Prevalence and Diversity of Gastrointestinal Parasites and Tick Species in Communal Feedlots Compared to Rural Free-Grazing Cattle in the Eastern Cape Province, South Africa
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.1.1. Geographic Location
2.1.2. Social and Agricultural Aspects
2.1.3. Climatic and Ecological Aspects
2.2. Study Design and Sampling Procedure
2.3. Animal Handling and Ethical Considerations
2.4. Parasitological Sampling and Laboratory Analysis
2.4.1. Gastrointestinal Parasite Identification
2.4.2. Tick Collection and Identification
2.5. Body Condition Scoring
2.6. Statistical Analysis
3. Results
3.1. Prevalence of Gastrointestinal Parasites (Based on Morphological Egg Grouping)
3.2. Fecal Egg Counts (FEC)
3.3. Tick Species and Prevalence
3.4. Risk Factors for GI Parasite Prevalence
3.5. Body Condition Score (BCS) Distribution
3.6. Tick Burden
3.7. Tick Control Practices
3.8. Correlation Matrix Between Body Condition Score (BCS) and Selected Variables
4. Discussion
4.1. Gastrointestinal Parasite Burden
4.2. Risk Factors for GI Parasite Infections
4.3. External Parasite (Tick) Infestation
4.4. Tick Control Practices and Challenges
4.5. Body Condition Score and Parasitism
4.6. Methodological Considerations and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Temoso, O.; Myeki, L.W.; Motlhabane, C.; Asante, B.O.; Villano, R.A. The Role of Commercial Agriculture in Meeting Sustainable Development Goals in South Africa: Evidence from Municipal-Level Total Factor Productivity Analysis. J. Clean. Prod. 2024, 142723. [Google Scholar] [CrossRef]
- Rakgase, M.A.; Norris, D. Determinants of livestock farmers’ perception of future droughts and adoption of mitigating plans. Int. J. Clim. Change Strateg. Manag. 2015, 7, 191–205. [Google Scholar] [CrossRef]
- Oduniyi, O.S.; Rubhara, T.T.; Antwi, M.A. Sustainability of livestock farming in South Africa. Outlook on production constraints, climate-related events, and upshot on adaptive capacity. Sustainability 2020, 12, 2582. [Google Scholar] [CrossRef]
- Slayi, M.; Zhou, L.; Nyambo, P.; Jaja, I.F.; Muchaku, S. Communally established cattle feedlots as a sustainable livelihood option for climate change resilience and food security in sub-Saharan Africa: A systematic review. Front. Sustain. Food Syst. 2024, 7, 1325233. [Google Scholar] [CrossRef]
- Mapiye, O.; Chikwanha, O.C.; Makombe, G.; Dzama, K.; Mapiye, C. Livelihood, food and nutrition security in Southern Africa: What role do indigenous cattle genetic resources play? Diversity 2020, 12, 74. [Google Scholar] [CrossRef]
- Gwiriri, L.C.; Bennett, J.; Mapiye, C.; Marandure, T.; Burbi, S. Constraints to the sustainability of a ‘systematised’ approach to livestock marketing amongst smallholder cattle producers in South Africa. Int. J. Agric. Sustain. 2019, 17, 189–204. [Google Scholar] [CrossRef]
- Mathinya, V.N.; Franke, A.C.; van de Ven, G.W.J.; Giller, K.E. Can small-scale farming systems serve as an economic engine in the former homelands of South Africa? Front. Sustain. Food Syst. 2023, 7, 1222120. [Google Scholar] [CrossRef]
- Jaja, I.F.; Wanga-Ungeviwa, P.A. 6-year retrospective report of livestock parasitic diseases in the Eastern Cape Province, South Africa. Open Vet. J. 2022, 12, 204–211. [Google Scholar] [CrossRef]
- Yawa, M.; Nyangiwe, N.; Jaja, I.F.; Marufu, M.C.; Kadzere, C.T. Acaricide resistance of Rhipicephalus decoloratus ticks collected from communal grazing cattle in South Africa. J. Adv. Vet. Anim. Res. 2022, 9, 33–41. [Google Scholar] [CrossRef]
- Nyangiwe, N.; Sikade, N.; Yawa, M.; Goni, S. Population dynamics of ticks (Acari: Ixodidae) infesting cattle in the central region of the Eastern Cape Province, South Africa. Appl. Anim. Husb. Rural. Dev. 2020, 13, 35–41. [Google Scholar]
