Human-Biting Activity, Resting Behavior and Yellow Fever Virus Transmission Potential of Aedes Mosquitoes in Southwest Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas Description
2.2. Study Design and Sampling Techniques
2.2.1. Human Landing Collection (HLC)
2.2.2. Pyrethrum Spray Collection (PSC)
2.2.3. Mechanical Aspirator Collection
2.2.4. Mosquito Species Identification
2.2.5. Arboviral Screening
2.3. Data Analysis
3. Results
3.1. Distribution of Mosquitoes
3.2. Hourly Biting Activity
3.3. Resting Sites
3.4. Molecular Speciation of Aedes Mosquitoes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qasim, M.; Naeem, M.; Bodlah, I.; Qasim, M. Mosquito (Diptera: Culicidae) of Murree Hills, Punjab, Pakistan. Pak. J. Zool. 2014, 46, 523–529. [Google Scholar]
- Kuna, A.; Gajewski, M.; Biernat, B. Selected arboviral diseases imported to Poland—Current state of knowledge and perspectives for research. Ann. Agric. Environ. Med. 2019, 26, 385–391. [Google Scholar] [CrossRef]
- Lilay, A.; Asamene, N.; Bekele, A.; Mengesha, M.; Wendabeku, M.; Tareke, I.; Girmay, A.; Wuletaw, Y.; Adossa, A.; Ba, Y.; et al. Reemergence of yellow fever in Ethiopia after 50 years, 2013: Epidemiological and entomological investigations. BMC Infect. Dis. 2017, 17, 343. [Google Scholar] [CrossRef] [Green Version]
- Legesse, M.; Endale, A.; Erku, W.; Tilahun, G.; Medhin, G. Community knowledge, attitudes and practices on Yellow fever in South Omo area, Southern Ethiopia. PLOS Neglected Trop. Dis. 2018, 12, e0006409. [Google Scholar] [CrossRef] [PubMed]
- Mulchandani, R.; Massebo, F.; Bocho, F.; Jeffries, C.L.; Walker, T.; Messenger, L.A. A community-level investigation following a yellow fever virus outbreak in South Omo Zone, South-West Ethiopia. PeerJ 2019, 7, e6466. [Google Scholar] [CrossRef] [PubMed]
- African Union Permanent Representatives Committe (PRC). Briefing on the Outbreaks of Communicable Diseases of 2016 in Different Parts of Arica; African Union Permanent Representatives Committe (PRC): Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Ministry of Health. Yellow fever Outbreak in Wolaita; SNNPRs: Addis Ababa, Ethiopia, 2018. [Google Scholar]
- UNICEF. Humanitarian Situation Report; UNICEF: New York, NY, USA, 2018. [Google Scholar]
- Waldetensai, A.; Nigatu, W.; Asrat, Y.; Sisay, C.; Gunta, M.; Belay, D.; Tasew, G.; Waldetensai, A. Aedes Mosquitoes distribution and risk of Yellow Fever transmission in Gurage Zone, Southwest Ethiopia. Ethiop. J Public Health Nutr. 2020, 4, 19–23. [Google Scholar]
- Getachew, D.; Tekie, H.; Gebre-michael, T.; Balkew, M.; Mesfin, A. Breeding Sites of Aedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethiopia. Interdiscip. Perspect. Infect. Dis. 2015, 2015, 706276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkett-Cadena, N.D.; Eubanks, M.D.; Unnasch, T.R. Preference of Female Mosquitoes for Natural and Artificial Resting Sites. J. Am. Mosq. Control Assoc. 2008, 24, 228–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Organization for Migration (IOM). Ethiopia National Displacement Report 7: Site Assessment Round 28 & Village Assessment Survey Round 11; International Organization for Migration (IOM): Grand-Saconnex, Switzerland, 2021.
