google Scholar] [CrossRef]
- Sifaoui, I.; Rodríguez-Expósito, R.L.; Reyes-Batlle, M.; Dumpiérrez Ramos, A.; Diana-Rivero, R.; García-Tellado, F.; Tejedor, D.; Piñero, J.E.; Lorenzo-Morales, J. Amoebicidal effect of synthetic indoles against Acanthamoeba spp.: A study of cell death. Antimicrob. Agents Chemother. 2024, 68, e0165123. [Google Scholar] [CrossRef]
- Sohn, H.J.; Park, A.Y.; Lee, J.H.; Yun, K.H.; Song, K.J.; Kim, J.H.; Shin, H.J. Amoebicidal effect of chlorine dioxide gas against pathogenic Naegleria fowleri and Acanthamoeba polyphaga. Parasitol. Res. 2024, 123, 192. [Google Scholar] [CrossRef]
- Souza, G.B.; Santos, T.A.C.; Silva, A.P.S.; Barreiros, A.L.B.S.; Nardelli, V.B.; Siqueira, I.B.; Dolabella, S.S.; Costa, E.V.; Alves, P.B.; Scher, R.; et al. Synthesis of chalcone derivatives by Claisen-Schmidt condensation and in vitro analyses of their antiprotozoal activities. Nat. Prod. Res. 2024, 38, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Timko, L.; Fischer-Fodor, E.; Garajová, M.; Mrva, M.; Chereches, G.; Ondriska, F.; Bukovský, M.; Lukáč, M.; Karlovská, J.; Kubincová, J.; et al. Synthesis of structural analogues of hexadecylphosphocholine and their antineoplastic, antimicrobial and amoebicidal activity. Eur. J. Med. Chem. 2015, 93, 263–273. [Google Scholar] [CrossRef]
- Timko, L.; Pisárčik, M.; Mrva, M.; Garajová, M.; Juhásová, A.; Mojžiš, J.; Mojžišová, G.; Bukovský, M.; Devínsky, F.; Lukáč, M. Synthesis, physicochemical properties and biological activities of novel alkylphosphocholines with foscarnet moiety. Bioorg. Chem. 2020, 104, 104224. [Google Scholar] [CrossRef]
- Vázquez-Ortega, F.; Sifaoui, I.; Reyes-Batlle, M.; Piñero, J.E.; Lagunes, I.; Trigos, Á.; Lorenzo-Morales, J.; Díaz-Marrero, A.R.; Fernández, J.J. Photodynamic treatment induced membrane cell damage in Acanthamoeba castellanii Neff. Dyes Pigment. 2020, 180, 108481. [Google Scholar] [CrossRef]
- Walochnik, J.; Duchêne, M.; Seifert, K.; Obwaller, A.; Hottkowitz, T.; Wiedermann, G.; Eibl, H.; Aspöck, H. Cytotoxic activities of alkylphosphocholines against clinical isolates of Acanthamoeba spp. Antimicrob. Agents Chemother. 2002, 46, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Yim, B.; Park, J.H.; Jeong, H.; Hong, J.; Kim, M.; Chang, M.; Chuck, R.S.; Park, C.Y. Effect of Nitric Oxide on Acanthamoeba castellanii. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3239–3248. [Google Scholar] [CrossRef] [PubMed]
- Pertiwi, Y.D.; Chikama, T.; Sueoka, K.; Ko, J.A.; Kiuchi, Y.; Onodera, M.; Sakaguchi, T. Antimicrobial Photodynamic Therapy with the photosensitizer TONS504 eradicates Acanthamoeba. Photodiagnosis Photodyn. Ther. 2019, 28, 166–171. [Google Scholar] [CrossRef]
- Pertiwi, Y.D.; Chikama, T.; Sueoka, K.; Ko, J.A.; Kiuchi, Y.; Onodera, M.; Sakaguchi, T. Efficacy of Photodynamic Anti-Microbial Chemotherapy for Acanthamoeba Keratitis In vivo. Lasers Surg. Med. 2021, 53, 695–702. [Google Scholar] [CrossRef]
- Büchele, M.L.C.; Nunes, B.F.; Filippin-Monteiro, F.B.; Caumo, K.S. Diagnosis and treatment of Acanthamoeba Keratitis: A scoping review demonstrating unfavorable outcomes. Cont. Lens Anterior Eye 2023, 46, 101844. [Google Scholar] [CrossRef]
- Petrillo, F.; Tortori, A.; Vallino, V.; Galdiero, M.; Fea, A.M.; De Sanctis, U.; Reibaldi, M. Understanding Acanthamoeba Keratitis: An In-Depth Review of a Sight-Threatening Eye Infection. Microorganisms 2024, 12, 758. [Google Scholar] [CrossRef] [PubMed]
