Biodiversity, Systematics, and Taxonomy of Ostariophysi (Osteichthyes, Actinopterygii): What We Know Today After Three Decades of Integration of Morphological and Molecular Data
Abstract
:1. Main Text
2. Conclusions
Funding
Conflicts of Interest
References
- Nelson, J.S.; Grande, T.; Wilson, M.V.H. Fishes of the World, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; 752p. [Google Scholar]
- Fricke, R.; Eschmeyer, W.N.; Fong, J.D. Eschmeyer’s Catalog of Fishes: Species by Family/Subfamily. Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp (accessed on 31 March 2025).
- Lê, H.L.V.; Lecointre, G.; Perasso, R. A 28S rRNA-based phylogeny of the Gnathostomes: First steps in the analysis of conflict and congruence with morphologically based cladograms. Mol. Phylogenetics Evol. 1993, 2, 31–51. [Google Scholar] [CrossRef] [PubMed]
- Lecointre, G.; Nelson, G. Clupeomorpha, sister-group of Ostariophysi. In Interrelationships of Fishes; Stiassny, M.L.J., Parenti, L.R., Johnson, G.D., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 193–207. [Google Scholar]
- Arratia, G. The Clupeocephala revisited: Analysis of characters and homologies. Rev. Biol. Mar. Oceanografia 2010, 45, 635–657. [Google Scholar] [CrossRef]
- Near, T.J.; Eytan, R.I.; Dornburg, A.; Kuhn, K.L.; Moore, J.A.; Davis, M.P.; Wainwright, P.C.; Friedman, M.; Smith, W.L. Resolution of ray-finned fish phylogeny and timing of diversification. Proceeding Nat. Acad. Sci. USA 2012, 109, 13698–13703. [Google Scholar] [CrossRef] [PubMed]
- Betancur, R.R.; Broughton, R.E.; Wiley, E.O.; Carpenter, K.; López, J.A.; Li, C.; Holcroft, N.I.; Arcila, D.; Sanciangco, M.; Cureton, J.C., II; et al. The tree of life and a new classification of bony fishes. PLoS Curr. Tree Life 2013, 5, 1–41. [Google Scholar] [CrossRef]
- Ishiguro, N.B.; Miya, M.; Nishida, M. Basal euteleostean relationships: A mitogenomic perspective on the phylogenetic reality of the “Protacanthopterygii”. Mol. Phylogenetics Evol. 2003, 27, 476–488. [Google Scholar] [CrossRef]
- Di Dario, F. Relações Filogenéticas entre os Grandes Grupos de Clupeomorpha e suas Possíveis Relações com Ostariophysi (Actinopterygii, Teleostei). Ph.D. Dissertation, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil, 2004; 629p. [Google Scholar]
- Lavoué, S.; Miya, M.; Inoue, J.G.; Saitoh, K.; Ishiguro, N.B.; Nishida, M. Molecular systematics of the gonorynchiform fishes (Teleostei) based on whole mitogenome sequences: Implications for higher-level relationships within the Otocephala. Mol. Phylogenetics Evol. 2005, 37, 165–177. [Google Scholar] [CrossRef]
- Straube, N.; Li, C.; Mertzen, M.; Yuan, H.; Moritz, T. A phylogenomic approach to reconstruct interrelationships of main clupeocephalan lineages with a critical discussion of morphological apomorphies. BMC Evol. Biol. 2018, 18, 158. [Google Scholar] [CrossRef]
- Johnson, G.D.; Patterson, C. Relationships of lower euteleostean fishes. In Interrelationships of Fishes; Stiassny, M.L.J., Parenti, L.R., Johnson, G.D., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 251–332. [Google Scholar]
- Near, T.J.; Thacker, C.E. Phylogenetic classification of living and fossil ray-finned fishes (Actinopterygii). Bull. Peabody Mus. Nat. Hist. 2024, 65, 3–302. [Google Scholar]
- Arratia, G. Otomorphs (=Otocephalans or Ostarioclupeomorphs) revisited. Neotrop. Ichthyol. 2018, 16, e180079. [Google Scholar] [CrossRef]
- Arratia, G. Basal teleosts and teleostean phylogeny. Palaeo Ichthyol. 1997, 7, 5–168. [Google Scholar]
- Arratia, G.; Schultze, H.-P. Knochenfische im engeren Sinne (Teleostei). In Solnhofen. Ein Fenster in the Jurazeit; Arratia, G., Schultze, H.-P., Tischlinger, H., Viohl, G., Eds.; Verlag Dr. F. Pfeil: Munchen, Germany, 2015; pp. 389–409. [Google Scholar]
- Peng, Z.; He, S.; Wang, J.; Wang, W.; Diogo, R. Mitochondrial molecular clocks and the origin of the major Otocephalan clades (Pisces: Teleostei): A new insight. Gene 2006, 370, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Yang, Y.; Sun, J.; Yi, L.; Xu, M.; Shao, C.; Chu, K.H.; Li, W.; Liu, C.; Gu, D.; et al. FishPIE: A universal phylogenetically informative exon markers set for rayfinned fishes. iScience 2022, 25, 105025. [Google Scholar] [CrossRef] [PubMed]