- Melese, T.; Belay, T. Groundwater Potential Zone Mapping Using Analytical Hierarchy Process and GIS in Muga Watershed, Abay Basin, Ethiopia. Glob. Challenges 2021, 6, 2100068. [Google Scholar] [CrossRef] [PubMed]
- Shumbulo, A.; Gecho, Y.; Tora, M. Diversity, Challenges and Potentials of Enset (Ensete ventricosum) Production: In case of Offa Woreda, Wolaita Zone, Southern Ethiopia. Food Sci. Qual. Manag. 2012, 7, 24–32. [Google Scholar]
- Menagemeso, M. Factors Affecting Diffusion of Cassava Root: The Case of Ofa Woreda, Wolaita Zone, Southern Ethiopia. Ph.D. Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2018. [Google Scholar]
- WHO. An Operational Mannual for Indoor Residual Spraying (IRS) for Malaria Transmission Control and Ellimination, 2nd ed.; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- PMI. President’s Malaria Initiative. Africa Indoor Residual Spraying Project. Ethiopia PMI Country Profile 2015; PMI: Worcester, MA, USA, 2015. [Google Scholar]
- Huang, Y.-M.; Rueda, L.M. Pictorial keys to the sections, groups, and species of the Aedes (Finlaya) in the Afrotropical Region (Diptera: Culicidae). Zootaxa. [CrossRef] [Green Version]
- Kamgang, B.; Kusimo, M.O.; Wilson-bahun, T.A.; Irving, H.; Lenga, A.; Wondji, C.S. Geographical distribution of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and genetic diversity of invading population of Ae. albopictus in the Republic of the Congo. Wellcome Open Res. 2018, 3, 79. [Google Scholar] [CrossRef] [PubMed]
- Anoopkumar, A.N.; Puthur, S.; Rebello, S.; Aneesh, E.M. Molecular characterization of Aedes, Culex, Anopheles, and Armigeres vector mosquitoes inferred by mitochondrial cytochrome oxidase I gene sequence analysis. Biologia 2019, 74, 1125–1138. [Google Scholar] [CrossRef]
- Behura, S.K.; Lobo, N.F.; Haas, B.; DeBruyn, B.; Lovin, D.D.; Shumway, M.F.; Puiu, D.; Romero-Severson, J.; Nene, V.; Severson, D.W. Complete Sequences of Mitochondria Genomes of Aedes aegypti and Culex quinquefasciatus and Comparative Analysis of Mitochondrial DNA Fragments Inserted in the Nuclear Genomes. Insect. Bichemistry Mol. Biol. 2012, 41, 770–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vedururu, R.K.; Neave, M.J.; Tachedjian, M.; Klein, M.J.; Gorry, P.R.; Duchemin, J.-B.; Paradkar, P.N. RNASeq Analysis of Aedes albopictus Mosquito Midguts after Chikungunya Virus Infection. Viruses 2019, 11, 513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Vadivalagan, C.; Karthika, P.; Murugan, K.; Panneerselvam, C.; Paulpandi, M.; Madhiyazhagan, P.; Wei, H.; Aziz, A.T.; Alsalhi, M.S.; Devanesan, S.; et al. Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera: Culicidae): Influence of environmental barriers in South India. Parasitol. Res. 2015, 115, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, R.C.; Linton, Y.-M.; Fonseca, D.; Schultz, T.R.; Price, D.C.; Strickman, D.A. Making Mosquito Taxonomy Useful: A Stable Classification of Tribe Aedini that Balances Utility with Current Knowledge of Evolutionary Relationships. PLoS ONE 2015, 10, e0133602. [Google Scholar] [CrossRef]