- Leal Dos Santos, D.; Chaúque, B.J.M.; Virginio, V.G.; Cossa, V.C.; Pettan-Brewer, C.; Schrekker, H.S.; Rott, M.B. Occurrence of Naegleria fowleri and their implication for health—A look under the One Health approaches. Int. J. Hyg. Environ. Health 2022, 246, 114053. [Google Scholar] [CrossRef]
- Pengsart, W.; Tongkrajang, N.; Whangviboonkij, N.; Sarasombath, P.T.; Kulkeaw, K. Balamuthia mandrillaris trophozoites ingest human neuronal cells via a trogocytosis-independent mechanism. Parasitol. Vectors 2022, 15, 232. [Google Scholar] [CrossRef]
- Xu, C.; Wu, X.; Tan, M.; Wang, D.; Wang, S.; Wu, Y. Subacute Balamuthia mandrillaris encephalitis in an immunocompetent patient diagnosed by next-generation sequencing. J. Int. Med. Res. 2022, 50, 3000605221093217. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, J.; Wei, R.; Feng, X.; Wang, L.; Wang, L.; Zhao, P.; Yu, H.; Gu, Y.; Yao, Z. Facial Balamuthia mandrillaris infection with neurological involvement in an immunocompetent child. Lancet Infect. Dis. 2022, 22, e93–e100. [Google Scholar] [CrossRef]
- Alvarez, P.; Torres-Cabala, C.; Gotuzzo, E.; Bravo, F. Cutaneous balamuthiasis: A clinicopathological study. JAAD Int. 2022, 6, 51–58. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, Q.; Meng, Q.; Wang, Z.; Li, S.; Cui, J. The Chemistry and Biological Effects of Thioflavones. Mini Rev. Med. Chem. 2018, 18, 1714–1732. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Chen, J.; Pan, G.; Reinke, A.W. Screening of the Pandemic Response Box identifies anti-microsporidia compounds. PLoS Negl. Trop. Dis. 2023, 17, e0011806. [Google Scholar] [CrossRef]
- Reader, J.; van der Watt, M.E.; Taylor, D.; Le Manach, C.; Mittal, N.; Ottilie, S.; Theron, A.; Moyo, P.; Erlank, E.; Nardini, L.; et al. Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV Pandemic Response Box. Nat. Commun. 2021, 12, 269. [Google Scholar] [CrossRef] [PubMed]
- Gharpure, R.; Bliton, J.; Goodman, A.; Ali, I.K.M.; Yoder, J.; Cope, J.R. Epidemiology and Clinical Characteristics of Primary Amebic Meningoencephalitis Caused by Naegleria fowleri: A Global Review. Clin. Infect. Dis. 2021, 73, e19–e27. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.T.; Zhang, Q.; Wen, S.Y.; Chen, F.F.; Zhou, C.Q. Pathogenic free-living amoebic encephalitis from 48 cases in China: A systematic review. Front. Neurol. 2023, 14, 1100785. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.A.; Citron, D.M.; Wang, C.C. Development of Tyrocidine A analogues with improved antibacterial activity. Bioorg. Med. Chem. 2007, 15, 6667–6677. [Google Scholar] [CrossRef] [PubMed]
- Nakano, H.; Omura, S. Chemical biology of natural indolocarbazole products: 30 years since the discovery of staurosporine. J. Antibiot. 2009, 62, 17–26. [Google Scholar] [CrossRef]
- Han, K.L.; Lee, H.J.; Shin, M.H.; Shin, H.J.; Im, K.I.; Park, S.J. The involvement of an integrin-like protein and protein kinase C in amoebic adhesion to fibronectin and amoebic cytotoxicity. Parasitol. Res. 2004, 94, 53–60. [Google Scholar] [CrossRef]
- Lê, H.G.; Kang, J.M.; Võ, T.C.; Na, B.K. Naegleria fowleri Cathepsin B Induces a Pro-Inflammatory Immune Response in BV-2 Microglial Cells via NF-κB and AP-1 Dependent-MAPK Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 8388. [Google Scholar] [CrossRef]
