An Overview of Leishmania In Vitro Cultivation and Implications for Antileishmanial Screenings against Promastigotes
Abstract
:1. Introduction
1.1. Leishmaniasis
1.2. Parasite Stages and In Vitro Cultivation
2. Research on Leishmania Cultivation
2.1. Brief Historical Overview of Leishmania Cultivation
2.2. Media for Leishmania Cultivation
2.3. What Has Been Used for Leishmania Cultivation So Far?
2.4. Required Supplementation
2.4.1. Serum
2.4.2. Blood/Hemin Source
2.4.3. Urine
2.4.4. Additional Supplements: Amino Acids, Vitamins and Biopterin
2.4.5. Antibiotics
2.4.6. pH and Temperature
3. Methods
4. Perspectives
- -
- Preferably use the same batch of M199 or RPMI-1640 from the same supplier;
- -
- Consider pH range of 7.3–7.4 throughout cultivation;
- -
- Determine the ideal percentage of FBS (ranging from 10–20%) to be supplemented in culture for testing new compounds, because certain molecules can interact with components of the serum, thus altering its effectiveness;
- -
- Incubate promastigotes at 24–26 °C in medium supplemented with 5% penicillin/streptomycin, 0.1% hemin (25 mg/mL in 50% triethanolamine), 10 mM adenine (pH 7.5), and 5 mM L-glutamine;
- -
- Understand the doubling time of Leishmania strains in question and consider the incubation time for leishmanicidal candidates by accounting for the culture’s doubling time and the ratio of drug candidate concentration to the number of parasites per mL;
- -
- Standardization of the parasite number to obtain homogeneous cells in log and stationary phases.
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A Review. F1000Research 2017, 6, 750. [Google Scholar] [CrossRef]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef]
- Sabzevari, S.; Mohebali, M.; Hashemi, A. Cutaneous and Visceral Leishmaniasis: Parasites, Vectors and Reservoir Hosts in Endemic Foci of North Khorasan, Northeastern Iran—A Narrative Review. J. Med. Microbiol. Infect. Dis. 2020, 8, 40–44. [Google Scholar] [CrossRef]
- World Health Organization. Leishmaniasis. 2023. Available online: https://www.who.int/health-topics/leishmaniasis#tab=tab_1 (accessed on 28 June 2024).
- Alcântara, L.M.; Ferreira, T.C.; Gadelha, F.R.; Miguel, D.C. Challenges in Drug Discovery Targeting TriTryp Diseases with an Emphasis on Leishmaniasis. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 430–439. [Google Scholar] [CrossRef]
- Serafim, T.D.; Coutinho-Abreu, I.V.; Dey, R.; Kissinger, R.; Valenzuela, J.G.; Oliveira, F. Shaden Kamhawi Leishmaniasis: The Act of Transmission. Trends Parasitol. 2021, 37, 976–987. [Google Scholar] [CrossRef]
- Visvesvara, G.S.; Garcia, L.S. Culture of Protozoan Parasites. Clin. Microbiol. Rev. 2002, 15, 327–328. [Google Scholar] [CrossRef]
- Sereno, D.; Silva, A.C.; Mathieu-Daude, F.; Ouaissi, A. Advances and Perspectives in Leishmania Cell Based Drug-Screening Procedures. Parasitol. Int. 2007, 56, 3–7. [Google Scholar] [CrossRef]
- Steverding, D. The History of Leishmaniasis. Parasites Vectors 2017, 10, 82. [Google Scholar] [CrossRef]
- Leishman, W.B. On the possibility of the occurrence of trypanosomiasis in India. Br. Med. J. 1903, 1, 1252–1254. [Google Scholar] [CrossRef]
