Next Article in Journal
Ancyronyx jhoanae sp. nov. (Coleoptera: Elmidae), A New Spider Riffle Beetle Species from Luzon, Philippines, and New Records for A. tamaraw Freitag, 2013
Previous Article in Journal
A New Giant Petrel (Macronectes, Aves: Procellariidae) from the Pliocene of Taranaki, New Zealand
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Origin of the Mangrove and Saltmarsh Snail Ellobium (Eupulmonata, Ellobiidae) †

by
Mathias Harzhauser
1,*,
Jean-Michel Pacaud
2 and
Bernard M. Landau
3,4,5
1
Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
2
Centre de Recherche en Paléontologie—Paris, Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS, 57 rue Cuvier, CP 38, 75005 Paris, France
3
Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
4
Instituto Dom Luiz, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
5
International Health Centres, Av. Infante de Henrique 7, Areias São João, 8200-261 Albufeira, Portugal
*
Author to whom correspondence should be addressed.
urn:lsid:zoobank.org:pub:130489D8-041B-4F99-8158-334D247EC4A1; urn:lsid:zoobank.org:act:E482C6C3-D983-440A-BA44-57BAFC7BFA38; urn:lsid:zoobank.org:act:4CEAB55B-CC9D-4ECD-97DD-29A4384C4E09
Taxonomy 2023, 3(1), 68-84; https://doi.org/10.3390/taxonomy3010007
Submission received: 15 December 2022 / Revised: 17 January 2023 / Accepted: 28 January 2023 / Published: 31 January 2023

Abstract

:
The pulmonate gastropod genus Ellobium has its greatest diversity in the modern Indo-West Pacific Region (IWP). Its origin, however, is traced to the Early Oligocene of the Northeastern Atlantic and the Western Tethys Region. Two Ellobium species are documented from the Rupelian of France and Italy and a new species is recorded from the Chattian of Hungary: Ellobium kerwaensis nov. sp. The first records in the IWP are known from the Early Miocene, suggesting an eastward range expansion of the genus around the Oligocene/Miocene boundary, when Ellobium became extinct in the European seas. Extant Ellobium species are bound to habitats above the high tide line in salt marshes and mangroves. Comparable environmental requirements are expected for the fossil congeners. Ellobium may derive from Eocene ancestors, such as the Bartonian Eoellobium heberti from the Northeastern Atlantic. Eoellobium is introduced in this paper as a new genus.

1. Introduction

Ellobium is an air-breathing, amphibious pulmonate gastropod of the tropics [1,2]. These animals are detritivorous, feeding on mangrove litter [3]. Several species of the genus are critically endangered due to anthropogenic habitat degradation [4,5]. Eleven extant species are currently listed by MolluscaBase eds. [6]. Eight of these species, including the type species Ellobium aurismidae (Linnaeus, 1758) [7] (Figure 1(A1–A3)) and species, such as Ellobium aurisjudae (Linnaeus, 1758) (Figure 1(B1–B3)), Ellobium chinense (L. Pfeiffer, 1855) [8] and Ellobium scheepmakeri (Petit de la Saussaye, 1850) [9], are confined to the IWP Region. Ellobium gaziense (Preston, 1913) [10] is found along East Africa, E. stagnale (d’Orbigny, 1835) [11] is restricted to the Eastern Pacific [11,12] and only Ellobium dominicense (Férussac, 1821) [13] is described from the Western Atlantic Caribbean Sea and the Gulf of Mexico [13,14,15]. No molecular data exist to confirm this disjunct distribution. Due to the glossy shell and thin outer lip seen in the Caribbean species, which differs from the typical Ellobium as understood herein, we would not be surprised if the Western Atlantic species were to belong to a distinct genus. Moreover, we have not found the fossil Ellobium species in the Caribbean during our own research (B.M.L.).

1.1. The Habitat of Ellobium

Ellison et al. [2] and Groh [16] discussed Ellobium as a mangrove-associated gastropod genus. Whilst a general affinity to the mangrove ecosystem can be stated for the genus, an obligate relationship with mangrove trees is not obvious for most of the species. Ellobium aurisjudae is found in estuaries on saltmarshes above high tide, under logs, and within mangrove swamps [17]. It is also found on mangrove trunks [18] but not higher on mangrove trees [19]. Similarly, E. aurismidae dwells in salt marshes above the high tide line and may be associated with the Nypa trunks [17]. In the Avicennia mangroves of Sumatra, E. aurismidae and E. aurisjudae were found to be rare compared to typical mangrove-dwelling species, such as Cerithidea cingulata (Gmelin, 1791) [20] and Nerita balteata (Reeve, 1855) [21,22]. Setyadi et al. [23], found Ellobium aurisjudae to be among the most frequent gastropods in the Rhizophora and the Bruguiera mangroves of Papua, Indonesia. Ellobium scheepmakeri is found in the saltmarshes of estuaries between long grass and under logs above the high tide line and in the dry Nypa mangrove forests at salinities of 6–7 ppt [17,24]. Similarly, E. tornatelliforme (Petit de la Saussaye, 1843) [25] prefers the saltmarshes and occurs between the long grasses and among the rotting logs above the high tide line [17]. Ellobium gangeticum (Pfeiffer, 1855) was recorded from the salt marshes and the estuaries among the mangrove roots [26]. Ellobium chinense occurs between the stones in freshwater tidelands and on the halophytes such as Zoysia saltmarshes [27,28] and is also found on the trunks of the mangrove trees [29]. The Western Atlantic ‘Ellobiumdominicense also lives in embayments, mangrove creeks and estuaries at low salinities [30,31] but is mainly buried in the humic sediment and under rotting logs [14]. Thus, the lowest common denominator for the IWP-species of Ellobium in terms of habitat, is an occurrence in the saltmarshes above the high tide line in close vicinity of the mangroves. We propose comparable habitat requirements for the fossil species. This is also supported by the co-occurrence of Nerita and Potamididae at the type locality of Ellobium kerwaense (author’s data, NHMW collection).

1.2. The Fossil Record of Ellobium

The last complete synopsis of the fossil record of Ellobium was published by Wenz [32], who listed 13 species and subspecies from the Lutetian to the Pliocene of Europe. Glibert [33,34] provided another overview with eight fossil species from the Eocene and Miocene of Europe, and one fossil species from the Paleocene (Danian from Belgium) but did not consider the Oligocene species. Since then, several new species have been described, which are still placed in Ellobium by MolluscaBase eds. [6], e.g., ‘E.’ boriesi (Plaziat, 1970) [35]. The census of 23 species, listed by MolluscaBase eds. [6], however, must not be read as a critical revision and comprises Jurassic (‘E.’ koerti Huckriede, 1967 [36]) and Danian (‘E.’ olivaeforme (Briart & Cornet, 1887) [37]) species sharing rather superficial similarities with Ellobium. Species such as the Eocene ‘E.’ scotinum (Cossmann, 1902) [38], ‘E.’ namneticum (Vasseur, 1881) [39], the Miocene ‘E.’ strangulatum (de Morgan, 1917) [40], ‘E.’ roberti (de Morgan, 1917) [40], ‘E.’ grateloupi (Tournouër, 1871) [41], ‘E.’ grateloupi tournoueri (Degrange-Touzin, 1892) [42] and the Pliocene ‘E.’ pyramidale (J. de C. Sowerby, 1822) [43] differ from Ellobium in their small and relatively delicate shells and different apertural features (see [38,40,41,44]), and should be removed from Ellobium. Similarly, ‘E.’ oblongum (Deshayes, 1830) [45] differs from Ellobium in its smooth and glossy shell surface and the strongly twisted columellar fold, which persists on the columellar callus and passes into the basal margin. Such shells should most likely be placed in Pythiopsis Sandberger, 1870 [46] or related genera. It is beyond the scope of this paper to clarify the generic placement of all of these species and therefore, we focus only on the few species listed by Wenz [32,47] and MolluscaBase eds. [6], which are accepted herein as Ellobium. These are Ellobium subjudae (d’Orbigny, 1852) [48] from the Rupelian (Early Oligocene of France), E. vicentinum (Fuchs, 1870) [49] from the Rupelian (Early Oligocene) of Italy, a species described herein from the Chattian (Late Oligocene) of Hungary and E. mizutanii Kawase & Ichihara, 2021 [50] and E. yatsuoense Tsuda, 1959 [51] from the Early Miocene of Japan. The Eocene ‘E.’ heberti (Vasseur, 1881) [39], Melampus britannus Vasseur, 1882 [52] and ‘E.’ simplex (Cossmann, 1895) [53] differ considerably from the extant Ellobium species in conchological features and are placed herein in the newly described genus Eoellobium. Overall, our knowledge on the history of Ellobium is clearly biased towards European occurrences.