- Hussain, T.; Yogavel, M.; Sharma, A. Inhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases. Antimicrob. Agents Chemother. 2015, 59, 1856–1867. [Google Scholar] [CrossRef]
- Bickels, N.R.; Feldmesser, E.; Fridmann-Sirkis, Y.; Keren-Shaul, H.; Nevo, R.; Minsky, A.; Reich, Z. Acanthamoeba polyphaga de novo transcriptome and its dynamics during Mimivirus infection. Sci. Rep. 2024, 14, 25894. [Google Scholar] [CrossRef]
- Lazarovici, P.; Rasouly, D.; Friedman, L.; Tabekman, R.; Ovadia, H.; Matsuda, Y. K 252a and staurosporine microbial alkaloid toxins as prototype of neurotropic drugs. Adv. Exp. Med. Biol. 1996, 391, 367–377. [Google Scholar]
- Roux, P.P.; Dorval, G.; Boudreau, M.; Angers-Loustau, A.; Morris, S.J.; Makkerh, J.; Barker, P.A. K252a and CEP1347 are neuroprotective compounds that inhibit mixed-lineage kinase-3 and induce activation of Akt and ERK. J. Biol. Chem. 2002, 277, 49473–49480. [Google Scholar] [CrossRef] [PubMed]
- Osada, H.; Koshino, H.; Kudo, T.; Onose, R.; Isono, K. A new inhibitor of protein kinase C, RK-1409 (7-oxostaurosporine). I. Taxonomy and biological activity. J. Antibiot. 1992, 45, 189–194. [Google Scholar] [CrossRef]
- Jimenez, P.C.; Wilke, D.V.; Ferreira, E.G.; Takeara, R.; De Moraes, M.O.; Silveira, E.R.; Da Cruz Lotufo, T.M.; Lopes, N.P.; Costa-Lotufo, L.V. Structure elucidation and anticancer activity of 7-oxostaurosporine derivatives from the Brazilian endemic tunicate Eudistoma vannamei. Mar. Drugs 2012, 10, 1092–1102. [Google Scholar] [CrossRef]
- Cartuche, L.; Reyes-Batlle, M.; Sifaoui, I.; Arberas-Jiménez, I.; Piñero, J.E.; Fernández, J.J.; Lorenzo-Morales, J.; Díaz-Marrero, A.R. Antiamoebic Activities of Indolocarbazole Metabolites Isolated from Streptomyces sanyensis Cultures. Mar. Drugs 2019, 17, 588. [Google Scholar] [CrossRef] [PubMed]
- Hargrove, T.Y.; Lamb, D.C.; Wawrzak, Z.; Hull, M.; Kelly, S.L.; Guengerich, F.P.; Lepesheva, G.I. Identification of potent and selective inhibitors of Acanthamoeba: Structural insights into sterol 14α-demethylase as a key drug target. J. Med. Chem. 2024, 67, 7443–7457. [Google Scholar] [CrossRef]
- Kang, S.J.; Lee, J.W.; Song, J.; Park, J.; Choi, J.; Suh, K.H.; Min, K.H. Synthesis and biological activity of 2-cyanoacrylamide derivatives tethered to imidazopyridine as TAK1 inhibitors. J. Enzym. Inhib. Med. Chem. 2020, 35, 1928–1936. [Google Scholar] [CrossRef]
- Faridoon Ng, R.; Zhang, G.; Li, J.J. An update on the discovery and development of reversible covalent inhibitors. Med. Chem. Res. 2023, 32, 1039–1062. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Wei, Z.; Cao, K.; Zhang, Z.; Liang, Q. The global epidemiology and clinical diagnosis of Acanthamoeba keratitis. J. Infect. Public Health 2023, 16, 841–852. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, L.; Zhao, Y.; Ju, X.; Wang, L.; Jin, L.; Fine, R.D.; Li, M. Biological characteristics and pathogenicity of Acanthamoeba. Front. Microbiol. 2023, 14, 1147077. [Google Scholar] [CrossRef]
- Dias Barroso, F.D.; da Silva, L.J.; Queiroz, H.A.; do Amaral Valente Sá, L.G.; da Silva, A.R.; da Silva, C.R.; de Andrade Neto, J.B.; Cavalcanti, B.C.; de Moraes, M.O.; Pinazo, A.; et al. Biosurfactant complexed with arginine has antibiofilm activity against methicillin-resistant Staphylococcus aureus. Future Microbiol. 2024, 19, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Sobolewski, C.; Legrand, N. Celecoxib analogues for cancer treatment: An update on OSU-03012 and 2,5-dimethyl-celecoxib. Biomolecules 2021, 11, 1049. [Google Scholar] [CrossRef] [PubMed]