- Ross, R. Note on the bodies recently described by Leishman and Donovan. Br. Med. J. 1903, 2, 1261. [Google Scholar] [CrossRef]
- Rogers, L. Preliminary note on the development of Trypanosoma in cultures of the Cunningham-Leishman-Donovan bodies of cachexial fever and kala-azar. Lancet 1904, 164, 215–216. [Google Scholar] [CrossRef]
- Yao, T.; Asayama, Y. Animal-Cell Culture Media: History, Characteristics, and Current Issues. Reprod. Med. Biol. 2017, 16, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Sharief, A.H.; Khalil, E.A.G.A.; Suliaman, S.M. In Vitro Cultivation of Leishmania donovani Promastigotes: Growth Potential of Human Urine as Replacement of Fetal Calf Serum. Ann. Syst. Biol. 2021, 4, 001–004. [Google Scholar] [CrossRef]
- Ladopoulos, T.; Ntais, P.; Tsirigotakis, N.; Dokianakis, E.; Antoniou, M. The Proliferation Potential of Promastigotes of the Main Leishmania Species of the Old World in NNN Culture Medium Prepared Using Blood of Four Different Mammals. Exp. Parasitol. 2015, 157, 124–127. [Google Scholar] [CrossRef]
- Nicolle, C.H. Culture du parasite du Bouton d’Orient. C. R. Acad. Sci. 1908, 146, 842–843. [Google Scholar]
- Hai, N.; Akhter, R.P.; Ali, I. Isolation, Maintenance and Detection of Leishmania Parasite by Microscopy and Culture Technique. In Proceedings of the 2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 10–14 January 2017. [Google Scholar] [CrossRef]
- Evans, D.A. Leishmania. In In-Vitro Methods for Parasite Cultivation; Taylor, A.E., Baker, J.R., Eds.; Academic Press: London, UK, 1987; pp. 52–75. [Google Scholar]
- Tobie, E.J.; von Brand, T.; Mehlman, B.A. Cultural and Physiological Observations on Trypanosoma rhodesiense and Trypanosoma gambiense. J. Parasitol. 1950, 36, 48. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.L. Studies on Haemoflagellates: I. A Semi-Solid Medium and a Fluid Medium with a Solid Base for Growing Various Species of Leishmania and Trypanosoma cruzi. J. Infect. Dis. 1947, 80, 164–171. [Google Scholar] [CrossRef]
- Salle, A.J.; Schmidt, C.L.A. The metabolism of Leishmania tropica. J. Infect. Dis. 1928, 43, 378–384. [Google Scholar] [CrossRef]
- Fulton, J.D.; Joyner, L.P. Studies on Protozoa. Part I. The Metabolism of Leishman-Donovan Bodies and Flagellates of Leishmania donovani. Trans. R. Soc. Trop. Med. Hyg. 1949, 43, 273–286. [Google Scholar] [CrossRef]
- Morgan, J.F.; Morton, H.J.; Parker, R.C. Nutrition of Animal Cells in Tissue Culture. I. Initial Studies on a Synthetic Medium. Exp. Biol. Med. 1950, 73, 1–8. [Google Scholar] [CrossRef]
- Costa, A.F.P.; Brito, R.C.F.; Carvalho, L.M.; Cardoso, J.M.O.; Vieira, P.M.A.; Reis, A.B.; Soares, R.D.O.A.; Roatt, B.M. Liver infusion tryptose (LIT): The best choice for growth, viability, and infectivity of Leishmania infantum parasites. Parasitol. Res. 2020, 119, 4185–4195. [Google Scholar] [CrossRef] [PubMed]
- Habibzadeh, S.; Doroud, D.; Taheri, T.; Seyed, N.; Rafati, S. Leishmania Parasite: The Impact of New Serum-Free Medium as an Alternative for Fetal Bovine Serum. PubMed 2021, 25, 349–358. [Google Scholar] [CrossRef]