2. Material and Methods

All specimens are stored in the collections of the Natural History Museum Vienna (Austria), the Muséum national d’Histoire naturelle, Paris (France) and the Naturalis Biodiversity Center, Leiden (The Netherlands). For conchological terminology see [54].

3. Systematics

Superorder Eupulmonata Haszprunar & Huber, 1990 [55]
Order Ellobiida L. Pfeiffer, 1854 (1822) [56]
Family Ellobiidae L. Pfeiffer, 1854 (1822) [56]
Eoellobium nov. gen.
Figure 2(A1–B3)
Type species.Auricula heberti Vasseur, 1881 [39].
Etymology. A combination of Eo- (after Eos, the ancient Greek goddess of the dawn) and Ellobium.
Diagnosis. Large sized, ovate to elongate ovate shell with conical spire, convex spire whorls and occasional varices. Prominent subsutural collar, delimited by deep spiral groove. Sculpture of close-set, rugose axial ribs, crossed by weak spiral threads, resulting in irregularly granulose sculpture. Aperture moderately wide. Columellar callus forming sharply delimited, moderately thickened callus rim in adapical half of aperture, detached from base; callus becoming thinner adapically. Columellar fold moderately prominent, twisted; parietal fold weak. Outer lip slightly thickened without prominent palatal swelling. Differing from Ellobium in the convex spire whorls, the presence of varices and the prominent subsutural cord.
Description. As for type species.
Stratigraphic and geographic range. Middle Eocene, Bartonian; Northeastern Atlantic.
Included species.Auricula heberti Vasseur, 1881 [39], Melampus britannus Vasseur, 1882 [52] (MNHN.F.J03969, http://coldb.mnhn.fr/catalognumber/mnhn/f/j03969 accessed on 27 January 2023) and Auricula simplex Cossmann, 1895 [53] (MNHN.F.J04903, http://coldb.mnhn.fr/catalognumber/mnhn/f/j04903 accessed on 27 January 2023). The latter two species derive from the same locality as the type species.
Discussion.Eoellobium nov. gen. differs from Ellobium in the convex spire whorls, the presence of varices and the prominent subsutural cord. In addition, the weak columellar and parietal fold and the less thickened outer lip distinguish it from Ellobium. Crosse (1896: 107) wrote: “A. Heberti, Vasseur, grande et belle espèce, de la taille de l’A. auris-Midae, mais ne lui ressemblant d’ailleurs en aucune façon” [=A. heberti, Vasseur, a large and beautiful species, the size of A. auris-Midae, but in no way resembling it] [57]. Moreover, Ellobium does not develop such prominent axial ribs. In particular, the presence of varices suggests a different mode of ontogeny for Eoellobium. Nevertheless, Eoellobium heberti might represent an early representative of the Ellobiidae-lineage from which Ellobium developed around the Eocene/Oligocene boundary. Among the modern Ellobium species, E. scheepmakeri is morphologically closest to Eoellobium heberti concerning the convex spire whorls and the relatively wide aperture. Ellobium scheepmakeri, however, lacks the prominent subsutural collar and develops a prominent parietal fold.
Ecology. The mollusk assemblage from Bois-Goüet at Saffré (France) is very diverse and comprises more than 1000 species [58] derived from terrestrial, freshwater, brackish water and shallow marine paleoenvironments. Therefore, it is difficult to interpret the preferred habitat of Eoellobium.
Eoellobium heberti (Vasseur, 1881) nov. comb.
Figure 2(A1–B3)
* Auricula Heberti—Vasseur 1881a: pl. 19, fig. 4 [39].
Auricula Heberti—Vasseur 1881b: 176, 251 [59].
Auricula Heberti—Vasseur 1882: pl. 9, figs 36–38, pl. 10, fig. 38 [52].
Auricula Heberti Vasseur—Cossmann 1895: 174, textfig. B [53].
Auricula Heberti Vasseur—Doncieux 1908: 33 [60].
Ellobium (Ellobium) heberti (Vasseur)—Wenz 1923: 1116 [32].
Ellobium (s. str.) heberti (Vasseur 1881)—Lebrun et al. 2012: 95, pl. 1, fig. 1 [58].
Illustrated material. Figure 2(A1–A3): lectotype MNHN.F.J04020 (Vasseur coll.) designated here, shell height: 41.0 mm, diameter: 24.0 mm (photo: Jacques Mouchart); Figure 2(B1–B3): MNHN.F.A87734 (Pacaud coll.), shell height: 69.4 mm, diameter: 33.4 mm (photo: Philippe Loubry, MNHN/CNRS); Figure 2(C1,C2): MNHN.F.A87733 (Pacaud coll.), shell height: 44.4 mm, diameter: 24.3 mm (photo: Philippe Loubry, MNHN/CNRS).
Material. Lectotype MNHN.F.J04020 (Vasseur coll.) designated here, shell height: 41 mm, diameter: 24 mm, (Figure 2(A1–A3)). Paralectotypes (3 ex.), MNHN.F.J17612 (Vasseur coll.). The designation of a lectotype before the year 2000, using the term “type” (CINZ 1999: Art. 74.5), by Cossmann (1895) [53] (175) for Auricula heberti, based on a specimen in the Dumas collection, is invalid; this specimen does not belong to the type series. Largest specimen (Dumas coll.): shell height 78 mm (illustrated in Cossmann, 1895), 4 ex., MNHN.F.A87735-A87738, one of which, with the only preserved last whorl measuring 65.6 mm (Pacaud coll.), 4 ex., MNHN.F.J16371 (Cossmann coll.), 2 ex., MNHN.F.A79882 (Pons coll.), 1 ex., MNHN.F.A77975 (Houdas coll.), Middle Eocene, Bartonian; Bois-Goüet at Saffré, Loire-Atlantique, France.
Revised description. Large sized, ovate to elongate ovate shells with conical spire; apical angle c. 65°. Protoconch and early teleoconch whorls unknown. Spire of more than seven convex whorls. Suture narrowly incised. Prominent subsutural collar, delimited by deep spiral groove. Last whorl convex with high-placed, rounded shoulder, passing into weakly convex base. Occasional varices. Sculpture of close-set, rugose axial ribs, crossed by weak spiral threads, resulting in irregularly granulose surface. Axial ribs most prominent along and below subsutural collar. Aperture moderately wide, posteriorly angulated, with faintly incised basal margin. Columellar callus forming sharply delimited, moderately thickened callus rim in abapical half of aperture; callus narrowing adapically. Columellar fold very weak to subobsolete. Parietal fold weak, placed roughly mid-aperture. Outer lip slightly thickened without marked palatal swelling. Fasciole broad, convex with prominent growth lines.