- Lavoué, S.; Miya, M.; Poulsen, J.Y.; Møller, P.R.; Nishida, M. Monophyly, phylogenetic position and inter-familial relationships of the Alepocephaliformes (Teleostei) based on whole mitogenome sequences. Mol. Phylogenetics Evol. 2008, 47, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, J.Y.; Møller, P.R.; Lavoué, S.; Knudsen, S.W.; Nishida, M.; Miya, M. Higher and lower-level relationships of the deep-sea fish order Alepocephaliformes (Teleostei: Otocephala) inferred from whole mitogenome sequences. Biol. J. Linean Soc. 2009, 98, 923–936. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kawato, M.; Poulsen, J.Y.; Ida, H.; Chikaraishi, Y.; Ohkouchi, N.; Oguri, K.; Gotoh, S.; Ozawa, G.; Tanaka, S.; et al. Discovery of a colossal slickhead (Alepocephaliformes: Alepocephalidae): An active-swimming top predator in the deep waters of Suruga Bay, Japan. Sci. Rep. 2025, 11, 2490. [Google Scholar] [CrossRef]
- Betancur, R.R.; Wiley, E.O.; Arratia, G.; Acero, A.; Bailly, N.; Miya, M.; Lecointre, G.; Ortí, G. Phylogenetic classification of bony fishes. BMC Evol. Biol. 2017, 17, 162. [Google Scholar] [CrossRef]
- Fink, S.V.; Fink, W.L. Interrelationships of the ostariophysan fishes (Teleostei). J. Linn. Soc. (Zool.) 1981, 72, 297–353. [Google Scholar] [CrossRef]
- Fink, S.V.; Fink, W.L. Interrelationships of ostariophysan fishes (Teleostei). In Interrelationships of Fishes; Stiassny, M.L.J., Parenti, L.R., Johnson, G.D., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 209–249. [Google Scholar]
- Pfeiffer, W. The distribution of fright reaction and alarm substance cells in fishes. Copeia 1977, 1977, 653–665. [Google Scholar] [CrossRef]
- Poyato-Ariza, F.; Grande, T.C.; Diogo, R. Gonorynchiform interrelationships: Historic overview, analysis, and revised systematics of the group. In Gonorynchiformes and Ostariophysan Relationships. A Comprehensive Review; Grande, T.C., Poyato-Ariza, F.J., Diogo, R., Eds.; Science Publishers: Enfield, NH, USA, 2010; pp. 227–337. [Google Scholar]
- Near, T.J.; Dornburg, A.; Friedman, M. Phylogenetic relationships and timing of diversification in gonorynchiform fishes inferred using nuclear gene DNA sequences (Teleostei: Ostariophysi). Mol. Phylogenetics Evol. 2014, 80, 297–307. [Google Scholar] [CrossRef]
- Davis, M.P.; Arratia, G.; Kaiser, T.M. The first fossil shellear and its implications for the evolution and divergence of the Kneriidae (Teleostei: Gonorynchiformes). In Mesozoic Fishes 5—Global Diversity and Evolution; Arratia, G., Schultze, H.-P., Wilson, M.V.H., Eds.; Verlag Dr. Friedrich Pfeil: Munich, Germany, 2013; pp. 325–362. [Google Scholar]
- Malabarba, M.C.; Malabarba, L.R. Biogeography of Characiformes: An evaluation of the available information of fossil and extant taxa. In Origin and Phylogenetic Interrelationships of Teleosts; Nelson, J.S., Schultze, H.P., Wilson, M.V.H., Eds.; Verlag Dr. Friedrich Pfeil: Munich, Germany, 2010; pp. 317–336. [Google Scholar]
- Mayrinck, D.; Brito, P.M.; Otero, O. Anatomical review of †Salminops ibericus, a Teleostei incertae sedis from the Cenomanian of Portugal, anciently assigned to Characiformes and possibly related to crossognathiform fishes. Cretac. Res. 2015, 56, 66–75. [Google Scholar] [CrossRef]
- Dimmick, W.W.; Larson, A. A molecular and morphological perspective on the phylogenetic relationships of the otophysan fishes. Mol. Phylogenetics Evol. 1996, 6, 120–133. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-J.; Lavoué, S.; Mayden, R.L. Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei). Evolution 2013, 67, 2218–2239. [Google Scholar] [CrossRef] [PubMed]
- Arcila, D.; Ortí, G.; Vari, R.; Armbruster, J.W.; Stiassny, M.L.J.; Ko, K.D.; Sabaj, M.H.; Lundberg, J.; Revell, L.J.; Betancour, R.R. Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nat. Ecol. Evol. 2017, 1, 20. [Google Scholar] [CrossRef] [PubMed]