- Siripattanapipong, S.; Boontanom, P.; Leelayoova, S.; Mungthin, M.; Tan-ariya, P. In Vitro Growth Characteristics and Morphological Differentiation of Leishmania martiniquensis Promastigotes in Different Culture Media. Acta Trop. 2019, 197, 105039. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, V.; Dalimi, A.; Ghaffarifar, F. LB Broth-Lyophilized Rabbit Serum (LLR) as a New and Suitable Culture Medium for Cultivation of Promastigotes of Leishmania major. J. Parasit. Dis. 2017, 41, 247–251. [Google Scholar] [CrossRef]
- Castelli, G.; Galante, A.; Verde, V.L.; Migliazzo, A.; Reale, S.; Lupo, T.; Piazza, M.; Vitale, F.; Bruno, F. Evaluation of two modified culture media for Leishmania infantum cultivation versus different culture media. J. Parasitol. 2014, 100, 228–230. [Google Scholar] [CrossRef]
- Santarém, N.; Cunha, J.; Silvestre, R.; Silva, C.; Moreira, D.; Ouellette, M.; Cordeiro-Da-Silva, A. The Impact of Distinct Culture Media in Leishmania Infantum Biology and Infectivity. Parasitology 2013, 141, 192–205. [Google Scholar] [CrossRef]
- Nasiri, V. Sheep Blood–LB Agar Base Medium (SLM) as a Simple and Suitable Medium for the Cultivation of Leishmania major Promastigotes. Parasitol. Res. 2013, 112, 3741–3742. [Google Scholar] [CrossRef]
- Nayak, A.; Akpunarlieva, S.; Barrett, M.; Burchmore, R. A Defined Medium for Leishmania Culture Allows Definition of Essential Amino Acids. Exp. Parasitol. 2018, 185, 39–52. [Google Scholar] [CrossRef]
- Grekov, I.; Svobodová, M.; Nohýnková, E.; Lipoldová, M. Preparation of Highly Infective Leishmania Promastigotes by Cultivation on SNB-9 Biphasic Medium. J. Microbiol. Methods 2011, 87, 273–277. [Google Scholar] [CrossRef]
- Abhishek, S.; Chaturvedi, S.K.; Gupta, A.K.; Ahmed, G.; Das, V.R.; Narayan, S. A Simple Monophasic LGPY Medium for Routine Maintenance of Leishmania donovani Promastigotes. Parasitol. Res. 2021, 120, 2969–2971. [Google Scholar] [CrossRef]
- Rahi, A.A. Cutaneous Leishmaniasis in Iraq: A Clinicoepidemiological Descriptive Study. Sch. J. Appl. Med. Sci. (SJAMS) 2013, 1, 1021–1025. [Google Scholar] [CrossRef]
- Esfandiari, F.; Derakhshanfar, A.; Goudarzi, F.; Hatam, G. Comparison of Camel, Dog and the Laboratory Animals’ Sera with the Fetal Calf Serum (FCS) for Cultivation of Leishmania major. J. Parasit. Dis. 2020, 44, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Mahamoud, A.; Osman, H.A.; Mansour, D.; el Harith, A. Successful Substitution of Fetal Calf Serum by Human Plasma for Bulk Cultivation of Leishmania donovani Promastigotes. J. Med. Microbiol. 2013, 62, 1165–1169. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, V.; Karimi, G.; Dalimi, A.; Paykari, H.; Ghaffarifar, F. Effects of Sheep and Mouse Urine on the Growth Pattern Of Leishmania major Promastigotes. BioMed Res. Int. 2013, 2013, 748592. [Google Scholar] [CrossRef]
- Rahmani, Z.; Faridnia, R.; Kalani, H.; Ghanei, N.; Fakhar, M.; Zamanian, M.; Keighobadi, M.; Tabaripour, R. Comparative Evaluation of Amniotic Fluid as an Alternative to Fetal Bovine Serum in the Maintenance of Leishmania major and Toxoplasma gondii. Parasitol. Res. 2021, 120, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, V.; Dalimi, A.; Ghaffarifar, F. Use of Chicken (Gallus gallus) Serum as a Costly Replacement for the Fetal Calf Serum in Cultivation of Promastigotes of Leishmania infantum. Asian Pac. J. Trop. Dis. 2013, 3, 169–173. [Google Scholar] [CrossRef]