- Koselny, K.; Green, J.; Favazzo, L.; Glazier, V.E.; DiDone, L.; Ransford, S.; Krysan, D.J. Antitumor/antifungal celecoxib derivative AR-12 is a non-nucleoside inhibitor of the ANL-family adenylating enzyme acetyl CoA synthetase. ACS Infect. Dis. 2016, 2, 268–280. [Google Scholar] [CrossRef]
- Abt, E.R.; Rosser, E.W.; Durst, M.A.; Lok, V.; Poddar, S.; Le, T.M.; Cho, A.; Kim, W.; Wei, L.; Song, J.; et al. Metabolic modifier screen reveals secondary targets of protein kinase inhibitors within nucleotide metabolism. Cell Chem. Biol. 2020, 27, 197–205.e6. [Google Scholar] [CrossRef]
- Fritz-Laylin, L.K.; Prochnik, S.E.; Ginger, M.L.; Dacks, J.B.; Carpenter, M.L.; Field, M.C.; Kuo, A.; Paredez, A.; Chapman, J.; Pham, J.; et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 2010, 140, 631–642. [Google Scholar] [CrossRef]
- Won, S.R.; Hong, M.J.; Kim, Y.M.; Li, C.Y.; Kim, J.W.; Rhee, H.I. Oleic acid: An efficient inhibitor of glucosyltransferase. FEBS Lett. 2007, 581, 4999–5002. [Google Scholar] [CrossRef]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, J.; Varghese, R.M.; Subramanian, A.K.; Shanmugam, R. Mechanism of action of green-synthesized silver nanoparticle-incorporated dental varnish against Candida albicans. Cureus 2024, 16, e69353. [Google Scholar] [CrossRef]
- Al-Sawarees, D.K.; Darwish, R.M.; Abu-Zurayk, R.; Masri, M.A. Assessing silver nanoparticle and antimicrobial combinations for antibacterial activity and biofilm prevention on surgical sutures. J. Appl. Microbiol. 2024, 135, lxae063. [Google Scholar] [CrossRef] [PubMed]
- Luceri, A.; Francese, R.; Lembo, D.; Ferraris, M.; Balagna, C. Silver nanoparticles: Review of antiviral properties, mechanism of action and applications. Microorganisms 2023, 11, 629. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Chen, Y.; Alnaggar, M. Silver nanoparticles induce cell death of colon cancer cells through impairing cytoskeleton and membrane nanostructure. Micron 2019, 126, 102750. [Google Scholar] [CrossRef]
- Aguilar-Díaz, H.; Laclette, J.P.; Carrero, J.C. Silencing of Entamoeba histolytica glucosamine 6-phosphate isomerase by RNA interference inhibits the formation of cyst-like structures. BioMed Res. Int. 2013, 2013, 758341. [Google Scholar] [CrossRef]
- Villemez, C.L.; Carlo, P.L. Properties of a soluble polyprenyl phosphate: UDP-D-glucose glucosyltransferase. J. Biol. Chem. 1979, 254, 4814–4819. [Google Scholar] [CrossRef]
- Anwar, A.; Khan, N.A.; Siddiqui, R. Galactose as novel target against Acanthamoeba cysts. PLoS Negl. Trop. Dis. 2019, 13, e0007385. [Google Scholar] [CrossRef]
- Tear, W.F.; Bag, S.; Diaz-Gonzalez, R.; Ceballos-Pérez, G.; Rojas-Barros, D.I.; Cordon-Obras, C.; Pérez-Moreno, G.; García-Hernández, R.; Martinez-Martinez, M.S.; Ruiz-Perez, L.M.; et al. Selectivity and physicochemical optimization of repurposed pyrazolo[1,5-b]pyridazines for the treatment of human African trypanosomiasis. J. Med. Chem. 2020, 63, 756–783. [Google Scholar] [CrossRef] [PubMed]
- Bínová, E.; Bína, D.; Nohýnková, E. DNA content in Acanthamoeba during two stress defense reactions: Encystation, pseudocyst formation and cell cycle. Eur. J. Protistol. 2021, 77, 125745. [Google Scholar] [CrossRef]