- Agha, S.; Tchouassi, D.P.; Bastos, A.D.S.; Sang, R. Dengue and yellow fever virus vectors: Seasonal abundance, diversity and resting preferences in three Kenyan cities. Parasites Vectors 2017, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Agha, S.B.; Tchouassi, D.P.; Bastos, A.D.S.; Sang, R. Assessment of risk of dengue and yellow fever virus transmission in three major Kenyan cities based on Stegomyia indices. Negl. Trop. Dis. 2017, 11, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Diallo, D.; Sall, A.A.; Diagne, C.T.; Faye, O.; Hanley, K.A.; Buenemann, M.; Ba, Y.; Faye, O.; Weaver, S.C.; Diallo, M. Patterns of a Sylvatic Yellow Fever Virus Amplification in Southeastern Senegal, 2010. Am. J. Trop. Med. Hyg. 2014, 90, 1003–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Captain-Esoah, M.; Baidoo, P.K.; Frempong, K.K.; Adabie-Gomez, D.; Chabi, J.; Obuobi, D.; Amlalo, G.K.; Veriegh, F.B.; Donkor, M.; Asoala, V.; et al. Biting Behavior and Molecular Identification of Aedes aegypti (Diptera: Culicidae) Subspecies in Some Selected Recent Yellow Fever Outbreak Communities in Northern Ghana. J. Med. Èntomol. 2020, 57, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.O.; Adepeju, S.I.; Omosalewa, O.B.; Joseph, A.O. Distribution, abundance and diversity of mosquitoes in Akure, Ondo State, Nigeria. J. Parasitol. Vector Biol. 2013, 5, 132–136. [Google Scholar]
- Hanley, K.A.; Monath, T.P.; Weaver, S.C.; Rossi, S.L.; Richman, R.L.; Vasilakis, N. Fever versus fever: The role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. Infect. Genet. Evol. 2013, 19, 292–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diallo, M.; Fernandez, Z.; Coffey, L.L.; Ba, Y.; Weaver, S.; Ortiz, D.; Mathiot, C.; Tesh, R.B.; Moncayo, A.C.; Sall, A.A. Potential Role of Sylvatic and Domestic African Mosquito Species in Dengue Emergence. Am. J. Trop. Med. Hyg. 2005, 73, 445–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutomiah, J.; Bast, J.; Clark, J.; Richardson, J.; Yalwala, S.; Oullo, D.; Mutisya, J.; Mulwa, F.; Musila, L.; Khamadi, S.; et al. Abundance, diversity, and distribution of mosquito vectors in selected ecological regions of Kenya: Public health implications. J. Vector Ecol. 2013, 38, 134–142. [Google Scholar] [CrossRef] [PubMed]
Sites | Mosquitoes | Seasons | Total | |||||
---|---|---|---|---|---|---|---|---|
Dry | Wet | |||||||
n | Percent | n | Percent | n | Percent | |||
Ofa | Aedes | 3 | 0.2 | 910 | 57.5 | 913 | 57.7 | |
Culex | 17 | 1.0 | 61 | 3.6 | 78 | 4.6 | ||
Total | 20 | 1.2 | 971 | 57.5 | 991 | 58.7 | ||
Boko Dawula | Aedes | 0 | 0.0 | 669 | 39.6 | 669 | 42.3 | |
Culex | 16 | 0.9 | 13 | 0.8 | 29 | 1.7 | ||
Total | 16 | 0.9 | 682 | 40.4 | 698 | 41.3 | ||
Total | Aedes | 3 | 0.02 | 1579 | 93.5 | 1582 | 93.7 | |
Culex | 33 | 2 | 74 | 4.4 | 107 | 6.3 | ||
Grand Total | 36 | 2.1 | 1653 | 97.9 | 1689 | 100.0 |
Abdominal Status | Land Cover Type | Methods | Total (Mean, %) | ||
---|---|---|---|---|---|