- Santos, R.C.; Pinho, F.A.; Passos, G.P.; Larangeira, D.F.; Barrouin-Melo, S.M. Isolation of Naturally Infecting Leishmania infantum from Canine Samples in Novy-MacNeal-Nicolle Medium Prepared with Defibrinated Blood from Different Animal Species. Vet. Parasitol. 2018, 257, 10–14. [Google Scholar] [CrossRef]
- Allahverdiyev, A.M.; Bagirova, M.; Elcicek, S.; Koc, R.C.; Oztel, O.N. Effect of Human Urine on Cell Cycle and Infectivity of Leismania Species Promastigotes In Vitro. Am. J. Trop. Med. Hyg. 2011, 85, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, V.; Habibi, G.; Dalimi, A.; Esmailnia, K. Use of Chicken Serum as a Good Replacement for the Fetal Calf Serum in Cultivation of Promastigotes of Leishmania major. Arch. Razi Inst. 2011, 66, 59–64. [Google Scholar] [CrossRef]
- Lemesre, J.L.; Darcy, F.; Kweider, M.; Capron, A.; Santoro, F. Requirements of defined cultivation conditions for standard growth of Leishmania promastigotes in vitro. Acta Trop. 1988, 45, 99–108. [Google Scholar]
- van der Valk, J.; Mellor, D.; Brands, R.; Fischer, R.; Gruber, F.; Gstraunthaler, G.; Hellebrekers, L.; Hyllner, J.; Jonker, F.H.; Prieto, P.; et al. The Humane Collection of Fetal Bovine Serum and Possibilities for Serum-Free Cell and Tissue Culture. Toxicol. Vitr. 2004, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- van der Valk, J.; Bieback, K.; Buta, C.; Cochrane, B.; Dirks, W.G.; Fu, J.; Hickman, J.J.; Hohensee, C.; Kolar, R. Fetal bovine serum (FBS): Past–present–future. Altex 2018, 35, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Sunter, J.; Gull, K. Shape, form, function and Leishmania pathogenicity: From textbook descriptions to biological understanding. Open Biol. 2017, 7, 170165. [Google Scholar] [CrossRef] [PubMed]
- Sasse, M.; Lengwinat, T.; Henklein, P.; Hlinak, A.; Schade, R. Replacement of fetal calf serum in cell cultures by an egg yolk factor with cholecystokinin/gastrin-like immunoreactivity. Altern. Lab. Anim. 2000, 28, 815–831. [Google Scholar] [CrossRef]
- Muniaraj, M.; Lal, C.S.; Kumar, S.; Sinha, P.K.; Das, P. Milk of Cow (Bos taurus), Buffalo (Bubalus bubalis), and Goat (Capra hircus): A Better Alternative than Fetal Bovine Serum in Media for Primary Isolation, in Vitro Cultivation, and Maintenance of Leishmania donovani Promastigotes. J. Clin. Microbiol. 2007, 45, 1353–1356. [Google Scholar] [CrossRef]
- Goodarzi, P.; Arjmand, B.; Emami-Razavi, S.H.; Soleimani, M.; Khodadadi, A.; Mohamadi-Jahani, F.; Aghayan, H.R. Human Autologous Serum as a Substitute for Fetal Bovine Serum in Human Schwann Cell Culture. Acta Medica Iran. 2014, 52, 241–245. [Google Scholar]
- Castelli, G.; Oliveri, E.; Valenza, V.; Giardina, S.; Facciponte, F.; Russa, F.L.; Vitale, F.; Bruno, F. Cultivation of Protozoa Parasites in Vitro: Growth Potential in Conventional Culture Media versus RPMI-PY Medium. Vet. Sci. 2023, 10, 252. [Google Scholar] [CrossRef]
- Zaidi, A.; Singh, K.P.; Ali, V. Leishmania and Its Quest for Iron: An Update and Overview. Mol. Biochem. Parasitol. 2017, 211, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Flannery, A.R.; Renberg, R.L.; Andrews, N.W. Pathways of Iron Acquisition and Utilization in Leishmania. Curr. Opin. Microbiol. 2013, 16, 716–721. [Google Scholar] [CrossRef]