Discussion. This species was placed in Ellobium by Wenz 1923 [32] and Lebrun et al. 2012 [58] but the similarity in outline, sculpture and size with this genus is superficial. Melampus britannus Vasseur, 1882 and Auricula simplex Cossmann, 1895 are both found also at Bois-Goüet together with Eoellobium heberti. Eoellobium britannus and E. simplex represent shells with strongly reduced sculpture and weak spiral groove below the subsutural collar. ‘Auriculaboriesi Plaziat, 1970, from the Ypresian of France, differs from Eoellobium heberti in its stronger, thicker columellar and parietal folds, by the presence of a third posterior parietal fold and by the strongly thickened outer lip, which has a prominent palatal swelling. Moreover, it lacks a subsutural collar. Similarly, ‘Ellobiumviai Calzada & Urquiola, 1995 [61] from the Priabonian of Spain, lacks a subsutural collar and has a sculpture of prominent axial ribs.
Northeastern Atlantic. Middle Eocene, Bartonian; Bois-Goüet, Saffré, Loire-Atlantique, France.
Ellobium Röding, 1798 [62]
Type species:Ellobium midae Röding, 1798, accepted as Ellobium aurismidae (Linnaeus, 1758) [7], subsequent designation by Gray (1847) [63] (179). Present-day, South-East Asia.
Diagnosis.Shell moderately large and thin (25 mm) to large and thick (100 mm) and covered with pale brown periostracum. Spire low to moderately high, sculptured with granular spiral lines crossed by more or less conspicuous axial cords. Body whorl about 80% shell length, with same sculpture as spire, sometimes weakly depressed dorsoventrally. Aperture about 80% length of body whorl; small, very oblique, twisted columellar tooth, stronger anterior parietal tooth; posterior parietal tooth sometimes present; outer lip thin to thick, sharp to weakly reflected.” Martins (1996) [14] (178). Inner shell walls partly resorbed in [17] and figs 9.2c–d in [64]. For anatomical data see Martins (1996) [14].
Ellobium kerwaensenov. sp.
Figure 3(A1–E3)
Ellobium sp.—Báldi & Cságoly 1975: 137 [65].
Ellobium n. sp. ex aff. vicentina Fuchs—Báldi 1976: 410 [66].
Ellobium (Ellobium) cf. subjudae (d’Orbigny, 1852)—Janssen 1984: 134, pl. 4, figs 16 and 17 [67].
Ellobium cf. subjudae (d’Orbigny)—Réka 1996: 24, n° 38 [68].
Ellobium cf. subjudae (d’Orbigny)—Harbeck 1996: 121, pl. 33, figs 502 and 503 [69].
Ellobium cf. subjudae (d’Orbigny, 1852)—Vicián et al. 2019: 158 [70].
Ellobium subjudae (d’Orbigny)—Harzhauser & Piller 2007: 24 [71] [non Ellobium subjudae (d’Orbigny 1852)].
Holotype. NHMW 2022/0285/0001, shell height: 38.7 mm, diameter: 20.4 mm (Figure 3(A1–A3)).
Paratypes. NHMW 2022/0285/0002, shell height: 38.9 mm, diameter: 19.8 mm (Figure 3(B1–B3)); NHMW 2022/0285/0003, shell height: 40.0 mm, diameter: 23.0 mm (Figure 3(C1–C3)); NHMW 2023/0036/0001, shell height: 44.0 mm, diameter: 21.5 mm; NHMW 2023/0036/0002, shell height: 36.7 mm, diameter: 19.1 mm; NHMW 2023/0036/0003, shell height: 42.7 mm, diameter: 23.1 mm; NHMW 2023/0036/0004, shell height: 34.0 mm, diameter: 18.6 mm. MNHN.F.A87731, shell height: 32.3 mm, diameter: 17.6 mm (Figure 3(D1–D3)). MNHN.F.A87732, shell height: 39.8 mm, diameter: 23.9 mm (Pl. 1. Figure 3(E1–E3)); RGM 224052, shell height: 44 mm, diameter: 23 mm, illustrated in Harbeck (1996, pl. 33, fig. 502) [69]; RGM 224052, shell height: 40 mm, diameter: 24 mm, illustrated in Harbeck (1996, pl. 33, fig. 503) [69].
Diagnosis. Medium sized, solid, ovate shells with prominent axial sculpture of granulose ribs. Moderately narrow aperture with broad, strongly thickened, smooth columellar callus, relatively weak columellar fold and prominent parietal fold. Outer lip thickened, broad with prominent palatal swelling.
Type locality. Sandpit at Máriahalom in the NE part of the Transdanubian Mountains in Hungary (47°37′56.39′′ N, 18°43′29.51′′ E).
Type stratum. Coastal sand of the Mány Formation, Upper Oligocene, Egerian (=Chattian).
Etymology. Referring to the old name ‘Kerwa’ of the type locality Máriahalom.
Description. Large, solid, ovate shell with conical spire; apical angle 65–80°. Protoconch and early teleoconch whorls unknown. Spire consisting of more than six weakly convex whorls. Last whorl ovoid, moderately convex with periphery usually in adapical third (but may be below mid-whorl in some specimens). Suture narrowly canaliculate. Base slowly contracting. Sculpture of prominent, slightly irregular, faintly sigmoidal, finely granulose axial ribs separated by narrower interspaces. Weak spiral threads most distinct on base separating slightly better defined, subquadratic granules. Aperture moderately narrow, posteriorly angulated with convex basal margin. Columellar callus very prominent, broad, thickened, well demarcated from base, forming broad, thickened callus detached at base and with distinct chink with base. Fasciole broad, indistinct. Columellar fold not very prominent, slightly twisted, fading out on columellar callus. Parietal fold prominent, raised, moderately narrow, in abapical third of aperture, fading out on columellar callus. Outer lip strongly thickened, very broad with prominent palatal swelling slightly above midwhorl.
Discussion.Ellobium kerwaense nov. sp. was compared with or confused with Ellobium subjudae and E. vicentinum [66,71]. Ellobium vicentinum differs in its smaller size, slenderer outline, higher spire, more adapical position of the parietal fold and distinctly less thickened outer lip. Ellobium subjudae is distinguished by its much higher spire and the wider aperture, which lacks a palatal swelling. Moreover, the outer lip and columellar callus are much more thickened in E. kerwaense nov. sp. Ellobium mizutanii Kawase & Ichihara, 2021, from the Early Miocene of Japan [50], is similar in outline but is even more inflated, has a wider aperture and a less thickened outer lip, which lacks a palatal swelling. The Early Miocene E. yatsuoense Tsuda, 1959, from Japan [52], is similar to E. kerwaense in outline but has slightly higher spire whorls and its sculpture is weaker [51] (pl. 7, figs 4a,b). Among the extant Ellobium species, E. aurismidae is reminiscent of the Paratethyan species in its general shell shape. However, E. aurismidae has a much larger shell, with flat spire whorls bearing more prominent granules, and a much weaker palatal swelling than that seen in E. kerwaensis. Moreover, below the shoulder the whorls in E. aurismidae are usually smooth and not finely granular as seen in E. kerwaensis.
Concerning the prominent palatal swelling, E. kerwaense nov. sp. is morphologically closer to the extant E. aurisjudae, which is far more elongate and bears a second parietal fold.