- Simion, P.; Delsuc, F.; Philippe, H. To What Extent Current Limits of Phylogenomics Can Be Overcome? HAL: Bengaluru, India, 2020. [Google Scholar]
- Chakrabarty, P.; Faircloth, B.C.; Alda, F.; Ludt, W.B.; Mcmahan, C.D.; Near, T.J.; Dornburg, A.; Albert, J.S.; Arroyave, J.; Stiassny, M.L.; et al. Phylogenomic systematics of ostariophysan fishes: Ultraconserved elements support the surprising non-monophyly of Characiformes. Syst. Biol. 2017, 66, 881–895. [Google Scholar] [CrossRef]
- Dai, W.; Zou, M.; Yang, L.; Du, K.; Chen, W.; Shen, Y.; Mayden, R.L.; He, S. Phylogenomic perspective on the relationships and evolutionary history of the major otocephalan lineages. Sci. Rep. 2018, 8, 205. [Google Scholar] [CrossRef]
- Ortí, G.; Meyer, A. Molecular evolution of ependymin and the phylogenetic resolution of early divergences among euteleost fishes. Mol. Biol. Evol. 1996, 13, 556–573. [Google Scholar] [CrossRef]
- Mirande, J.M. Combined phylogeny of ray-finned fishes (Actinopterygii) and the use of morphological characters in large-scale analyses. Cladistics 2017, 33, 333–350. [Google Scholar] [CrossRef]
- Tan, M.; Armbruster, J.W. Phylogenetic classification of extant genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi). Zootaxa 2018, 4476, 6–39. [Google Scholar] [CrossRef]
- Stout, C.C.; Tan, M.; Lemmon, A.R.; Lemmon, E.M.; Armbruster, J.W. Resolving Cypriniformes relationships using an anchored enrichment approach. BMC Evol. Biol. 2016, 16, 1–13. [Google Scholar] [CrossRef]
- Hirt, M.V.; Arratia, G.; Chen, W.J.; Mayden, R.L. Effects of gene choice, base composition and rate heterogeneity on inference and estimates of divergence times in cypriniform fishes. Biol. J. Linn. Soc. 2017, 121, 319–339. [Google Scholar] [CrossRef]
- Chen, W.J.; Lheknim, V.; Mayden, R.L. Molecular phylogeny of the Cobitoidea (Teleostei: Cypriniformes) revisited: Position of enigmatic loach Ellopostoma resolved with six nuclear genes. J. Fish Biol. 2009, 75, 2197–2208. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.J.; Mayden, R.L. Molecular systematics of the Cyprinoidea (Teleostei: Cypriniformes), the world’s largest clade of freshwater fishes: Further evidence from six nuclear genes. Mol. Phylogenetics Evol. 2009, 52, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Mayden, R.L.; Chen, W.J. The world’s smallest vertebrate species of the genus Paedocypris: A new family of freshwater fishes and the sister group to the world’s most diverse clade of freshwater fishes (Teleostei: Cypriniformes). Mol. Phylogenetics Evol. 2010, 57, 152–175. [Google Scholar] [CrossRef] [PubMed]
- de Pinna, M.C.C.; Zuanon, J.; Py-Daniel, L.R.; Petry, P. A new family of neotropical freshwater fishes from deep fossorial Amazonian habitat, with a reappraisal of morphological characiform phylogeny (Teleostei: Ostariophysi). Zool. J. Linn. Soc. 2018, 182, 76–106. [Google Scholar] [CrossRef]
- Melo, B.F.; Stiassny, M.L.J. Phylogenomic and anatomical evidence for the Late Cretaceous diversification of African characiform fishes, including a new family, under the influence of the Trans-Saharan Seaway. Evol. J. Linn. Soc. 2024, 3, kzae030. [Google Scholar] [CrossRef]
- Bogan, S.; Sidlauskas, B.; Vari, R.P.; Agnolin, F. Arrhinolemur scalabrinii Ameghino, 1898, of the late Miocene: A taxonomic journey from the Mammalia to the Anostomidae (Ostariophysi: Characiformes). Neotrop. Ichthyol. 2012, 10, 555–560. [Google Scholar] [CrossRef]
- Weiss, F.E.; Malabarba, L.R.; Malabarba, M.C. Phylogenetic relationships of Paleotetra, a new characiform fish (Ostariophysi) with two new species from the Eocene-Oligocene of south-eastern Brazil. J. Syst. Palaeontol. 2012, 10, 73–86. [Google Scholar] [CrossRef]
- Oliveira, C.; Avelino, G.S.; Abe, K.T.; Mariguela, T.C.; Benine, R.C.; Orti, G.; Vari, R.P.; Castro, R.M.C. Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol. Biol. 2011, 11, 275. [Google Scholar] [CrossRef]