- Kořený, L.; Lukeš, J.; Oborník, M. Evolution of the Haem Synthetic Pathway in Kinetoplastid Flagellates: An Essential Pathway That Is Not Essential after All? Int. J. Parasitol. 2010, 40, 149–156. [Google Scholar] [CrossRef]
- Agarwal, S.; Rastogi, R.; Gupta, D.; Patel, N.; Raje, M.; Mukhopadhyay, A. Clathrin-Mediated Hemoglobin Endocytosis Is Essential for Survival of Leishmania. Biochim. Et Biophys. Acta. Mol. Cell Res. 2013, 1833, 1065–1077. [Google Scholar] [CrossRef] [PubMed]
- Huynh, C.; Yuan, X.; Miguel, D.C.; Renberg, R.L.; Protchenko, O.; Philpott, C.C.; Hamza, I.; Andrews, N.W. Heme Uptake by Leishmania amazonensis Is Mediated by the Transmembrane Protein LHR1. PLoS Pathog. 2012, 8, e1002795. [Google Scholar] [CrossRef] [PubMed]
- Miguel, D.C.; Flannery, A.R.; Mittra, B.; Andrews, N.W. Heme Uptake Mediated by LHR1 Is Essential for Leishmania amazonensis Virulence. Infect. Immun. 2013, 81, 3620–3626. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.S.; Chang, K.P. Heme Requirement and Acquisition by Extracellular and Intracellular Stages of Leishmania mexicana amazonensis. Mol. Biochem. Parasitol. 1985, 16, 267–276. [Google Scholar] [CrossRef]
- Klemba, M.; Gluzman, I.; Goldberg, D.E. A Plasmodium falciparum Dipeptidyl Aminopeptidase I Participates in Vacuolar Hemoglobin Degradation. J. Biol. Chem. 2004, 279, 43000–43007. [Google Scholar] [CrossRef]
- Bringaud, F.; Rivière, L. Virginie Coustou Energy Metabolism of Trypanosomatids: Adaptation to Available Carbon Sources. Mol. Biochem. Parasitol. 2006, 149, 1–9. [Google Scholar] [CrossRef]
- Silber, A.; Colli, W.; Ulrich, H.; Alves, M.M.; Pereira, C. Amino Acid Metabolic Routes in Trypanosoma cruzi: Possible Therapeutic Targets against Chagas; Disease. Curr. Drug Targets. Infect. Disord. 2005, 5, 53–64. [Google Scholar] [CrossRef]
- Vieira, L.L.; Cabantchik, Z.I. Amino Acid Uptake and Intracellular Accumulation in Leishmania major Promastigotes Are Largely Determined by an H+-Pump Generated Membrane Potential. Mol. Biochem. Parasitol. 1995, 75, 15–23. [Google Scholar] [CrossRef]
- Payne, S.H.; Loomis, W.F. Retention and Loss of Amino Acid Biosynthetic Pathways Based on Analysis of Whole-Genome Sequences. Eukaryot. Cell 2006, 5, 272–276. [Google Scholar] [CrossRef]
- Morgan, J.F.; Campbell, M.E.; Morton, H.J. The nutrition of animal tissues cultivated in vitro. I. A survey of natural materials as supplements to synthetic medium 199. J. Natl. Cancer Inst. 1955, 16, 557–567. [Google Scholar] [CrossRef]
- Morton, H.J.; Tolnai, S. Preparation of Medium 199. TCA Man. 1978, 4, 729–736. [Google Scholar] [CrossRef]
- Kumar, V.; Ghosh, S.; Roy, K.; Pal, C.; Singh, S. Deletion of Glutamine Synthetase Gene Disrupts the Survivability and Infectivity of Leishmania donovani. Front. Cell. Infect. Microbiol. 2021, 11, 622266. [Google Scholar] [CrossRef]
- Hendricks, L.; Wright, N. Diagnosis of Cutaneous Leishmaniasis by in Vitro Cultivation of Saline Aspirates in Schneider’s Drosophila Medium. Am. J. Trop. Med. Hyg. 1979, 28, 962–964. [Google Scholar] [CrossRef] [PubMed]