- Mochida, K.; Gomyoda, M. Toxicity of ethylene glycol, diethylene glycol, and propylene glycol to human cells in culture. Bull. Environ. Contam. Toxicol. 1987, 38, 151–153. [Google Scholar] [CrossRef]
- Knauf, G.A.; Cunningham, A.L.; Kazi, M.I.; Riddington, I.M.; Crofts, A.A.; Cattoir, V.; Trent, M.S.; Davies, B.W. Exploring the Antimicrobial Action of Quaternary Amines against Acinetobacter baumannii. mBio 2018, 9, e02394-17. [Google Scholar] [CrossRef]
- Shirai, A.; Maeda, T.; Itoh, M.; Kawano, G.; Kourai, H. Control of Legionella Species and Host Amoeba by Bis-quaternary Ammonium Compounds. Biocontrol Sci. 2000, 5, 97–102. [Google Scholar] [CrossRef]
- Babalola, B.A.; Malik, M.; Olowokere, O.; Adebesin, A.; Sharma, L. Indoles in drug design and medicinal chemistry. Eur. J. Med. Chem. Rep. 2025, 13, 100252. [Google Scholar] [CrossRef]
- Kaufman, A.R.; Tu, E.Y. Advances in the management of Acanthamoeba keratitis: A review of the literature and synthesized algorithmic approach. Ocul. Surf. 2022, 25, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, A.; Arboleda, A.; Martinez, J.D.; Durkee, H.; Aguilar, M.C.; Relhan, N.; Nikpoor, N.; Galor, A.; Dubovy, S.R.; Leblanc, R.; et al. Rose Bengal Photodynamic Antimicrobial Therapy for Patients with Progressive Infectious Keratitis: A Pilot Clinical Study. Am. J. Ophthalmol. 2019, 208, 387–396. [Google Scholar] [CrossRef]
- Sepulveda-Beltran, P.A.; Levine, H.; Altamirano, D.S.; Martinez, J.D.; Durkee, H.; Mintz, K.; Leblanc, R.; Tóthová, J.D.; Miller, D.; Parel, J.M.; et al. Rose Bengal Photodynamic Antimicrobial Therapy: A Review of the Intermediate-Term Clinical and Surgical Outcomes. Am. J. Ophthalmol. 2022, 243, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.M.; Chen, J.; Navia, J.C.; Durkee, H.; Gonzalez, A.; Rowaan, C.; Arcari, T.; Aguilar, M.C.; Llanes, K.; Ziebarth, N.; et al. Enhancing Rose Bengal penetration in ex vivo human corneas using iontophoresis. Ther. Deliv. 2024, 15, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Varnado, N.; Abdelrahman, S.; Cavallino, V.; Arnold, B.F.; Lietman, T.M.; Rose-Nussbaumer, J. A double-masked, sham-controlled trial of rose bengal photodynamic therapy for the treatment of fungal and Acanthamoeba keratitis: Rose Bengal Electromagnetic Activation with Green Light for Infection Reduction (REAGIR) study. Trials 2024, 25, 566. [Google Scholar]
















| Cod | Concentration (µM) | Light λ (nm) | Light Dose (J/cm2) | Irradiation Time (h) | Mortality (%) | IC50 (µM) | CT-Toxicity | Cytotoxicity (%) | Cell Line |
|---|---|---|---|---|---|---|---|---|---|
| Trophozoites | |||||||||
| 475 | 250 | 570–585 | - | 2 | 57.5 (±7.5) | - | - | - | |
| 495 | 0.0019 * | >470 | 90 | 0.5 | 100 | 0.00044 * | 0.3 | 100 | ESRC |
| 503 | 100 | 400–700 | - | 24 | 12.7 | - | - | - | |
| 505 | 10 * | 660 | 30 | 3 | 79 | - | - | - | |
| 506 | 0.25 ** | 365 | 5.4 | 0.16 | 11 | - | - | - | |
| 507 | 0.25 ** | 523 | 5.4 | 0.16 | 66 | - | - | - | |
| 508 | 50 | 465–480 | - | 1 | 20 | - | - | - | |
| 509 | 50 | 465–480 | - | 1 | 10 | - | - | - | |
| 510 | 50 | 465–480 | - | 1 | 75 | - | - | - | |
| 511 | 500 | 650–670 | 10.8 | 0.5 | 87.3 (±7.4) | - | - | - | |
| 512 | 1 | 600–700 | 30 | 0.08 | 98 | 0.2 | |||
| Cysts | |||||||||
| 495 | 0.037 * | >470 | 90 | 0.5 | 100 | 7.2 * | 0.3 | 100 | ESRC |