- Betancur, R.R.; Arcila, D.; Vari, R.P.; Hughes, L.C.; Oliveira, C.; Sabaj, M.H.; Ortí, G. Phylogenomic incongruence, hypothesis testing, and taxonomic sampling: The monophyly of characiform fishes. Evolution 2019, 73, 329–345. [Google Scholar] [CrossRef]
- Melo, B.F.; Sidlauskas, B.L.; Near, T.J.; Roxo, F.F.; Ghezelayagh, A.; Ochoa, L.E.; Stiassny, M.L.J.; Arroyave, J.; Chen, J.; Faircloth, B.C.; et al. Accelerated Diversification Explains the Exceptional Species Richness of Tropical Characoid Fishes. Syst. Biol. 2022, 25, 78–92. [Google Scholar] [CrossRef]
- Arcila, D.; Petry, P.; Orti, G. Phylogenetic relationships of the family Tarumaniidae (Characiformes) based on nuclear and mitochondrial data. Neotrop. Ichthyol. 2018, 16, e180016. [Google Scholar] [CrossRef]
- Melo, B.F.; de Pinna, M.C.; Rapp Py-Daniel, L.H.; Zuanon, J.; Conde-Saldaña, C.C.; Roxo, F.F.; Oliveira, C. Paleogene emergence and evolutionary history of the Amazonian fossorial fish genus Tarumania (Teleostei: Tarumaniidae). Frontiers In Ecology and Evolution 2022, 10, 924860. [Google Scholar] [CrossRef]
- Sidlauskas, B.L.; Melo, B.F.; Birindelli, J.L.O.; Burns, M.D.; Frable, B.W.; Hoekzema, K.; Dillman, C.B.; Sabaj, M.H.; Oliveira, C. Molecular phylogenetics, a new classification, and a new genus of the Neotropical fish family Anostomidae (Teleostei: Characiformes). Neotrop. Ichthyol. 2025, 23, e240076. [Google Scholar] [CrossRef]
- Sidlauskas, B.L.; Assega, F.M.; Melo, B.F.; Oliveira, C.; Birindelli, J.L. Total evidence phylogenetic analysis reveals polyphyly of Anostomoides and uncovers an unexpectedly ancient genus of Anostomidae fishes (Characiformes). Zool. J. Linn. Soc. 2022, 194, 626–669. [Google Scholar] [CrossRef]
- Abe, K.T.; Mariguela, T.C.; Avelino, G.S.; Foresti, F.; Oliveira, C. Systematic and historical biogeography of the Bryconidae (Ostariophysi: Characiformes) suggesting a new rearrangement of its genera and an old origin of Mesoamerican ichthyofauna. BMC Evol. Biol. 2014, 14, 152. [Google Scholar] [CrossRef]
- Melo, B.F.; Sidlauskas, B.L.; Hoekzema, K.; Vari, R.P.; Oliveira, C. The first molecular phylogeny of Chilodontidae (Teleostei: Ostariophysi: Characiformes) reveals cryptic biodiversity and taxonomic uncertainty. Mol. Phylogenetics Evol. 2014, 70, 286–295. [Google Scholar] [CrossRef]
- Melo, B.F.; Sidlauskas, B.L.; Hoekzema, K.; Vari, R.P.; Dillman, C.B.; Oliveira, C. Molecular phylogenetics of Neotropical detritivorous fishes of the family Curimatidae (Teleostei: Characiformes). Mol. Phylogenetics Evol. 2018, 127, 800–812. [Google Scholar] [CrossRef]
- Serrano, É.A.; Melo, B.F.; Freitas-Souza, D.; Oliveira, M.L.; Utsunomia, R.; Oliveira, C.; Foresti, F. Species delimitation in Neotropical fishes of the genus Characidium (Teleostei, Characiformes). Zool. Scr. 2019, 48, 69–80. [Google Scholar] [CrossRef]
- Abe, K.T.; Mariguela, T.C.; Avelino, G.S.; Castro, R.M.; Oliveira, C. Multilocus molecular phylogeny of Gasteropelecidae (Ostariophysi: Characiformes) reveals the existence of an unsuspected diversity. Mol. Phylogenetics Evol. 2013, 69, 1209–1214. [Google Scholar] [CrossRef]
- Nogueira, A.F.; Oliveira, C.; Langeani, F.; Netto-Ferreira, A.L. Phylogenomics, evolution of trophic traits and divergence times of hemiodontid fishes (Ostariophysi: Characiformes). Mol. Phylogenetics Evol. 2023, 186, 107864. [Google Scholar] [CrossRef]
- Melo, B.F.; Sidlauskas, B.L.; Hoekzema, K.; Frable, B.W.; Vari, R.P.; Oliveira, C. Molecular phylogenetics of the Neotropical fish family Prochilodontidae (Teleostei: Characiformes). Mol. Phylogenetics Evol. 2016, 102, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Kolmann, M.A.; Hughes, L.C.; Hernandez, L.P.; Arcila, D.; Betancur, R.R.; Sabaj, M.H.; López-Fernández, G.; Ortí, G. Phylogenomics of Piranhas and Pacus (Serrasalmidae) Uncovers How Dietary Convergence and Parallelism Obfuscate Traditional Morphological Taxonomy. Syst. Biol. 2021, 70, 576–592. [Google Scholar] [CrossRef] [PubMed]
- Mateussi, N.T.; Melo, B.F.; Ota, R.P.; Roxo, F.F.; Ochoa, L.E.; Foresti, F.; Oliveira, C. Phylogenomics of the Neotropical fish family Serrasalmidae with a novel intrafamilial classification (Teleostei: Characiformes). Mol. Phylogenetics Evol. 2020, 153, 106945. [Google Scholar] [CrossRef] [PubMed]