Ellobium kerwaense occurs in dense, nearly rock-forming coquinas composed mainly of shells of the potamidids Mesohalina margaritacea (Brocchi, 1814) [72], Ptychopotamides cinctus (Bruguière, 1792) [73] and Granulolabium plicatum (Bruguière, 1792) [73] along with melongenids and the bivalves Polymesoda and Isognomon [67]. Although we are not aware of palaeobotanical data on Máriahalom, this mollusk assemblage is indicative for the presence of mangroves and coastal mudflats [74].
Distribution. Central Paratethys Sea: Known so far only from Máriahalom and Esztergom in the Komárom-Esztergom district in Hungary [67,70].
Ellobium subjudae (d’Orbigny, 1852)
Figure 4(A1,A2)
Auricula Judae Lamarck—Grateloup 1827: 6 [75] [non Linnaeus, 1758].
Auricula Judae Lamarck—Grateloup 1828: 103 [76] [non Linnaeus, 1758].
Auricula Judae Lamarck—Grateloup 1838: 254, pl. 6, fig. 1 [77] [non Linnaeus, 1758].
Auricula Judae Lamarck—Grateloup 1847: plate captions, pl. 1 (11), fig. 1 [78] [non Linnaeus, 1758].
* Auricula subjudae—d’Orbigny 1852: 2 [48].
Auricula subjudae Lamk.—Pictet 1855: 33, pl. 52, fig. 30 [79] [non Linnaeus, 1758].
Auricula sub-Judae Lamk.—Raulin 1856: 386 [80] [non Linnaeus, 1758].
Auricula aquitanica Sandberger—Sandberger 1871: 330, pl. 19, fig. 24 [46].
Auricula subjudae d’Orb.—Tournouër 1872: 97 [81].
Auricula Aquitanica Sandb.—Benoist 1875: 72 [82].
Auricula aquitanica Sandb.—Hoernes 1884: 286, textfig. 386 [83].
A[uricula]. Aquitanica Grat.—Zittel 1885: 229 [84].
Auricula Aquitanica Sandberger—Degrange-Touzin 1892: 204 [42].
Auricula Judae Lamk.—Raulin 1896: 552 [85] [non Linnaeus, 1758].
Auricula subjudae d’Orb.—Raulin 1896: 552 [85].
Auricula subjudae Grat., d’Orb.—Raulin 1900: 47 [86].
Auricula Aquitanica Sandb.—Raulin 1900: 52 [86].
Ellobium (Ellobium) subjudae (d’Orbigny)—Wenz 1923: 1120 [32].
Auricula subauris-judae [sic] d’Orbigny—Magne 1936: 37 [87].
non Ellobium subjudae (d’Orbigny)—Harzhauser & Piller 2007: 24 [71] [=Ellobium kerwaense nov. sp.].
Syntypes. Figure 4(A1,A2), UB n° 65-2-153 (coll. Grateloup), shell height: 37 mm, diameter: 17 mm. UB n° 65-2-154 (coll. Grateloup), stored in the Université de Bordeaux, France. Lesbarritz, Gaas (Landes), France, Early Oligocene (Rupelian).
Revised description. Medium-sized, elongate ovate, solid shell with conical spire, apical angle c. 60°. Protoconch and early teleoconch whorls unknown. Spire of more than six weakly convex whorls. Last whorl elongate ovoid, with faint subsutural concavity; base convex. Suture narrowly incised; suture on last whorl slightly oblique. Sculpture of rugose, faintly sigmoidal axial ribs, separated by narrow interspaces. Granules most distinct over subsutural ramp and on base. Aperture moderately wide, posteriorly angulated, with wide, convex basal margin. Columellar callus, moderately thickened, forming broad rim, well demarcated from base. Abapically, columellar callus becoming thick, demarcating narrow chink from base. Columellar fold relatively weak, broad fading out on smooth columellar callus. Parietal fold prominent, relatively narrow (compared to some of the extant species like E. aurisjudae), slightly oblique, fading out on columellar callus. Outer lip thickened with beveled edge, the inner beveled portion concave, without palatal swelling. adapically
Discussion.Ellobium subjudae is similar to the coeval E. vicentinum but differs in its much larger size and the more prominent parietal fold. Because E. vicentinum bears a palatal swelling, whereas E. subjudae lacks such feature, it is unlikely that E. vicentinum is based on a subadult specimen of E. subjudae. For a separation from E. kerwaense nov. sp. see discussion on that species. The extant Ellobium aurisjudae is reminiscent of E. subjudae in its elongate outline, but differs clearly in its higher last whorl, the narrower and high aperture, the presence of a second parietal fold, and broader folds.
Distribution. Northeastern Atlantic: Aquitaine Basin: Rupelian (Early Oligocene): Gaas, Lesbarritz (France); Chattian (Late Oligocene): Saint-Paul-lès-Dax (France).
Ellobium vicentinum (Fuchs, 1870)
Figure 4(B1,B2)
* Auricula Vicentina Fuchs—Fuchs 1870: 208, pl. 10, figs 9–10 [49].
Auricula vicentina Fuchs—Tournouër 1872: 97 [81].
Auricula vicentina Fuchs—Sandberger 1873: 330 [46].
Auricula vicentina Fuchs—Oppenheim 1900: 326 [88].
Ellobium (Ellobium) vicentinum (Fuchs)—Wenz 1923: 1121 [32].
Lectotype (designated herein). NHMW 2022/0286/0001, shell height: 28.1 mm, diameter: 14.7 mm, Soggio di Brin at Salcedo, Vicenza, Italy; Early Oligocene (Rupelian).
Revised description. Medium sized, moderately narrowly ovate with acute spire, solid. Spire conical, moderately high, of more than 5 weakly convex whorls; apical angle 63°. Protoconch and early teleoconch whorls unknown. Shell surface of spire abraded. Last whorl moderately convex, attaining about 80% of total height, with periphery distinctly below suture. Suture narrowly canaliculate, slightly oblique on last whorl. Base slowly contracting. Sculpture on last two whorls of coarse, finely rugose, broad, low, irregular, faintly sigmoidal axial ribs with narrow interspaces, composed of coalescent subquadratic nodes. Sculpture persisting to base. Aperture moderately narrow with acute posterior angulation and convex basal margin. Columella with broad, not very thickened callus narrowing adapically. Columellar callus relatively weak, delimitating narrow chink on base. Columellar fold moderately prominent, weakening inside aperture. Parietal fold relatively weak for genus, not very broad, weakly oblique, slightly below middle of aperture. Outer lip thickened with palatal swelling above mid-whorl.
Discussion. The description of this species by Fuchs (1870) was misleading as he did not describe and illustrate the columellar fold. The mollusk fauna from Soggio di Brin is a rich assemblage typical for shallow sublittoral environments with cassid, cypraeid and marginellid gastropods but lacks genera typical for mudflats, saltmarshes and mangroves. Therefore, the single Ellobium shell is parautochthonous and transported.
Distribution. Western Tethys: Only known so far from the two close-by Early Oligocene (Rupelian) localities Soggio di Brin at Salcedo and Casa Priva at Bassano in the Vicenza Province (Italy) [88].