- Mpofu, B.I.; Slayi, M.; Mutero, G.; Mlahlwa, S.; Jaja, I.F. Assessing body condition scores, weight gain dynamics, and fecal egg counts in feedlot and non-feedlot cattle within high throughput abattoirs of the Eastern Cape Province. Front. Anim. Sci. 2023, 4, 1302320. [Google Scholar] [CrossRef]
- Jansen, M.S.; Nyangiwe, N.; Yawa, M.; Dastile, M.; Mabhece, V.; Muchenje, V.; Mpendulo, T.C. Prevalence and seasonal variation of gastrointestinal nematodes and coccidia infecting ovine grazing on communal rangelands in the Eastern Cape, South Africa. Parasitol. Res. 2020, 119, 4169–4175. [Google Scholar] [CrossRef]
- Makwarela, T.G.; Nyangiwe, N.; Masebe, T.; Mbizeni, S.; Nesengani, L.T.; Djikeng, A.; Mapholi, N.O. Tick Diversity and Distribution of Hard (Ixodidae) Cattle Ticks in South Africa. Microbiol. Res. 2023, 14, 42–59. [Google Scholar] [CrossRef]
- Yawa, M.; Nyangiwe, N.; Jaja, I.F.; Kadzere, C.T.; Marufu, M.C. Communal cattle farmer’s knowledge, attitudes and practices on ticks (Acari: Ixodidae), tick control and acaricide resistance. Trop. Anim. Health Prod. 2020, 52, 3005–3013. [Google Scholar] [CrossRef]
- Makwarela, T.G.; Djikeng, A.; Masebe, T.M.; Nkululeko, N.; Nesengani, L.T.; Mapholi, N.O. Vector abundance and associated abiotic factors that influence the distribution of ticks in six provinces of South Africa. Vet. World 2024, 17, 1765–1777. [Google Scholar] [CrossRef]
- Yawa, M.; Nyangiwe, N.; Jaja, I.F.; Kadzere, C.T.; Marufu, M.C. Prevalence of serum antibodies of tick-borne diseases and the presence of Rhipicephalus microplus in communal grazing cattle in the north-eastern region of the Eastern Cape Province of South Africa. Parasitol. Res. 2021, 120, 1183–1191. [Google Scholar] [CrossRef]
- Slayi, M.; Zhou, L.; Jaja, I.F. Constraints inhibiting farmers’ adoption of cattle feedlots as a climate-smart practice in rural communities of the eastern cape, South Africa: An In-Depth Examination. Sustainability 2023, 15, 14813. [Google Scholar] [CrossRef]
- Slayi, M.; Zhou, L.; Jaja, I.F. Smallholder farmers’ adoption and perception of communally established cattle feedlots for climate change resilience in the Eastern Cape, South Africa. Front. Sustain. Food Syst. 2023, 7, 1239766. [Google Scholar] [CrossRef]
- Sotsha, K.; Fakudze, B.; Khoza, T.; Mmbengwa, V.; Ngqangweni, S.; Lubinga, M.H.; Mazibuko, N.; Ntshangase, T.; Nyhodo, B.; Myeki, L.; et al. Factors influencing communal livestock farmers’ participation into the National red Meat Development Programme (NRMDP) in South Africa: The case of the eastern Cape Province. OIDA Int. J. Sustain. Dev. 2018, 11, 73–80. [Google Scholar]
- Marandure, T.; Bennett, J.; Dzama, K.; Gwiriri, L.C.; Bangani, N.; Mapiye, C. Envisioning more effective delivery of custom feeding programs using participatory approaches: Lessons from Eastern Cape Province, South Africa. Outlook Agric. 2019, 48, 157–166. [Google Scholar] [CrossRef]
- Nyhodo, B.; Mmbengwa, V.M.; Balarane, A.; Ngetu, X. Formulating the least cost feeding strategy of a custom feeding programme: A linear programming approach. Int. J. Sustain. Dev. 2014, 7, 85–92. [Google Scholar]
- Mucina, L.; Rutherford, M.C. The Vegetation of South Africa, Lesotho and Swaziland; SANBI: Pretoria, South Africa, 2011; p. 513. [Google Scholar]
- Acocks, J.P.H. Veld Types of South Africa, 3rd ed.; Memoirs of the Botanical Survey of South Africa; Government Printer: Pretoria, South Africa, 1988; pp. 1–146. [Google Scholar]
- Nciizha, A.D.; Wakindiki, I.I.C. Particulate organic matter, soil texture and mineralogy relations in some Eastern Cape ecotopes in South Africa. S. Afr. J. Plant Soil. 2012, 29, 39–46. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 13 February 2025).