Aspiration (Mean, %) | HLC (Mean, %) | PSC (Mean, %) | |||
Fed | Forest | 41 (3.4, 2.6) | 2 (0.2, 0.1) | 0 (-, 0) | 43 (3.6, 2.7) |
Indoor | 1 (0.1, 0.1) | 0 (-, 0) | 0 (-, 0) | 1 (0.1, 0.1) | |
Outdoor | 63 (5.3, 4) | 0 (-, 0) | 0 (-, 0) | 63 (5.3, 4) | |
Total | 105 (2.2, 6.6) | 2 (0.5, 0.1) | 0 (-, 0) | 107 (2.23, 6.8) | |
Unfed | Forest | 30 (2.5, 2) | 451 (37.6, 28.5) | 0 (-, 0) | 481 (40.1, 30.4) |
Indoor | 0 (-, 0) | 2 (0.2, 0.1) | 3 (0.25, 0.2) | 5 (0.4, 0.3) | |
Open Area | 0 (-, 0) | 97 (8.1, 6.1) | 0 (-, 0) | 97 (8.1, 6.1) | |
Outdoor | 2 (0.2, 0.1) | 890 (74.2, 56.3) | 0 (-, 0) | 892 (74.3, 56.4) | |
Total | 32 (0.7, 2) | 1440 (30, 91) | 3 (0.1, 0.) | 1475 (30.7, 93.2) | |
Grand Total | 137 (1.43, 8.7) | 1442 (15.02, 91.2) | 3 (0.03, 0.2) | 1582 (16.5, 100) |
Collection Sites | February | March | April | May | June | July | Total | Median | IQR ** |
---|---|---|---|---|---|---|---|---|---|
Cave | 0 | 3 | 0 | 15 | 1 | 0 | 19 | 0.5 | 2.5 |
E. ventrilcosum | 0 | 0 | 0 | 3 | 25 | 13 | 41 | 1.5 | 10.5 |
Maize Leaf | 0 | 0 | 0 | 0 | 10 | 7 | 17 | 0 | 5.25 |
Leaves | 0 | 0 | 0 | 3 | 35 | 0 | 38 | 0 | 2.25 |
Interior Wall | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
Exterior Wall | 0 | 0 | 0 | 1 | 17 | 3 | 21 | 0.5 | 2.5 |
Total | 0 | 3 | 0 | 23 | 88 | 23 | 137 | 13 | 22.25 |
Total Median | 0 | 0 | 0 | 2 | 13.5 | 1.5 | 20 | 0.75 | 1.875 |
IQR ** | 0 | 0 | 0 | 2 | 19.75 | 6 | 16.25 | 1 | 5 |
Collection Sites | Study Sites | Overall | Total (%) | |||
---|---|---|---|---|---|---|
South Ari | Ofa | |||||
Ae. simpsoni Complex (%) | Ae. aegypti (%) | Ae. simpsoni Complex (%) | Ae. aegypti (%) | Ae. simpsoni Complex (%) | ||
Outdoor | 62 (15.3) | 2 (0.5) | 92 (22.7) | 2 (0.5) | 154 (37.9) | 156 (38.4) |
Indoor | 0 (0) | 0 (0) | 2 (0.5) | 0 (0) | 2 (0.5) | 2 (0.5) |
Forest | 136 (33.5) | 0 (0) | 112 (27.6) | 0 (0) | 248 (61.1) | 248 (61.1) |
Total | 198 (48.8) | 2 (0.5) | 206 (50.7) | 2 (0.5) | 404 (99.5) | 406 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waldetensai, A.; Pareyn, M.; Massebo, F. Human-Biting Activity, Resting Behavior and Yellow Fever Virus Transmission Potential of Aedes Mosquitoes in Southwest Ethiopia. Parasitologia 2023, 3, 87-100. https://doi.org/10.3390/parasitologia3010011
Waldetensai A, Pareyn M, Massebo F. Human-Biting Activity, Resting Behavior and Yellow Fever Virus Transmission Potential of Aedes Mosquitoes in Southwest Ethiopia. Parasitologia. 2023; 3(1):87-100. https://doi.org/10.3390/parasitologia3010011
Chicago/Turabian StyleWaldetensai, Abate, Myrthe Pareyn, and Fekadu Massebo. 2023. "Human-Biting Activity, Resting Behavior and Yellow Fever Virus Transmission Potential of Aedes Mosquitoes in Southwest Ethiopia" Parasitologia 3, no. 1: 87-100. https://doi.org/10.3390/parasitologia3010011
APA StyleWaldetensai, A., Pareyn, M., & Massebo, F. (2023). Human-Biting Activity, Resting Behavior and Yellow Fever Virus Transmission Potential of Aedes Mosquitoes in Southwest Ethiopia. Parasitologia, 3(1), 87-100. https://doi.org/10.3390/parasitologia3010011