4. Discussion

The modern distribution pattern of Ellobium, with the greatest diversity being in the Indo-West Pacific-Region (IWP Region), suggests that this region was a center of origin of the genus. However, this hypothesis conflicts with the fossil record, as the oldest records are not from the IWP Region but from the Rupelian of the Western Tethys and the Northeastern Atlantic (Figure 5). A Rupelian first appearance of Ellobium is in excellent agreement with the molecular data [89], which includes E. aurisjudae, E. chinense and E. scheepmakeri. This molecular analysis suggested an origination of the genus during the Oligocene times. However, the taxonomic revision presented herein suggests older roots for the group, extending back to the Middle Eocene, represented by Eoellobium nov. gen. from the North Eastern Atlantic. The oldest fossil Ellobium species in the IWP Region post-dates the European occurrences. Ellobium mizutanii Kawase & Ichihara, 2007 and one unnamed species from Mizunami (Gifu Prefecture, Japan), E. yatsuoensis Tsuda, 1959 from Osa-wano-machi and Kaminiikawa-gun (Toyama Prefecture, Japan) and E. cf. aurisjudae from Ninohe City (Iwate Prefecture, Japan) were described from the Early Miocene [50,90,91,92,93]. After this first radiation in the IWP Region, the fossil record of the genus becomes rather poor. An unnamed species was recorded from the Middle Miocene of Java [94] and Ellobium aurismidae was reported from the Late Miocene or Early Pliocene of the Philippines [95]. Another unnamed Late Miocene Ellobium was reported from Japan [96]. Ellobium aurisjudae was documented from the Late Pliocene of Java [93] and from the Holocene of Malaysia [17] from where Ellobium scheepmakeri was also documented from the Late Pleistocene or Holocene [17]. The molecular data suggests Ellobium chinensis was present at least since the Pleistocene [28]. Despite this fragmentary record, it can be stated that Ellobium was established in the IWP Region represented by several species since the Early Miocene. Ellobium aff. pellucens (Menke) [=‘E.’ aff. dominicense] from the Lower Miocene of Panama [97] documents that the Western Atlantic lineage ‘E.’ dominicense can also be traced back to the Early Miocene but it is questionable if this lineage is directly related to Ellobium.
This pattern of stratigraphic occurrences would suggest the Northeastern Atlantic and the Western Tethys as the centers of origin from where Ellobium spread into the IWP Region. It is possible that the Western Atlantic ‘E.’ dominicense represents a Transatlantic offshoot of this radiation.
Similar range expansions were documented for some Western Tethyan strombids and for the tridacnine bivalves [98,99,100]. These taxa first appeared in the Northeastern Atlantic and Western Tethys and arrived during the Oligocene via the open Tethys Gateway in the IWP Region (Tridaninae) and in part also arrived in the Western Atlantic (e.g., Persististrombus Kronenberg & Lee, 2007 [101]). We note however, that the mode of dispersal of marine taxa, such as strombids and tridacnids, is clearly different from that of pulmonate ellobiids.

The Extinction of Ellobium in European Seas

Ellobium species are rare in the fossil record and the three European Oligocene species are known from only a few specimens. Nevertheless, we consider it unlikely that the genus was overlooked thus far in the well-known Early Miocene assemblages of the Northeastern Atlantic, the Western Tethys and the Central Paratethys Sea. This is especially true for the enormously rich mangrove fauna of the Korneuburg Basin, which has been systematically screened by citizen scientists for nearly 30 years resulting in a significant amount of material [102,103]. Similarly, the Aquitanian and Burdigalian faunas from the Aquitaine Basin are well documented and extensively collected. Therefore, we assume that Ellobium vanished from this region at the end of the Chattian. It would be tempting to explain this extinction by the cooling around the Oligocene/Miocene boundary, which coincided with the M1 glaciation, due to a major expansion of Antarctic ice shields [104,105]. Other species of the Oligocene mangrove assemblage, however, persisted into the Early Miocene. The potamidids Mesohalina margaritacea (Brocchi, 1814), and Ptychopotamides cinctus (Bruguière, 1792) and the bivalve Polymesoda subarata (Schlotheim, 1820) [106] occur in Rupelian and Chattian assemblages of the Western Tethys and passed the Oligocene/Miocene boundary [107]. Therefore, the correlation with the M1 glaciation might be too simplistic.

5. Conclusions

The tropical pulmonate genus Ellobium has its highest diversity in the Indo-West Pacific Region and does not occur in the modern Mediterranean Sea and the Eastern Atlantic. Its origin can be traced back to the Early Oligocene in the Northeastern Atlantic and Western Tethys, where it is documented by two species. During the Late Oligocene, Ellobium also reached the Central Paratethys Sea, from where it is documented by the newly described Ellobium kerwaense nov. sp. No Ellobium species are known from the European Miocene suggesting an extinction around the Oligocene/Miocene boundary. The radiation in the IWP Region started during the Early Miocene. Since then, the genus is documented by fragmentary fossil records in the entire IWP Region. The Oligocene appearance of Ellobium is in excellent agreement with the proposed age of the genus in a molecular phylogeny of the Ellobiidae [89]. The roots of Ellobium might be represented by the Middle Eocene genus Eoellobium, which is morphologically closely similar to Ellobium but differs in its prominent subsutural collar and weaker columellar and parietal folds. Ellobium is another example of an eastward range expansion of a mollusk group, as it originated in the Paleogene of the Western Tethys and subsequently spread into the Indo-West Pacific via the Tethys Gateway.

Author Contributions

Conceptualization, M.H.; writing, M.H., J.-M.P. and B.M.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

All data are given in this publication.

Acknowledgments

Thanks to Anita Eschner (NHMW) for providing access to the collection of extant Ellobium species. We are grateful to Anton Breitenberger (Bad Vöslau) for donating two shells of Ellobium kerwaense. The other three type specimens were collected and donated by the late Reinhold Kunz (Vienna) who is forever in our memory. We thank two anonymous reviewers for their constructive comments. We thank Alice Schumacher (NHMW) for taking pictures of most of the illustrated specimens. The pictures of Ellobium subjudae were made by Laurent Charles (Muséum d’Histoire naturelle de Bordeaux) and the pictures of Eoellobium heberti were provided by Philippe Loubry (MNHN/CNRS).

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

NHMWNatural History Museum Vienna (Austria)
MNHN.F.Muséum national d’Histoire naturelle, Paris (France)
RGMNaturalis Biodiversity Center, Leiden (Netherlands)