- Trager, W. Nutrition of a Hemoflagellate (Leishmania tarentolae) Having an Interchangeable Requirement for Choline or Pyridoxal. J. Protozool. 1957, 4, 269–276. [Google Scholar] [CrossRef]
- Schuster, F.L.; Sullivan, J.J. Cultivation of Clinically Significant Hemoflagellates. Clin. Microbiol. Rev. 2002, 15, 374–389. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.R.; Zuo, S.Q.; Xiao, F.; Guo, F.Z.; Chen, L.Y.; Bi, K.; Cheng, D.Y.; Xu, Z.N. Advances in Biotin Biosynthesis and Biotechnological Production in Microorganisms. World J. Microbiol. Biotechnol. 2024, 40, 163. [Google Scholar] [CrossRef] [PubMed]
- Satiaputra, J.; Eijkelkamp, B.A.; McDevitt, C.A.; Shearwin, K.E.; Booker, G.W.; Polyak, S.W. Biotin-Mediated Growth and Gene Expression in Staphylococcus Aureus Is Highly Responsive to Environmental Biotin. Appl. Microbiol. Biotechnol. 2018, 102, 3793–3803. [Google Scholar] [CrossRef]
- Riis, S.; Nielsen, F.M.; Pennisi, C.P.; Zachar, V.; Fink, T. Comparative Analysis of Media and Supplements on Initiation and Expansion of Adipose-Derived Stem Cells. Stem Cells Transl. Med. 2016, 5, 314–324. [Google Scholar] [CrossRef]
- Roy, G.; Kündig, C.; Olivier, M.; Papadopoulou, B.; Ouellette, M. Adaptation of Leishmania Cells to in Vitro Culture Results in a More Efficient Reduction and Transport of Biopterin. Exp. Parasitol. 2001, 97, 161–168. [Google Scholar] [CrossRef]
- Vickers, T.J.; Beverley, S.M. Folate Metabolic Pathways in Leishmania. Essays Biochem. 2011, 51, 63–80. [Google Scholar] [CrossRef]
- Trager, W. Pteridine Requirement of the Hemoflagellate Leishmania tarentolae. J. Protozool. 1969, 16, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Kindder, G.W.; Dutta, B.N. The Growth and Nutrition of Crithidia Fasciculata. J. Gen. Microbiol. 1958, 18, 621–638. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.-W.; Kim, B.-R.; Lin, D.; Hyun, S.-A.; Yoon, S.S.; Seo, J.-W. The Effects of Gentamicin and Penicillin/Streptomycin on the Electrophysiology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Manual Patch Clamp and Multi-Electrode Array System. J. Pharmacol. Toxicol. Methods 2018, 91, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.B.; Souza-Silva, F.; Charret, K.S.; Pereira, B.A.S.; Finkelstein, L.C.; Santos-de-Souza, R.; Côrtes, L.M.C.; Pereira, M.C.S.; Oliveira, F.O.R., Jr.; Alves, C.R. Increasing in Cysteine Proteinase B Expression and Enzymatic Activity during in Vitro Differentiation of Leishmania (Viannia) Braziliensis: First Evidence of Modulation during Morphological Transition. Biochimie 2017, 133, 28–36. [Google Scholar] [CrossRef]
- Mule, S.N.; Saad, J.S.; Sauter, I.P.; Fernandes, L.R.; Oliveira, G.S.; Quina, D.; Tano, F.T.; Brandt-Almeida, D.; Padrón, G.; Stolf, B.S.; et al. The Protein Map of the Protozoan Parasite Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis and Leishmania (Leishmania) Infantum during Growth Phase Transition and Temperature Stress. J. Proteom. 2024, 295, 105088. [Google Scholar] [CrossRef]
Medium (Brand) | Components | Serum | Antibiotics | pH/Temp. (°C) | Leishmania sp. (Strain) | Reference |
---|---|---|---|---|---|---|