- Mariguela, T.C.; Roxo, F.F.; Foresti, F.; Oliveira, C. Phylogeny and biogeography of Triportheidae (Teleostei: Characiformes) based on molecular data. Mol. Phylogenetics Evol. 2016, 96, 130–139. [Google Scholar] [CrossRef]
- Tagliacollo, V.A.; Souza-Lima, R.; Benine, R.C.; Oliveira, C. Molecular phylogeny of Aphyocharacinae (Characiformes, Characidae) with morphological diagnoses for the subfamily and recognized genera. Mol. Phylogenetics Evol. 2012, 64, 297–307. [Google Scholar] [CrossRef]
- Souza, C.S.; Melo, B.F.; Mattox, G.M.; Oliveira, C. Phylogenomic analysis of the Neotropical fish subfamily Characinae using ultraconserved elements (Teleostei: Characidae). Mol. Phylogenetics Evol. 2022, 171, 107462. [Google Scholar] [CrossRef]
- Mariguela, T.C.; Ortí, G.; Avelino, G.S.; Abe, K.T.; Oliveira, C. Composition and interrelationships of a large Neotropical freshwater fish group, the subfamily Cheirodontinae (Characiformes: Characidae): A case study based on mitochondrial and nuclear DNA sequences. Mol. Phylogenetics Evol. 2013, 68, 23–34. [Google Scholar] [CrossRef]
- Melo, B.F.; Benine, R.C.; Silva, G.S.; Avelino, G.S.; Oliveira, C. Molecular phylogeny of the Neotropical fish genus Tetragonopterus (Teleostei: Characiformes: Characidae). Mol. Phylogenetics Evol. 2016, 94, 709–717. [Google Scholar] [CrossRef]
- Melo, B.F.; Ota, R.P.; Benine, R.C.; Carvalho, F.R.; Lima, F.C.T.; Mattox, G.M.T.; Souza, C.S.; Faria, T.C.; Reia, L.; Roxo, F.F.; et al. Phylogenomics of Characidae, a hyper-diverse Neotropical freshwater fish lineage, with a phylogenetic classification including four families (Teleostei: Characiformes). Zool. J. Linn. Soc. 2024, 202, zlae101. [Google Scholar] [CrossRef]
- Vari, R.P. Anatomy, relationships, and classification of the families Citharinidae and Distichodontidae (Pisces, Characoidea). Bulletin of the British Museum (Natural History) Zoology 1979, 36, 261–344. [Google Scholar]
- Murray, A.M. A new Eocene citharinoid fish (Ostariophysi: Characiformes) from Tanzania. J. Vertebr. Paleontol. 2003, 23, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Marceniuk, A.P.; Ingenito, L.F.S.; Lima, F.C.T.; Gasparini, J.L.R.; Oliveira, C. Systematics, biogeography and conservation of Paragenidens grandoculis n. gen. and n. comb. (Siluriformes; Ariidae), a critically endangered species from southeastern Brazil. Zootaxa 2019, 4586, 425–444. [Google Scholar] [CrossRef] [PubMed]
- Birindelli, J.L. Phylogenetic relationships of the South American Doradoidea (Ostariophysi: Siluriformes). Neotrop. Ichthyol. 2014, 12, 451–564. [Google Scholar] [CrossRef]
- de Pinna, M.C.C. A new subfamily of Trichomycteridae (Teleostei, Siluriformes) lower loricarioid relationships and a discussion on the impact of additional taxa for phylogenetic analysis. Zool. J. Linn. Soc. 1992, 106, 175–229. [Google Scholar] [CrossRef]
- Schaefer, S.A. Anatomy and relationships of the scoloplacid catfishes. Proc. Acad. Nat. Sci. Phila. 1990, 142, 167–210. [Google Scholar]
- Bockmann, F.A. Análise Filogenética da Família Heptapteridae (Teleostei, Ostariophysi, Siluriformes) e Redefinição de seus Gêneros. Ph.D. Dissertation, Universidade de São Paulo, São Paulo, Brazil, 1998. [Google Scholar]
- Lundberg, J.G.; McDade, L.A. A redescription of the rare Venezuelan catfish Brachyrhamdia imitator Myers (Siluriformes: Pimelodidae) with phylogenetic evidence for a large intrafamilial lineage. Not. Naturae 1986, 463, 1–24. [Google Scholar]
- Lundberg, J.G.; Bornbusch, A.H.; Mago-Leccia, F. Gladioglanis conquistador n. sp. from Ecuador with diagnoses of the subfamilies Rhamdiinae Bleeker and Pseudopimelodinae n. subf. (Siluriformes: Pimelodidae). Copeia 1991, 1991, 190–209. [Google Scholar] [CrossRef]
- Lundberg, J.G.; Mago-Leccia, F.; Nass, P. Exallodontus aguanai, a new genus and species of Pimelodidae (Pisces: Siluriformes) from deep river channels of South America, and delimitation of the subfamily Pimelodinae. Proc. Biol. Soc. Wash. 1991, 104, 840–869. [Google Scholar]