References

  1. Morton, J.E. The evolution of the Ellobiidae with a discussion on the origin of the Pulmonata. Proc. Zool. Soc. Lond. 1955, 125, 127–168. [Google Scholar] [CrossRef]
  2. Ellison, A.M.; Farnsworth, E.J.; Merkt, R.E. Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Glob. Ecol. Biogeogr. 1999, 8, 95–115. [Google Scholar] [CrossRef] [Green Version]
  3. Teoh, H.W.; Sasekumar, A.; Ismael, M.H.; Chong, V.C. Trophic discrimination factor and the significance of mangrove litter to benthic detritivorous gastropod, Ellobium aurisjudae (Linnaeus). J. Sea Res. 2018, 131, 79–84. [Google Scholar] [CrossRef]
  4. Tan, S.K.; Tan, S.H.; Low, M.E.Y. On Ellobium aurismalchi (Müller, 1774) (Mollusca: Ellobiidae). Nat. Singap. 2009, 2, 357–359. Available online: https://lkcnhm.nus.edu.sg/wp-content/uploads/sites/10/app/uploads/2017/04/2009nis357-359.pdf (accessed on 27 January 2023).
  5. Lim, S.-Y.; Lee, C.-S.; Kim, M.-S.; Yoo, S.-H. The conservation value of endangered marine species: The case of the Ellobium chinense. J. Korean Soc. Mar. Environ. Saf. 2015, 21, 645–654. [Google Scholar] [CrossRef]
  6. MolluscaBase (Ed.) MolluscaBase. Ellobium Röding, 1798. 2022. Available online: http://molluscabase.org/aphia.php?p=taxdetails&id=206412 (accessed on 5 November 2022).
  7. Linnaeus, C. Systema Naturae per Regna Tria Naturae… Editio Decima, Reformata; Laurentii Salvii: Holmiae, Sweden, 1758; Volume 1, 823p, Available online: https://www.biodiversitylibrary.org/item/10277#page/3/mode/1up (accessed on 27 January 2023).
  8. Pfeiffer, L. Drei neue Auriculaceen. Malakozool. Blätter 1855, 2, 7–8. Available online: https://www.biodiversitylibrary.org/page/15864748 (accessed on 27 January 2023).
  9. Petit de la Saussaye, M. Description de Coquilles Nouvelles. J. De Conchyliol. 1850, 1, 402–406. Available online: https://www.biodiversitylibrary.org/page/25136220 (accessed on 27 January 2023).
  10. Preston, H.B. New species and varieties of terrestrial and fluviatile shells from Equatorial Africa. Rev. De Zool. Afr. 1913, 3, 47–62, 212. Available online: https://www.biodiversitylibrary.org/item/103048#page/63/mode/1up (accessed on 27 January 2023).
  11. Orbigny, A. D’ Synopsis terrestrium et fluviatilium molluscorum, in suo per Americam meridionalem itinere collectorum. Mag. De Zool. 1835, 5, 1–44. Available online: https://www.biodiversitylibrary.org/page/2633132 (accessed on 27 January 2023).
  12. Keen, A.M. Sea Shells of Tropical West America. Marine Mollusks from Baja California to Peru, 2nd ed.; Stanford University Press: Stanford, CA, USA, 1971; 1064p. [Google Scholar]
  13. Férussac, A.E.J.P.F. d’Audebard de. Tableau systématique des Pulmonés Géhydrophiles, tableau systématique de la famille des Auricules. In Deuxième Partie. Tableaux Particuliers des Mollusques Terrestres et Fluviatiles, Présentant Pour Chaque famille les Genres et Espèces Qui la Composent. Classe des Gastéropodes. Ordre des Pulmonés Sans Opercules; Bertrand: Paris, France, 1821; pp. 96–114. [Google Scholar]
  14. Martins, A.M.F. Anatomy and Systematics of the Western Atlantic Ellobiidae (Gastropoda: Pulmonata). Malacologia 1996, 37, 163–356. Available online: https://www.biodiversitylibrary.org/page/13113594#page/179/mode/1up (accessed on 27 January 2023).
  15. Rosenberg, G.; Moretzsohn, F.; García, E.F. Gastropoda (Mollusca) of the Gulf of Mexico. In Gulf of Mexico–Origins, Waters, and Biota; Felder, D.L., Camp, D.K., Eds.; Texas A&M Press: College Station, TX, USA, 2009; pp. 579–699. [Google Scholar]
  16. Groh, K. Ellobiidae. In Philippine Marine Mollusks; Poppe, G.T., Ed.; Coch Books: Hackenheim, Germany, 2010; Volume 3, pp. 446–457. [Google Scholar]
  17. Raven, H.; Vermeulen, J.J. Notes on molluscs from NW Borneo and Singapore. 2. A synopsis of the Ellobiidae (Gastropoda, Pulmonata). Vita Malacol. 2007, 4, 29–62. [Google Scholar]
  18. Piamklad, S.; Tuntiwaranurak, C.; Dumrongrojwattana, P. Malacofauna diversity and distribution (Mollusca: Gastropoda, Bivalvia) at Pak Nam Pran Mangrove Forest in Pran Buri District, Prachuap Khiri Khan Province, Thailand. In Proceedings of the Burapha University International Conference, Pattaya, Thailand, 3–4 July 2014; Burapha University: Chon Buri, Thailand, 2014. STP839-36. [Google Scholar]
  19. Faezah, P.; Farah, H.S. Composition of gastropods in mangroves of Tanjung Dawai and Pulau Sayak, Kedah. Malays. Appl. Biol. 2011, 40, 13–17. [Google Scholar]
  20. Gmelin, J.F. Vermes. Caroli a Linnaei Systema Naturae per Regna Tria Naturae, 13th ed.; Beer, G.E.: Lipsiae, Germany, 1971; pp. 3021–3910. Available online: http://www.biodiversitylibrary.org/item/83098#5 (accessed on 27 January 2023).
  21. Reeve, L.A. Monograph of the genus Nerita. In Conchologia Iconica, or, Illustrations of the Shells of Molluscous Animals; L. Reeve & Co., Ltd.: London, UK, 1855; Volume 9, Available online: https://www.biodiversitylibrary.org/page/9141840 (accessed on 27 January 2023).
  22. Manullang, T.; Bakti, D.; Leidonald, R. Structure of gastropod communities at mangrove ecosystem in Lubuk Kertang village, West Berandan District, Langkat Regency, North Sumatera Province. IOP Conf. Ser. Earth Environ. Sci. 2018, 122, 012103. [Google Scholar] [CrossRef]
  23. Setyadi, G.; Rahayu, D.L.; Pribadi, R.; Hartati, R.; Wijayanti, D.; Sugianto, D.; Darmawan, A. Crustacean and mollusk species diversity and abundance in the mangrove communities of Mimika District, Papua, Indonesia. Biodiversitas J. Biol. Divers. 2021, 22, 4146–4157. [Google Scholar] [CrossRef]
  24. Ismail, M.H.; Chong, V.C.; Ramli, R.; Sasekumar, A. Rediscovery of Ellobium scheepmakeri (Petit De La Saussaye, 1850) (Mollusca: Gastropoda: Ellobiidae), a rare ellobiid in Bukit Belimbing mangrove forest, Peninsular Malaysia. Molluscan Res. 2017, 37, 222–226. [Google Scholar] [CrossRef]
  25. Petit de la Saussaye, M. Descriptions of a new species of shells belonging to the genus Auricula, collected by H. Cuming, Esq. Proc. Zool. Soc. Lond. 1843, 1842, 201–202. Available online: https://www.biodiversitylibrary.org/page/30679963 (accessed on 27 January 2023).
  26. Mohapatra, A. Mollusca. In Fauna of Godavari Estuary Andhra Pradesh; Estuarine Ecosystem Series; The Zoological Survey of India: Kolkota, India, 2001; Volume 4, pp. 55–82. ISBN 978-8185874531. [Google Scholar]