Liver Infusion Tryptose (LIT) (Sigma, Livonia, MI, USA) | Four-salt solution (NaCl, KCl, Na2HPO4, tryptose) supplemented with bovine hemin in addition to a 10% liver infusion broth and a 40% glucose solution | None; 10% faction V bovine albumin; 10% FBS. | 200 U/mL penicillin; 200 U/mL streptomycin | NI/23–24 | L. infantum (MCAN/BR/08/OP46) | [24] |
Grace’s (Gibco, Grand Island, NY, USA) | @ | |||||
Schneider’s (Sigma, USA) | @ | |||||
CSFM (Complete Serum-Free defined Medium) | MEME as base medium supplemented with sodium bicarbonate, MEM non-essential amino acid solution, MEM amino acids, HEPES, L-glutamine, hemin, BME vitamins solution, and D-glucose | - | 7.2/26 | L. tarentolae Tar II (ATCC 30.267) L. tarentolae-EGFP L. tarentolae-PpSP15-EGFP L. major (MRHO/IR/75/ER) | [25] | |
M199 (Sigma, Steinheim, Germany) | M199 supplemented with sodium bicarbonate, adenosine, HEPES, L-glutamine, and hemin | 5% FBS | 100 µg/mL gentamicin | |||
M199 (Gibco BRL, Saint Egrève, France) | M199 supplemented with L-glutamine, HEPES, phenol red and hemin | 20% FBS | None | 6.7/25 | L. martiniquensis (MHOM/TH/2011/PG) | [26] |
RPMI-1640 (Gibco BRL, France) | RPMI-1640 supplemented with L-glutamine and phenol red | |||||
Grace’s (Gibco BRL, France) | Grace’s supplemented with L-glutamine | |||||
Schneider’s (Sigma, USA) | Schneider’s supplemented with L-glutamine | |||||
Luria-Bertani (LB) broth | Peptone, Yeast Extract and NaCl (for 100 mL). | 1, 2.5, 5 and 10% lyophilized rabbit serum | None | NI/26 | L. major (MRHO/IR/76/ER) | [27] |
RPMI-1640 | 10% FBS | |||||
Evans’ modified Tobie’s medium (EMTM) | Solid Tobie (beef extract, bacteriological peptone, NaCl, agar, and defibrinated rabbit blood) with liquid Tobie (KCl, Na2HPO4, KH2PO4, CaCl2, MgSO4, MgCl2 and NaCl) supplemented with L-proline and phenol red | 10% FBS | 250 μg/mL gentamicin | 7.2/24 | L. infantum (IPT1 ZMON1) | [28] |
RPMI-1640 (Gibco, USA) | RPMI-1640 supplemented with L-glutamine | - | ||||
Peptone-Yeast extract medium (P-Y) | Peptone, yeast extract, Na2HPO4, NaCl and glutamine | 100 U/mL penicillin; 0.1 mg/mL streptomycin. | ||||
RPMI-PY | RPMI-1640 and PY (v:v) | 250 μg/mL gentamicin | ||||
Tobie-PY | PY and liquid Tobie (v:v) | |||||
SDM-79 | SDM-79 supplemented with hemin and biopterin | 10% FBS | NI/27 | L. infantum (MHOM/MA/67/ITMAP-263) | [29] | |
RPMI-1640 (Lonza, Basel, Switzerland) | RPMI-1640 supplemented with L-glutamine and HEPES. | 100 U/mL penicillin; 100 mg/mL streptomycin | ||||
Schneider’s (Sigma, USA) | Schneider’s supplemented with HEPES and phenol red. | 200 U/mL penicillin; 200 U/mL streptomycin | ||||
NNN | NaCl, defibrinated rabbit blood and agar; RPMI as liquid phase | 625 U/mL penicillin; 625 U/mL streptomycin | ||||
SLM | Luria-Bertani (LB) agar plus defibrinated sheep blood as the base and LB broth as the liquid phase | - | NI/26 | L. major (MRHO/IR/76/ER) | [30] | |
HOMEM (Invitrogen, Carlsbad, CA, USA) | @ | 10% FBS | 7.4/27 | L. mexicana (MNYC/BZ/62/M379) L. donovani (MHOM/SD/63/Khartoum) L. major (MHOM/IL/80/Friedlin) | [31] | |
Nayak medium | Modified composition of RE IX medium to include equimolar concentrations (0.5 mM) of all 20 proteinogenic amino acids | |||||
SNB-9 | Blood agar base (neopeptone, NaCl, rabbit defibrinated blood and agar) with a liquid phase (neopeptone and NaCl solution) | 10 or 20% FBS | 50 μg/mL gantamicin | NI/23 | L. major (MHOM/IL/67/LRC-L137 JERICHO II) L. tropica (MHOM/TR/98/HM) | [32] |