- de Pinna, M.C.C. Phylogenetic relationships of Neotropical Siluriformes (Teleostei: Ostariophysi): Historical overview and synthesis of hypotheses. In Phylogeny and Classification of Neotropical Fishes; Malabarba, L.R., Reis, R.E., Vari, R.P., Lucena, Z.M.S., Lucena, C.A.S., Eds.; EDIPUCRS: Porto Alegre, Brazil, 1998; pp. 279–330. [Google Scholar]
- Sullivan, J.P.; Muriel-Cunha, J.; Lundberg, J.G. Phylogenetic relationships and molecular dating of the major groups of catfishes of the Neotropical superfamily Pimelodoidea (Teleostei, Siluriformes). Proc. Acad. Nat. Sci. Phila. 2013, 162, 89–110. [Google Scholar] [CrossRef]
- de Pinna, M.C.C. A phylogeny analysis of the Asian catfish family Sisoridae, Akysidae and Amblycipitidae, with a hypothesis on the relationship of the Neotropical Aspredinidae. Fieldiana Zool. 1996, 84, 1–83. [Google Scholar]
- Ng, H.H.; Jiang, W.S. Intrafamilial relationships of the Asian hillstream catfish family Sisoridae (Teleostei: Siluriformes) inferred from nuclear and mitochondrial DNA sequences. Ichthyol. Explor. Freshw. 2015, 26, 229–240. [Google Scholar]
- Betancur, R.R. Molecular phylogenetics and evolutionary history of ariid catfishes revisited: A comprehensive sampling. BMC Evol. Biol. 2009, 9, 175. [Google Scholar] [CrossRef] [PubMed]
- Marceniuk, A.P.; Menezes, N.A.; Britto, M.R. Phylogenetic analysis of the family Ariidae (Ostariophysi: Siluriformes), with a hypothesis on the monophyly and relationships of the genera. Zool. J. Linn. Soc. 2012, 165, 534–669. [Google Scholar] [CrossRef]
- Carvalho, T.P.; Arce, M.; Reis, R.E.; Sabaj, M.H. Molecular phylogeny of Banjo catfishes (Ostaryophisi: Siluriformes: Aspredinidae): A continental radiation in South American freshwaters. Mol. Phylogenetics Evol. 2018, 127, 459–467. [Google Scholar] [CrossRef]
- Calegari, B.B.; Vari, R.P.; Reis, R.E. Phylogenetic systematics of the driftwood catfishes (Siluriformes: Auchenipteridae): A combined morphological and molecular analysis. Zool. J. Linn. Soc. 2019, 187, 661–773. [Google Scholar] [CrossRef]
- Schedel, F.D.B.; Chakona, A.; Sidlauskas, B.L.; Popoola, M.O.; Wingi, N.U.; Neumann, D.; Vreven, E.J.W.M.N.; Schliewen, U.K. New phylogenetic insights into the African catfish families Mochokidae and Austroglanididae. J. Fish Biol. 2022, 100, 1171–1186. [Google Scholar] [CrossRef]
- de Pinna, M.C.C.; Vari, R.P. Monophyly and phylogenetic diagnosis of the family Cetopsidae, with synonymization of the Helogenidae (Teleostei: Siluriformes). Smithson. Contrib. Zool. 1995, 57, 1–26. [Google Scholar] [CrossRef]
- de Pinna, M.C.C.; Ferraris, C.J., Jr.; Vari, R.P. A phylogenetic study of the neotropical catfish family Cetopsidae (Osteichthyes, Ostariophysi, Siluriformes), with a new classification. Zool. J. Linn. Soc. 2007, 150, 755–813. [Google Scholar] [CrossRef]
- Agnese, J.-F.; Teugels, G.G. Insight into the phylogeny of African Clariidae (Teleostei, Siluriformes): Implications for their body shape evolution, biogeography, and taxonomy. Mol. Phylogenetics Evolution 2005, 36, 546–553. [Google Scholar] [CrossRef]
- Jansen, G.; Devaere, S.; Weekers, P.H.H.; Adriaens, D. Phylogenetic relationships and divergence time estimate of African anguilliform catfish (Siluriformes: Clariidae) inferred from ribosomal gene and spacer sequences. Mol. Phylogenetics Evol. 2006, 38, 65–78. [Google Scholar] [CrossRef]
- Arce, M.; Reis, R.E.; Geneva, A.J.; Perez, M.H.S. Molecular phylogeny of thorny catfishes (Siluriformes: Doradidae). Mol. Phylogenetics Evol. 2013, 67, 560–577. [Google Scholar] [CrossRef] [PubMed]
- Arce, H.M.; Lundberg, J.G.; O’Leary, M.A. Phylogeny of the North American catfish family Ictaluridae (Teleostei: Siluriformes) combining morphology, genes and fóssil. Cladistics 2017, 33, 406–428. [Google Scholar] [CrossRef] [PubMed]