  27. Kimura, T. Why an endangered snail Ellobium chinense aggregates on the uppermost tidalflat? Nippon. Suisan Gakkaishi 2011, 77, 119. [Google Scholar] [CrossRef] [Green Version]
  28. Shin, C.R.; Choi, E.H.; Kim, G.; Baek, S.Y.; Park, B.; Hwang, J.; Jun, J.; Kil, H.J.; Oh, H.; Lee, K.; et al. Characterization of metapopulation of Ellobium chinense through Pleistocene expansions and four covariate COI guanine-hotspots linked to G-quadruplex conformation. Sci. Rep. 2021, 11, 12239. [Google Scholar] [CrossRef]
  29. Ngoc, H. Gastropod (Mollusca: Gastropoda) in mangrove forest ecosystem on Northern coastal area of Vietnam. J. Sci. Hnue Nat. Sci. 2008, 53, 151–158. [Google Scholar]
  30. Rodrigues, C.A.L.; Ribeiro, R.P.; Santos, N.B.; Almeida, Z.S. Patterns of mollusc distribution in mangroves from the São Marcos Bay, coast of Maranhão State, Brazil. Acta Amaz. 2016, 46, 391–400. [Google Scholar] [CrossRef]
  31. Wingard, G.L.; Stackhouse, B.L.; Daniels, A.M. Using mollusks as indicators of restoration in nearshore zones of south Florida’s estuaries. Bull. Mar. Sci. 2022, 98, 351–380. [Google Scholar] [CrossRef]
  32. Wenz, W. Fossilium Catalogus I: Animalia. Gastropoda Extramarina Tertiaria; Junk, W.: Berlin, Germany, 1923; Pars 21; pp. 1069–1420. Available online: https://www.biodiversitylibrary.org/item/125704#page/49/mode/1up (accessed on 27 January 2023).
  33. Glibert, M. Euthyneura et Pulmonata fossiles du Cénozoïque étranger des collections de l’Institut Royal des sciences naturelles de Belgique. Mémoires De L’institut R. Des Sci. Nat. De Belg. 1962, 70, 1–140. Available online: http://www.vliz.be/imisdocs/publications/252233.pdf (accessed on 27 January 2023).
  34. Glibert, M. Révision des Gastropoda du Danien et du Montien de la Belgique, tome 1: Les Gastropoda du calcaire de Mons. Mémoires De L’institut R. Des Sci. Nat. De Belg. 1973, 173, 7–116. Available online: https://biblio.naturalsciences.be/rbins-publications/memoirs-of-the-royal-belgian-institute-of-natural-sciences-first-series/173-1973/vol-173-024e9bx-text.pdf (accessed on 27 January 2023).
  35. Plaziat, J.-C. Contribution à l’étude de la faune et de la flore du Sparnacien des Corbières septentrionales. Cah. De Paléontologie Du Cent. Natl. De La Rech. Sci. 1970, 9, 1–121. [Google Scholar]
  36. Huckriede, R. Molluskenfaunen mit limnischen und brackischen Elementen aus Jura, Serpulit und Wealden NW-Deutschlands und ihre paläogeographische Bedeutung. Geol. Jahrb. Beih. 1967, 67, 1–263. [Google Scholar]
  37. Briart, A.; Cornet, F.L. Description des fossiles du Calcaire grossier de Mons. Gastéropodes. 4e partie. Mémoires De L ‘Académie R. Des Sci. Des Lett. Et Des Beaux-Arts De Belg. 1887, 47, 1–128. Available online: http://www.vliz.be/imisdocs/publications/112983.pdf (accessed on 27 January 2023).
  38. Cossmann, M. Mollusques éocèniques de la Loire-Inférieure. Tome 2, Deuxième fascicule. Gastropodes (suite et fin). Bull. De La Société Des Sci. Nat. De L’ouest De La Fr. 1902, 2, 5–159. Available online: https://www.biodiversitylibrary.org/page/5853400 (accessed on 27 January 2023).
  39. Vasseur, G. Recherches Géologiques sur les Terrains Tertiaires de la France Occidentale; Paléontologie, Atlas: Quinsac, Toulouse, France, 1881; pl. 4 and 19. [Google Scholar]
  40. de Morgan, J. Observations sur les Auriculidés du Falunien de la Touraine. Bull. De La Société Géologique De Fr. 1917, 16, 21–49. Available online: https://biodiversitylibrary.org/page/31119282 (accessed on 27 January 2023).
  41. Tournouër, R. Diagnoses de deux Auriculidae fossiles des faluns du S. O. de la France. J. De Conchyliol. 1871, 19, 360–361. Available online: https://www.biodiversitylibrary.org/page/15136381 (accessed on 27 January 2023).
  42. Degrange-Touzin, A. Étude sur la faune terrestre, lacustre et fluviatile de l’Oligocène supérieur et du Miocène dans le Sud-Ouest de la France et principalement dans la Gironde. Actes De La Société Linnéenne De Bordx. 1892, 45, 125–230. Available online: https://www.biodiversitylibrary.org/page/33424078 (accessed on 27 January 2023).
  43. de Carle Sowerby, J. The Mineral Conchology of Great Britain; or, Coloured Figures and Descriptions of Those Remains of Testaceous Animals or Shells, which Have Been Preserved at Various Times and Depths in the Earth; Sowerby: London, UK, 1821–1823; Volume 4, pp. 1–160. Available online: https://www.biodiversitylibrary.org/page/14392771 (accessed on 27 January 2023).
  44. Ceulemans, L.; Van Dingenen, F.; Landau, B.M. The lower Pliocene gastropods of Le Pigeon Blanc (Loire-Atlantique, northwest France). Part 5—Neogastropoda (Conoidea) and Heterobranchia (fine). Cainozoic Res. 2018, 18, 89–176. [Google Scholar]
  45. Deshayes, G.-P. Encyclopédie Méthodique ou par Ordre de Matières. Histoire Naturelle des Vers et Mollusques. 1830. Volume 2. Available online: https://www.biodiversitylibrary.org/bibliography/8638#/summary (accessed on 27 January 2023).
  46. Sandberger, C.L.F. Die Land- und Süßwasser-Conchylien der Vorwelt; Kreidel, C.W.: Wiesbaden, Germany, 1870; pp. 1–96, 1871, pp. 97–160; 1873, pp. 257–352; Available online: https://www.biodiversitylibrary.org/item/112229#page/7/mode/1up (accessed on 27 January 2023).
  47. Wenz, W. Zur Nomenklatur tertiärer Land- und Süßwassergastropoden. IV. Senckenbergiana 1922, 4, 5–7. Available online: https://www.biodiversitylibrary.org/page/30068315 (accessed on 27 January 2023).
  48. d’Orbigny, A. Prodrome de Paléontologie. Stratigraphique Universelle des Animaux Mollusques et Rayonnés Faisant Suite au Cours Élémentaire de Paléontologie et de Géologie Stratigraphique; Victor Masson: Paris, France, 1852; Volume 3, pp. 191, 196. Available online: https://www.biodiversitylibrary.org/page/31730040 (accessed on 27 January 2023).
  49. Fuchs, T. Beiträge zur Kenntnis der Conchylienfauna des Vicentinischen Tertiärgebirges. Denkschr. Der Math.-Nat. Cl. Der Kais. Akad. Der Wiss. 1870, 30, 137–216. Available online: https://www.zobodat.at/pdf/DAKW_30_2_0137-0216.pdf (accessed on 27 January 2023).