Schneider’s (Sigma, USA) | Schneider’s supplemented with 2% urine | 50 μg/mL gantamicin; 63.7 μg/mL penicillin; 100 μg/mL streptomycin | ||||
LGPY | Locke’s salts type inorganic mixture (NaCl, KCl, KH2PO4 and CaCl2) enriched with glucose, peptone and yeast extract | 10% FBS | 7.4/24 | L. donovani (MHOM/IN/80/DD8) | [33] | |
RPMI-1640 | @ | |||||
M199 | @ | |||||
NNN | Solid phase(brain heart infusion, agar, D-Glucose, defibrinated rabbit blood) and a liquid phase (NaCl, KCl, CaCl2, NaHCO3, and glucose | 80 mg/mL gantamicin | NI/25 | Leishmania sp. (isolated) | [34] | |
RPMI-1640 | @ | 10% FBS | 1 U/100 mL penicillin; 1 gm/100 mL streptomycin |
Medium (Brand) | Supplementation | Antibiotics | pH/Temp. (°C) | Leishmania sp. (Strain) | Ref. |
---|---|---|---|---|---|
RPMI-1640 (Sigma) | 10% FBS; BALB/c; rat; guinea pig; hamster; rabbit; dog; camel; cocktail hamster + guinea pig + BALB serum | 100 U/mL penicillin; 100 µg/mL streptomycin | NI/25 | L. major (MRHO/IR/75/ER) | [35] |
NNN | Donkey, horse, sheep, and goat blood | NI/26 ± 1 | L. infantum; L. donovani; L. tropica; L. major | [15] | |
LIT | 15% FBS; pooled human sera; individual human plasma. | 7.4/24–26 | L. donovani | [36] | |
RPMI-1640 (Sigma) | 10% FBS (control); 1, 2.5, 5, and 10% urine of sheep or mouse | 7/26 | L. major (MRHO/IR/76/ER) | [37] | |
RPMI-1640 (Gibco) | 2, 5, 10, 20, and 30% FBS or amniotic fluid | NI/24 | L. major (MRHO/IR/75/ER) | [38] | |
RPMI-1640 (Sigma) | 10% FBS (control); 1, 2.5, 5, and 10% of chicken serum | 7/26 | L. infantum (MCAN/IR/07/Moheb-gh.) | [39] | |
NNN | Ovine, bovine, equine, chicken, and rabbit blood | NI/24–26 | L. infantum (isolated) | [40] | |
RPMI-1640 (Sigma) | 5, 10, 15, 20, 25, and 30% human urine | 80 μg/mL gentamicin | NI/27 | L. tropica L. infantum L. donovani L. major | [41] |
RPMI-1640 (Sigma) | 10% FBS (control); 1, 2.5, 5, and 10% chicken serum | None | 7/26 | L. major (MRHO/IR/75/ER) | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira Filho, V.A.; Garcia, M.S.A.; Rosa, L.B.; Giorgio, S.; Miguel, D.C. An Overview of Leishmania In Vitro Cultivation and Implications for Antileishmanial Screenings against Promastigotes. Parasitologia 2024, 4, 305-318. https://doi.org/10.3390/parasitologia4040027
de Oliveira Filho VA, Garcia MSA, Rosa LB, Giorgio S, Miguel DC. An Overview of Leishmania In Vitro Cultivation and Implications for Antileishmanial Screenings against Promastigotes. Parasitologia. 2024; 4(4):305-318. https://doi.org/10.3390/parasitologia4040027
Chicago/Turabian Stylede Oliveira Filho, Virlânio Alves, Marcus Sávio Araujo Garcia, Leticia Bazilio Rosa, Selma Giorgio, and Danilo Ciccone Miguel. 2024. "An Overview of Leishmania In Vitro Cultivation and Implications for Antileishmanial Screenings against Promastigotes" Parasitologia 4, no. 4: 305-318. https://doi.org/10.3390/parasitologia4040027
APA Stylede Oliveira Filho, V. A., Garcia, M. S. A., Rosa, L. B., Giorgio, S., & Miguel, D. C. (2024). An Overview of Leishmania In Vitro Cultivation and Implications for Antileishmanial Screenings against Promastigotes. Parasitologia, 4(4), 305-318. https://doi.org/10.3390/parasitologia4040027