- Leslie, K.; Jackson, A.; Duffield, T.; Dohoo, I.; DesCoteaux, L.; Hovingh, E. Survey of selected risk factors and therapeutic strategies for parasitism on milk production response of lactating dairy cattle. Bov. Pract. 2000, 23–31. [Google Scholar] [CrossRef]
- Poglayen, G.; Gelati, A.; Scala, A.; Naitana, S.; Musella, V.; Nocerino, M.; Cringoli, G.; di Regalbono, A.F.; Habluetzel, A. Do natural catastrophic events and exceptional climatic conditions also affect parasites? Parasitology 2023, 150, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Van Wyk, J.A.; Mayhew, E. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: A practical lab guide. Onderstepoort J. Vet. Res. 2013, 80, 539. [Google Scholar] [CrossRef]
- Mpofu, B.I.; Slayi, M.; Zhou, L.; Jaja, I.F. Farmers’ perceptions and awareness of cattle feedlots as a climate-smart approach to enteric methane emissions. Heliyon 2024, 10, e39849. [Google Scholar] [CrossRef]
- Strydom, T.; Lavan, R.P.; Torres, S.; Heaney, K. The economic impact of parasitism from nematodes, trematodes and ticks on beef cattle production. Animals 2023, 13, 1599. [Google Scholar] [CrossRef]
- Hildreth, M.B.; McKenzie, J.B. Epidemiology and control of gastrointestinal nematodes of cattle in northern climates. Vet. Clin. Food Anim. Pract. 2020, 36, 59–71. [Google Scholar] [CrossRef]
- Fazzio, L.E.; Sánchez, R.O.; Streitenberger, N.; Galvan, W.R.; Giudici, C.J.; Gimeno, E.J. The effect of anthelmintic resistance on the productivity in feedlot cattle. Vet. Parasitol. 2014, 206, 240–245. [Google Scholar] [CrossRef]
- Ames, E.R.; Rubin, R.; Matsushima, J.K. Effects of gastrointestinal nematode parasites on performance in feedlot cattle. J. Anim. Sci. 1969, 28, 698–704. [Google Scholar] [CrossRef]
- Adem, A.R.; Oyekale, A.S. Factors explaining smallholder cattle farmers’ access to climate change information in semi-arid region of South Africa. Environ. Econ. 2015, 6, 99–103. [Google Scholar]
- Tiele, D.; Sebro, E.; H/Meskel, D.; Mathewos, M. Epidemiology of gastrointestinal parasites of cattle in and around Hosanna Town, Southern Ethiopia. Vet. Med. Res. Rep. 2023, 14, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Avramenko, R.W.; Redman, E.M.; Lewis, R.; Bichuette, M.A.; Palmeira, B.M.; Yazwinski, T.A.; Gilleard, J.S. The use of nemabiome metabarcoding to explore gastro-intestinal nematode species diversity and anthelmintic treatment effectiveness in beef calves. Int. J. Parasitol. 2017, 47, 893–902. [Google Scholar] [CrossRef] [PubMed]
Parasite Group | Communal Feedlot (%) | Rural Community (%) | p-Value |
---|---|---|---|
Strongyle-type eggs | 65 | 87 | <0.001 |
Oesophagostomum spp. | 20 | 35 | 0.042 |
Mixed infections | 33 | 60 | 0.001 |
Production System | Mean FEC (EPG) ± SD | Min–Max EPG | p-Value |
---|---|---|---|