| 504 | 5 | 600–700 | 60 | 0.3 | 90 | 0.5 | - | - | |
| 505 | 10 * | 660 | 30 | 3 | 23 | - | - | - | |
| Code | Concentration (µM) | Mortality (%) | IC50 µM | CT-Toxicity (µM) | Toxicity (%) | Exposure Time (h) | Cell Line |
|---|---|---|---|---|---|---|---|
| 515 | 0.38 | 50 | 0.38 | 10 | 50 | 72 | A549 |
| 531 | 0.58 | 50 | 0.58 | 10 | 50 | 72 | A549 |
| 529 | 0.64 | 50 | 0.64 | 10 | 50 | 72 | A549 |
| 533 | 1.01 | 50 | 1.01 | 10 | 50 | 72 | A549 |
| 53 | 39.60 | 50 | 39.60 | 100 | 3 | 24 | HaCaT |
| 218 | 50 | 53 | - | 50 | 20 | 24 | HeLa |
| 223 | 50 | 65 | - | 50 | 11 | 24 | HeLa |
| 83 | 62.50 | 50 | 62.50 | 100 | 6 | 24 | HaCaT |
| 358 | 99.80 | 50 | 99.80 | 100 | 4 | 24 | HaCaT |
| 277 | 106 | 50 | 106 | 100 | 0 | 24 | HaCaT |
| Miltefosine (troph.) | 250 | 100 | 48 | ||||
| Miltefosine (cysts) | 510 | 100 | 48 | ||||
| Chlorhexidine (troph.) | 20 | 64 | 72 |
| Code | Concentration (µM) | Mortality (%) | IC50 µM | CT-Toxicity (µM) | Toxicity (%) | Exposure Time (h) | Cell Line |
|---|---|---|---|---|---|---|---|
| Trophozoites | |||||||
| 421 * | 0.02 | 94 | - | 0.01 | 17 | 24 | HeLa |
| 416 | 0.08 | 50 | 0.08 | 8.74 | 50 | 48 | J774A.1 |
| 518 | 0.08 | 50 | 0.08 | 10 | 50 | 72 | A549 |
| 46 | 0.23 | 50 | 0.23 | 1.07 | 50 | 48 | J774A.1 |
| 254 | 1.18 | 50 | 1.18 | 5.20 | 50 | 48 | J774A.1 |
| 522 | 2.40 | 50 | 2.40 | 10 | 50 | 72 | A549 |
| 83 | 7.50 | 50 | 7.50 | 100 | 6 | 24 | HaCaT |
| 111 | 10 | 98.80 | 6 | 20 | 45 | 48 | SH-SY5Y |
| 113 | 10 | 99.50 | - | 20 | 26 | 48 | SH-SY5Y |
| 114 | 10 | 100 | 0.92 | 20 | 0.50 | 48 | SH-SY5Y |
| 115 | 10 | 100 | 1.40 | 20 | 2 | 48 | SH-SY5Y |
| 116 | 10 | 52.80 | 11.50 | 20 | 24 | 48 | SH-SY5Y |
| 117 | 10 | 99.30 | 10 | 20 | 17 | 48 | SH-SY5Y |
| 118 | 10 | 99.20 | 3 | 20 | 10 | 48 | SH-SY5Y |
| 119 | 10 | 99.80 | 3.30 | 20 | 0 | 48 | SH-SY5Y |
| 120 | 10 | 100 | 1.10 | 20 | 41 | 48 | SH-SY5Y |
| 229 | 10 | 84.40 | 7.20 | 20 | 15 | 48 | SH-SY5Y |
| 34 | 20.30 | 50 | 20.30 | 85.21 | 50 | 24 | J774A.1 |
| 16 | 23.67 | 50 | 23.67 | 262.57 | 50 | 24 | J774A.1 |
| 226 | 29.19 | 50 | 29.19 | 118.06 | 50 | 24 | J774A.1 |
| 15 | 37.56 | 50 | 37.56 | 319.53 | 50 | 24 | J774A.1 |
| 13 | 50 | 72 | 50 | 4 | 24 | HeLa | |
| 79 | 50 | 53 | - | 50 | 18 | 24 | HeLa |
| 206 | 50 | 88 | 23.34 | 23.34 | 16 | 24 | HBEC-5i |
| 214 | 50 | 58 | 62.91 | 62.91 | 16.30 | 24 | HBEC-5i |
| 218 | 50 | 69 | - | 50 | 20 | 24 | HeLa |
| 329 | 56.08 | 90 | 27.67 | 129.40 | 50 | 48 | J774A.1 |
| 333 | 89.07 | 50 | 89.07 | 304.60 | 50 | 48 | J774A.1 |
| 334 | 95.34 | 90 | 29.28 | 141 | 50 | 48 | C6, CHO-K1 |
| 18 | 100 | 72 | 9.40 | 100 | 1 | 24 | HaCaT |
| 53 | 100 | 66 | 24.20 | 100 | 3 | 24 | HaCaT |
| 358 | 100 | 60 | 53.70 | 100 | 4 | 24 | HaCaT |
| 103 | 102.10 | 50 | 102.10 | 100 | 5 | 24 | HaCaT |
| 325 | 103.06 | 90 | 17.42 | 509.68 | 50 | 48 | J774A.1 |
| 386 | 171.30 | 80 | - | 171.30 | 21 | 24 | HBEC-5i |
| 306 | 397.70 | 59 | - | 397.70 | 15.80 | 24 | HBEC-5i |
| 47 | 447.91 | 51.39 | - | 447.91 | 21 | 24 | HaCaT |
| 96 | 447.91 | 95 | 447.91 | 31 | 24 | HaCaT | |
| 393 | 515.10 | 54 | - | 515.10 | 11 | 24 | pHCEC, HaCaT |
| 514 | 17,070 | 90 | 4440 | 68,500 | 50 | 72 | J774A.1 |
| 513 | 20,630 | 90 | 9310 | 48,760 | 50 | 72 | J774A.1 |
| Amphotericin B | 0.48 | 50 | 72 | ||||
| Azithromycin | 0.03 | 50 | 24 | ||||
| Fluconazole | 13.9 | 50 | 48 | ||||