- Janzen, F.H.; Pérez-Rodríguez, R.; Domínguez-Domínguez, O.; Hendrickson, D.A.; Sabaj, M.H.; Blouin-Demers, G. Phylogenetic relationships of the North American catfishes (Ictaluridae, Siluriformes): Investigating the origins and parallel evolution of the troglobitic species. Mol. Phylogenetics Evol. 2023, 182, 107746. [Google Scholar] [CrossRef] [PubMed]
- Roxo, F.F.; Albert, J.S.; Silva, G.S.C.; Zawadzki, C.H.; Foresti, F.; Oliveira, C. Molecular Phylogeny and Biogeographic History of the Armored Neotropical Catfish Subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae (Siluriformes: Loricariidae). PLoS ONE 2014, 9, e105564. [Google Scholar] [CrossRef]
- Roxo, F.F.; Lujan, N.K.; Tagliacollo, V.A.; Waltz, B.T.; Silva, G.S.; Oliveira, C.; Albert, J.S. Shift from slow-to fast-water habitats accelerates lineage and phenotype evolution in a clade of Neotropical suckermouth catfishes (Loricariidae: Hypoptopomatinae). PLoS ONE 2017, 12, e0178240. [Google Scholar] [CrossRef]
- Roxo, F.F.; Ochoa, L.E.; Sabaj, M.H.; Lujan, N.K.; Covain, R.; Silva, G.S.C.; Melo, B.F.; Albert, J.S.; Chang, J.; Foresti, F.; et al. Phylogenomic reappraisal of the Neotropical catfish family Loricariidae (Teleostei: Siluriformes) using ultraconserved elements. Mol. Phylogenetics Evol. 2019, 135, 148–165. [Google Scholar] [CrossRef]
- Lujan, N.K.; Armbruster, J.W.; Lovejoy, N.R.; López-Fernández, H. Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae. Mol. Phylogenetics Evol. 2015, 82, 269–288. [Google Scholar] [CrossRef]
- Laurent, P.; Gustiano, R.; Marc, L. Phylogenetic relationships among pangasiid catfish species (Siluriformes, Pangasiidae) and new insights on their zoogeography. In The Biological Diversity and Aquaculture of Clariid and Pangasiid Catfishes in South-East Asia: Proceedings of the Mid-Term Workshop of the “Catfish Asia Project”, Honolulu, HI, USA, 3–7 May 1998; Marc, R., Antoine, P., Eds.; Jakarta (IDN); Can Tho: IRD; Can Tho University: Can Tho, Vietnam, 1998; pp. 49–56. [Google Scholar]
- Lundberg, J.G.; Sullivan, J.P.; Hardman, M. Phylogenetics of the South American catfish family Pimelodidae (Teleostei: Siluriformes) using nuclear and mitochondrial gene sequences. Proc. Acad. Nat. Sci. Phila. 2011, 161, 153–189. [Google Scholar] [CrossRef]
- Silva, G.S.C.; Rocha, M.S.; Melo, B.F.; Reia, L.; Roxo, F.F.; Sabaj, M.H.; Oliveira, C. Phylogenomics of the catfish family Pimelodidae with focus on the genus Pimelodus support the recognition of Sorubiminae and Pimelodinae (Teleostei, Siluriformes). Zool. Scr. 2024, 53, 541–554. [Google Scholar] [CrossRef]
- Silva, G.S.; Melo, B.F.; Roxo, F.F.; Ochoa, L.E.; Shibatta, O.A.; Sabaj, M.H.; Oliveira, C. Phylogenomics of the bumblebee catfishes (Siluriformes: Pseudopimelodidae) using ultraconserved elements. J. Zool. Syst. Evol. Res. 2021, 59, 1662–1672. [Google Scholar] [CrossRef]
- Bornbusch, A.H. Phylogenetic relationships within the Eurasian catfish family Siluridae (Pisces: Siluriformes), with comments on generic validities and biogeography. Zool. J. Linn. Soc. 1995, 115, 1–46. [Google Scholar] [CrossRef]
- He, S. The phylogeny of the glyptosternoid fishes (Teleostei: Siluriformes, Sisoridae). Cybium 1996, 20, 115–159. [Google Scholar]
- Katz, A.M.; Barbosa, M.A.; Mattos, J.L.O.; Costa, E.J.E.M. Multigene analysis of the catfish genus Trichomycterus and description of a new South American trichomycterine genus (Siluriformes, Trichomycteridae). Zoosystematic Evol. 2018, 94, 557–566. [Google Scholar] [CrossRef]
- Ochoa, L.E.; Datovo, A.; DoNascimiento, C.; Roxo, F.F.; Sabaj, M.H.; Chang, J.; Melo, B.F.; Silva, G.S.; Foresti, F.; Alfaro, M.; et al. Phylogenomic analysis of trichomycterid catfishes (Teleostei: Siluriformes) inferred from ultraconserved elements. Sci. Rep. 2020, 10, 2697. [Google Scholar] [CrossRef]
- Rodiles-Hernández, R.; Hendrickson, D.A.; Lundberg, J.G.; Humphries, J.H. Lacantunia enigmatica (Teleostei: Siluriformes) a new and phylogenetically puzzling freshwater fish from Mesoamerica. Zootaxa 2005, 1000, 1–24. [Google Scholar] [CrossRef]