Communal Feedlot | 642 ± 215 | 100–1150 | |
Rural Community | 1210 ± 396 | 250–2050 | <0.001 |
Tick Species | Communal Feedlot (%) | Rural Community (%) | p-Value |
---|---|---|---|
R. microplus | 50 | 70 | 0.010 |
R. decoloratus | 35 | 58 | 0.007 |
R. evertsi evertsi | 20 | 28 | 0.243 |
Amblyomma hebraeum | 15 | 32 | 0.012 |
Mixed infestations | 42 | 65 | 0.003 |
Variable | OR (95% CI) | p-Value |
---|---|---|
Production system (Rural) | 2.43 (1.35–4.37) | 0.003 |
No recent deworming | 3.18 (1.70–5.92) | <0.001 |
Poor body condition (BCS ≤ 2) | 2.01 (1.05–3.87) | 0.035 |
BCS Category | Feedlot Cattle (%) | Rural Cattle (%) | p-Value |
---|---|---|---|
Poor (1–2) | 12 | 38 | 0.001 |
Moderate (3) | 48 | 42 | 0.417 |
Good (4–5) | 40 | 20 | 0.003 |
Tick Species | Feedlot (Mean ± SD) | Rural (Mean ± SD) | p-Value |
---|---|---|---|
R. microplus | 8.5 ± 3.2 | 12.1 ± 4.5 | 0.006 |
R. decoloratus | 6.2 ± 2.8 | 9.0 ± 3.9 | 0.012 |
Amblyomma hebraeum | 3.0 ± 1.1 | 4.8 ± 1.6 | 0.010 |
Total ticks/animal | 17.7 ± 6.5 | 25.9 ± 7.8 | <0.001 |
Practice | Feedlot (%) | Rural (%) | p-Value |
---|---|---|---|
Regular acaricide use | 85 | 40 | <0.001 |
Traditional remedies | 5 | 30 | <0.001 |
No tick control | 10 | 30 | 0.002 |
Variable | BCS | GI Parasite FEC | Total Tick Count | Production System | Deworming Status |
---|---|---|---|---|---|
Body Condition Score (BCS) | - | −0.63 ** | −0.57 ** | −0.45 * | −0.51 ** |
GI Parasite Fecal Egg Count | - | 0.48 * | 0.53 ** | 0.49 * | |
Total Tick Count | - | 0.42 * | 0.38 * | ||
Production System (Rural = 1, Feedlot = 0) | - | 0.46 * | |||
Deworming Status (Yes = 0, No = 1) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slayi, M.; Mpisana, Z. Prevalence and Diversity of Gastrointestinal Parasites and Tick Species in Communal Feedlots Compared to Rural Free-Grazing Cattle in the Eastern Cape Province, South Africa. Parasitologia 2025, 5, 28. https://doi.org/10.3390/parasitologia5020028
Slayi M, Mpisana Z. Prevalence and Diversity of Gastrointestinal Parasites and Tick Species in Communal Feedlots Compared to Rural Free-Grazing Cattle in the Eastern Cape Province, South Africa. Parasitologia. 2025; 5(2):28. https://doi.org/10.3390/parasitologia5020028
Chicago/Turabian StyleSlayi, Mhlangabezi, and Zuko Mpisana. 2025. "Prevalence and Diversity of Gastrointestinal Parasites and Tick Species in Communal Feedlots Compared to Rural Free-Grazing Cattle in the Eastern Cape Province, South Africa" Parasitologia 5, no. 2: 28. https://doi.org/10.3390/parasitologia5020028
APA StyleSlayi, M., & Mpisana, Z. (2025). Prevalence and Diversity of Gastrointestinal Parasites and Tick Species in Communal Feedlots Compared to Rural Free-Grazing Cattle in the Eastern Cape Province, South Africa. Parasitologia, 5(2), 28. https://doi.org/10.3390/parasitologia5020028