| Miltefosine | 91.5 | 90 | 72 | ||||
| Nitroxoline | 1.16 | 50 | 24 | ||||
| Pentamidine | 10 | 50 | 120 | ||||
| Rifampicin | 320 | 90 | 72 | ||||
| Cysts | |||||||
| 16 | 7.15 | 50 | 7.15 | 262.57 | 50 | 24 | J774A.1 |
| 34 | 14.46 | 50 | 14.46 | 85.21 | 50 | 24 | J774A.1 |
| 15 | 39.96 | 50 | 39.96 | 319.53 | 50 | 24 | J774A.1 |
| 226 | 43.13 | 50 | 43.13 | 118.06 | 50 | 24 | J774A.1 |
| Amphotericin B | 10.82 | 100 | 48 | ||||
| Miltefosine | 21.6 | 50 | 24 | ||||
| Nitroxoline | 1.26 | 50 | 24 | ||||
| Code | Concentration (µM) | Mortality (%) | IC50 µM | CT-Toxicity (µM) | Toxicity (%) | Exposure Time (h) | Cell Line |
|---|---|---|---|---|---|---|---|
| Trophozoites | |||||||
| 498 * | 0.00405 | 50 | 0.00405 | 0.05308 | 50 | 168 | HaCaT |
| 499 * | 0.0042 | 50 | 0.0042 | 0.0572 | 50 | 168 | HaCaT |
| 500 * | 0.0067 | 50 | 0.0067 | 0.129 | 50 | 168 | HaCaT |
| 501 * | 0.0132 | 50 | 0.0132 | 0.144 | 50 | 168 | HaCaT |
| 522 | 0.16 | 50 | 0.16 | 10 | 50 | 72 | A549 |
| 535 | 0.61 | 50 | 0.61 | 10 | 50 | 72 | A549 |
| 377 | 5 | 76 | - | 10 | 18 | 24 | HeLa |
| 107 | 5.70 | 50 | 5.90 | 38.50 | 50 | 72 | MRC5, LC |
| 347 | 10 | 80 | - | 10 | 24 | 2 | HeLa |
| 348 | 10 | 85 | - | 10 | 18 | 2 | HeLa |
| 294 | 15.60 | 100 | 6.45 | 51 | 50 | 24 | SRB |
| 394 | 30 | 100 | -- | 15 | 8 | 24 | HaCaT |
| 275 | 30.37 | 100 | - | 91.14 | 0 | 12 | L929 |
| 299 | 30.77 | 100 | - | 266.16 | 50 | 6 | NB1RGB, SRB |
| 302 | 33.56 | 53 | - | 503.36 | 50 | 6 | NB1RGB, SRB |
| 60 | 50 | 52.70 | 100 | 19 | 24 | HeLa | |
| 125 | 50 | 68.75 | - | 99.99 | 2 | 24 | HaCaT |
| 398 | 60.13 | 67.70 | - | 120 | 8 | 24 | HaCaT |
| 374 | 65.51 | 100 | - | 131 | 0 | 72 | J774A.1 |
| 240 | 99.94 | 62.25 | - | 99.94 | 19 | 24 | HaCaT |
| 148 | 99.96 | 57.50 | - | 99.96 | 1 | 24 | HaCaT |
| 239 | 99.97 | 68.75 | - | 99.97 | 2 | 24 | HaCaT |
| 237 | 99.98 | 82.50 | - | 99.98 | 0 | 24 | HaCaT |
| 132 | 99.99 | 74.50 | - | 99.99 | 2 | 24 | HaCaT |
| 152 | 99.99 | 68.75 | - | 99.99 | 0 | 24 | HaCaT |
| 155 | 99.99 | 75 | - | 99.99 | 4 | 24 | HaCaT |
| 123 | 100 | 62.50 | - | 100 | 3 | 24 | HaCaT |
| 127 | 100 | 86.25 | - | 100 | 1 | 24 | HaCaT |
| 164 | 100 | 50.40 | - | 100 | 1.20 | 24 | HaCaT |
| 241 | 100 | 81.25 | - | 100 | 6.50 | 24 | HaCaT |
| 286 | 100 | 65 | - | 272.70 | 15 | 24 | HeLa |
| 128 | 100.01 | 60 | - | 100.01 | 15 | 24 | HaCaT |
| 133 | 100.01 | 77.50 | - | 100.01 | 0 | 24 | HaCaT |
| 238 | 100.02 | 75 | - | 100.02 | 8 | 24 | HaCaT |
| 137 | 100.03 | 68.75 | - | 100.03 | 3 | 24 | HaCaT |
| 130 | 100.06 | 75 | - | 100.06 | 6 | 24 | HaCaT |
| 138 | 100.06 | 78.75 | - | 100.06 | 15 | 24 | HaCaT |
| 150 | 100.07 | 68.75 | - | 100.07 | 19 | 24 | HaCaT |
| 279 | 131 | 83.5 (±0.5) | - | 131 | 0 | 72 | J774A.1 |
| 157 | 138.10 | 63 | - | 276.10 | 0 | 24 | HaCaT |
| 397 | 162.40 | 58 | - | 162.40 | 5 | 24 | HaCaT |
| 167 | 187.74 | 56 | - | 925.80 | 50 | 24 | HaCaT |
| 284 | 195.70 | 65 | - | 195.70 | 15 | 24 | HaCaT |
| 318 | 149 (±112) | 50 | 149 (±112) | 255 | 50 | 24 | J774A.1 |
| 134 | 276.10 | 75 | - | 276.10 | 6 | 24 | HaCaT |
| 200 | 278.20 | 71 | 53.92 | 278.20 | 15 | 24 | HBEC-5i |
| 385 | 301 | 53 | - | 301 | 5 | HBEC-5i | |
| 141 | 317.30 | 60 | - | 317.30 | 11 | 24 | HaCaT |
| 209 | 320.10 | 100 | 27.21 | 320.10 | 16 | 24 | HBEC-5i |
| 211 | 335.20 | 100 | 30.65 | 335.20 | 15 | 24 | HBEC-5i |