- Lundberg, J.G.; Sullivan, J.P.; Rodiles-Hernández, R.; Hendrickson, D.A. Discovery of African roots for the Mesoamerican Chiapas catfish, Lacantunia enigmatica, requires an ancient intercontinental passage. Proc. Acad. Nat. Sci. Phila. 2007, 156, 39–53. [Google Scholar] [CrossRef]
- Vincent, M.; Thomas, J. Kryptoglanis shajii, an enigmatic subterranean-spring catfish (Siluriformes, Incertae sedis) from Kerala, India. Ichthyol. Res. 2011, 58, 161–165. [Google Scholar] [CrossRef]
- Lundberg, J.G.; Luckenbill, K.R.; Babu, K.K.S.; Ng, H.H. A tomographic osteology of the taxonomically puzzling catfish Kryptoglanis shajii (Siluriformes, Siluroidei, incertae sedis): Description and a first phylogenetic interpretation. Proc. Acad. Nat. Sci. Phila. 2014, 163, 10–41. [Google Scholar] [CrossRef]
- Britz, R.; Kakkassery, F.; Raghavan, R. Osteology of Kryptoglanis shajii, a stygobitic catfish (Teleostei: Siluriformes) from Peninsular India with a diagnosis of the new family Kryptoglanidae. Ichthyol. Explor. Freshw. 2014, 24, 193–207. [Google Scholar]
- Diogo, R. Morphological Evolution Aptations, Homoplasies, Constraints, and Evolutionary Trends: Catfishes as a Case Study on General Phylogeny andMacroevolution; Science Publishers: Enfield, NH, USA, 2004; 491p. [Google Scholar]
- Sullivan, J.P.; Lundberg, J.G.; Hardman, M. A phylogenetic analysis of the major groups of catfishes (Teleostei: Siluriformes) using rag1 and rag2 nuclear gene sequences. Mol. Phylogenetics Evol. 2006, 41, 636–662. [Google Scholar] [CrossRef]
- Nakatani, M.; Miya, M.; Mabuchi, K.; Saitoh, K.; Nishida, M. Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation. BMC Evol. Biol. 2011, 11, 177. [Google Scholar] [CrossRef] [PubMed]
- Kappas, I.; Vittas, S.; Pantzartzi, C.N.; Drosopoulou, E.; Scouras, Z.G. A Time-Calibrated Mitogenome Phylogeny of Catfish (Teleostei: Siluriformes). PLoS ONE 2016, 11, e0166988. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Rivera, C.J.; Montoya-Burgos, J.I. Back to the roots: Reducing evolutionary rate heterogeneity among sequences gives support for the early morphological hypothesis of the root of Siluriformes (Teleostei: Ostariophysi). Mol. Phylogenetics Evol. 2018, 127, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Albert, J.S.; Crampton, W.G.R. Diversity and phylogeny of Neotropical electric fishes (Gymnotiformes). In Electroreception; Bullock, T.H., Hopkins, C.D., Fay, R.R., Eds.; Springer Handbook of Auditory Research: New York, NY, USA, 2005; pp. 360–409. [Google Scholar]
- Tagliacollo, V.A.; Bernt, M.J.; Craig, J.M.; Oliveira, C.; Albert, J.S. Model-based total evidence phylogeny of Neotropical electric knifefishes (Teleostei, Gymnotiformes). Mol. Phylogenetics Evol. 2016, 95, 20–33. [Google Scholar] [CrossRef]
- Alda, F.; Tagliacollo, V.A.; Bernt, M.J.; Waltz, B.T.; Ludti, W.B.; Faircloth, B.C.; Alfaro, M.E.; Albert, J.S.; Chakrabarty, P. Resolving deep nodes in an ancient radiation of neotropical fishes in the presence of conflicting signals from incomplete lineage sorting. Syst. Biol. 2019, 68, 573–593. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, C. Biodiversity, Systematics, and Taxonomy of Ostariophysi (Osteichthyes, Actinopterygii): What We Know Today After Three Decades of Integration of Morphological and Molecular Data. Taxonomy 2025, 5, 33. https://doi.org/10.3390/taxonomy5020033
Oliveira C. Biodiversity, Systematics, and Taxonomy of Ostariophysi (Osteichthyes, Actinopterygii): What We Know Today After Three Decades of Integration of Morphological and Molecular Data. Taxonomy. 2025; 5(2):33. https://doi.org/10.3390/taxonomy5020033
Chicago/Turabian StyleOliveira, Claudio. 2025. "Biodiversity, Systematics, and Taxonomy of Ostariophysi (Osteichthyes, Actinopterygii): What We Know Today After Three Decades of Integration of Morphological and Molecular Data" Taxonomy 5, no. 2: 33. https://doi.org/10.3390/taxonomy5020033
APA StyleOliveira, C. (2025). Biodiversity, Systematics, and Taxonomy of Ostariophysi (Osteichthyes, Actinopterygii): What We Know Today After Three Decades of Integration of Morphological and Molecular Data. Taxonomy, 5(2), 33. https://doi.org/10.3390/taxonomy5020033