| 208 | 336.30 | 95 | 44.13 | 336.30 | 20 | 24 | HBEC-5i |
| 129 | 337.50 | 50 | - | 337.50 | 0 | 24 | HaCaT |
| 256 | 354.20 | 60 | - | 354.20 | 0 | 24 | HaCaT |
| 159 | 375.50 | 50 | - | 375.50 | 0 | 24 | HaCaT |
| 143 | 393.30 | 86 | - | 393.30 | 0 | 24 | HaCaT |
| 156 | 393.30 | 84 | -- | 393.30 | 0 | 24 | HaCaT |
| 306 | 397.70 | 61 | - | 397.70 | 15.80 | 24 | HBEC-5i |
| 257 | 399.50 | 65 | - | 399.50 | 0 | 24 | HaCaT |
| 258 | 399.50 | 60 | - | 399.50 | 0 | 24 | |
| 69 | 500 | 100 | 14.73 | 104.77 | 50 | 24 | 3T3, HeLa, MCF-7 |
| 396 | 745 | 56 | - | 745 | 4 | 24 | HaCaT |
| 392 | 3536.40 | 55 | - | 3536 | 2 | 24 | HaCaT |
| Amphotericin B | 8.65 | 50 | 72 | ||||
| Azithromycin | 6.68 | 88 | 120 | ||||
| Chlorhexidine | 4.28 | 50 | 96 | ||||
| Corifungin | 200 | 80 | 120 | ||||
| Fluconazole | 121 | 90 | 24 | ||||
| Miltefosine | 168 | 50 | 48 | ||||
| Pentamidine | 1.11 | 50 | 72 | ||||
| PHB | 16.6 | 98 | 24 | ||||
| Propamidine | 3201 | 100 | 48 | ||||
| Rifampicin | 110 | 50 | 72 | ||||
| Cysts | |||||||
| 340 | 7.25 (±3) | 50 | 7.25 (±3) | 550 | 50 | 96 | J774A.1 |
| 338 | 8.25 (±2) | 50 | 8.25 (±2) | 550 | 50 | 96 | J774A.1 |
| 343 | 11 (±0.3) | 50 | 11 (±0.3) | 550 | 50 | 96 | J774A.1 |
| 342 | 15 (±5) | 50 | 15 (±5) | 550 | 50 | 96 | J774A.1 |
| 341 | 22 (±4) | 50 | 22 (±4) | 550 | 50 | 96 | J774A.1 |
| 339 | 41 (±15) | 50 | 41 (±15) | 550 | 50 | 96 | J774A.1 |
| 344 | 57 (±5.5) | 50 | 57 (±5.5) | 550 | 50 | 96 | J774A.1 |
| 384 | 69.95 | 60 | - | 69.95 | 15 | 24 | pHCEC |
| 275 | 91.14 | 100 | - | 91.14 | 0 | 24 | L929 |
| 374 | 131 | 97.44 | - | 131 | 0 | 72 | J774A.1 |
| Chlorhexidine | 642 | 100 | 96 | ||||
| Fluconazole | 1671 | 100 | 24 | ||||
| Miltefosine | 2460 | 50 | 48 | ||||
| Propamidine | 885 | 100 | 48 | ||||
| PHB | 7.87 | 100 | 24 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaúque, B.J.M.; da Silva, T.C.B.; Chagas, L.B.; Kinape, L.F.G.; Bitencourt, P.E.R.; Gaspar, C.J.; Cheinquer, A.C.B.; Rott, M.B.; Zanette, R.A.; Goldim, J.R. Identifying Promising Novel Compounds Against Free-Living Amoebae: A Systematic Review of In Vitro and In Vivo Studies. Parasitologia 2025, 5, 56. https://doi.org/10.3390/parasitologia5040056
Chaúque BJM, da Silva TCB, Chagas LB, Kinape LFG, Bitencourt PER, Gaspar CJ, Cheinquer ACB, Rott MB, Zanette RA, Goldim JR. Identifying Promising Novel Compounds Against Free-Living Amoebae: A Systematic Review of In Vitro and In Vivo Studies. Parasitologia. 2025; 5(4):56. https://doi.org/10.3390/parasitologia5040056
Chicago/Turabian StyleChaúque, Beni Jequicene Mussengue, Thaisla Cristiane Borella da Silva, Luiza Bernardes Chagas, Letícia F. G. Kinape, Paula Eliete Rodrigues Bitencourt, Custódio José Gaspar, Alexandre Coelho Borges Cheinquer, Marilise Brittes Rott, Régis Adriel Zanette, and José Roberto Goldim. 2025. "Identifying Promising Novel Compounds Against Free-Living Amoebae: A Systematic Review of In Vitro and In Vivo Studies" Parasitologia 5, no. 4: 56. https://doi.org/10.3390/parasitologia5040056
APA StyleChaúque, B. J. M., da Silva, T. C. B., Chagas, L. B., Kinape, L. F. G., Bitencourt, P. E. R., Gaspar, C. J., Cheinquer, A. C. B., Rott, M. B., Zanette, R. A., & Goldim, J. R. (2025). Identifying Promising Novel Compounds Against Free-Living Amoebae: A Systematic Review of In Vitro and In Vivo Studies. Parasitologia, 5(4), 56. https://doi.org/10.3390/parasitologia5040056