  50. Kawase, M.; Ichihara, T. A new species of Ellobium (Gastropoda: Panpulmonata: Ellobiidae) from the Miocene Mizunami Group in Gifu Prefecture, central Japan. Bull. Mizunami Foss. Musum 2021, 48, 1–7. [Google Scholar] [CrossRef]
  51. Tsuda, K. New Miocene molluscs from the Kurosedani Formation, in Toyama prefecture, Japan. J. Fac. Sci. Niigata Univ. 1959, 3, 67–110. [Google Scholar]
  52. Vasseur, G. Recherches Géologiques sur les Terrains Tertiaires de la France Occidentale; Paléontologie, Atlas: Quinsac, Toulouse, France, 1882; pls 1–3 and 5–11 [plate 4 and 19 see Vasseur, 1881a]. [Google Scholar]
  53. Cossmann, M. Mollusques éocèniques de la Loire-Inférieure. (Tome 1, fascicule 1). Bull. De La Société Des Sci. Nat. De L’ouest De La Fr. 1895, 5, 159–197. Available online: https://www.biodiversitylibrary.org/item/28858#page/245/mode/1up (accessed on 27 January 2023).
  54. Cox, L.R. General characteristics of Gastropoda. In Treatise on Invertebrate Paleontology, Part I, Mollusca 1, Mollusca—General Features, Scaphopoda, Amphineura, Monoplacophora, Gastropoda—General Features, Archaeogastropoda and some (mainly Paleozoic) Caenogastropoda and Opisthobranchia; Knight, J.B., Cox, L.R., Keen, A.M., Smith, A.G., Batten, R.L., Yochelson, E.L., Ludbrook, N.H., Robertson, R., Yonge, C.M., Moore, R.C., Eds.; The Geological Society of America and The University of Kansas Press: Lawrence, KS, USA, 1960; pp. 169–185. [Google Scholar]
  55. Haszprunar, G.; Huber, G. On the central nervous system of Smeagolidae and Rhodopidae, two families questionably allied with the Gymnomorpha (Gastropoda, Euthyneura). J. Zool. Lond. 1990, 220, 185–199. Available online: http://dx.doi.org/10.1111/j.1469-7998.1990.tb04302.x (accessed on 27 January 2023).
  56. Pfeiffer, L. Synopsis Auriculaceorum. Malakozool. Blätter 1854, 1, 145–156. Available online: https://www.biodiversitylibrary.org/page/15864608 (accessed on 27 January 2023).
  57. Crosse, H. Mollusques Éocèniques de la Loire-Inférieure, par M. Cossmann [Article review]. J. De Conchyliol. 1896, 44, 106–108. Available online: https://www.biodiversitylibrary.org/item/81049#page/146/mode/1up (accessed on 27 January 2023).
  58. Lebrun, P.; Courville, P.; Pacaud, J.-M. Les mollusques des sables éocènes de Bois-Gouët (Loire-Atlantique). In Les coquillages de l’Éocène du Bassin Parisien, un Trésor Inestimable Vieux de Plusieurs Dizaines de Millions d’années. Fossiles, Revue française de Paléontologie; Lebrun, P.: Paris, France, 2012; Volume 3, pp. 92–97. [Google Scholar]
  59. Vasseur, G. Recherches géologiques sur les terrains tertiaires de la France occidentale. Ann. Des Sci. Géologiques 1881, 13, 1–432. [Google Scholar]
  60. Doncieux, L. Catalogue descriptive des fossiles nummulitiques de l’Aude et de l’Hérault. Deuxième Partie (Fascicule 1). Corbières septentrionales. Ann. De L’université De Lyon N.S. 1908, 22, 1–250. Available online: https://www.biodiversitylibrary.org/item/186558#page/11/mode/1up (accessed on 30 January 2023).
  61. Calzada, S.; Urquiola, M.M. Algunos gasterópodos de El Bruc. Batalleria 1995, 5, 29–36. [Google Scholar]
  62. Röding, P.F. Museum Boltenianum Sive Catalogus Cimeliorum e Tribus Regnis Naturæ Quæ Olim Collegerat Joa. Fried Bolten, M.D. p. d. per XL. Annos Proto Physicus Hamburgensis. Pars Secunda Continens Conchylia Sive Testacea Univalvia, Bivalvia & Multivalvia; Trapp: Hamburg, Germany, 1798; Volume viii, 199p, Available online: https://www.biodiversitylibrary.org/page/16230659 (accessed on 27 January 2023).
  63. Gray, J.E. A list of the Recent Mollusca, their synonyms and types. Proc. Zool. Soc. Lond. 1847, 15, 129–219. Available online: https://www.biodiversitylibrary.org/item/46217#page/631/mode/1upa (accessed on 27 January 2023).
  64. Sasaki, T.; Maekawa, Y.; Takeda, Y.; Atsushiba, M.; Chen, C.; Noshita, K.; Uesugi, K.; Hoshino, M. 3D Visualization of Calcified and Non-calcified Molluscan Tissues Using Computed Tomography. In Biomineralization; Endo, K., Kogure, T., Nagasawa, H., Eds.; Springer: Singapore, 2018; pp. 83–93. [Google Scholar] [CrossRef] [Green Version]
  65. Báldi, T.; Cságoly, É. Faziostratotypus: Máriahalom. Sand pit. In OM Egerien. Chronostratigraphie und Neostratotypen 5; Báldi, T., Seneš, J., Eds.; Veda: Bratislava, Slovakia, 1975; pp. 134–137. [Google Scholar]
  66. Báldi, T. A Dunántúli Középhegység és Észak-Magyarország oligocénjének korrelációja. Födtani Közlöny 1976, 106, 407–424. Available online: http://epa.oszk.hu/01600/01635/00217/pdf/EPA01635_foldtani_kozlony_1976_106_4_407-424.pdf (accessed on 27 January 2023).
  67. Janssen, A.W. Late Oligocene molluscs from a sandpit near Máriahalom (Hungary): A preliminary study. Ann. Univ. Sci. Bp. De Rolando Eötvös Nomin. Sect. Geol. 1984, 24, 109–150. [Google Scholar]
  68. Réka, O. Életnyomok és patológiás elváltozások az unyi homokbányában gyűjtött puhatestűek mészvázain. Malakológiai Tájékoztató (Malacol. Newsl.) 1996, 15, 11–27. Available online: https://library.hungaricana.hu/en/view/MEGY_HEVE_Malakot_15_1996/?query=piliscsaba&pg=12&layout=s (accessed on 27 January 2023).
  69. Harbeck, T. Die Evolution der Archaeopulmonata. Zool. Verh. Leiden 1996, 305, 1–133. Available online: https://repository.naturalis.nl/pub/317550 (accessed on 27 January 2023).
  70. Vicián, Z.; Kovács, Z. A new Egerian (Upper Oligocene—Lower Miocene) gastropod fauna from the Esztergom Basin (NE Transdanubia, Hungary). Földtani Közlöny 2016, 146, 233–256. Available online: https://foldtan.hu/sites/default/files/04_KovacsZ.pdf (accessed on 27 January 2023).
  71. Harzhauser, M.; Piller, W.E. Benchmark data of a changing sea—Palaeogeography, Palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 253, 8–31. [Google Scholar] [CrossRef]
  72. Brocchi, G. Conchiologia Fossile Subapennina, con Osservazioni Geologiche Sugli Apennini e sul Suolo Adiacente; Stamperia Reale: Milano, Italy, 1814; 712p, Available online: https://www.biodiversitylibrary.org/item/43873#page/9/mode/1up (accessed on 27 January 2023).
  73. Bruguière, J.G. Encyclopédie Méthodique ou par Ordre de Matières. Histoire Naturelle des vers, Volume 1; Pancoucke: Paris, France, 1792; pp. 345–757. Available online: https://biodiversitylibrary.org/page/8892006 (accessed on 27 January 2023).
  74. Harzhauser, M.; Mandic, O.; Büyükmeriç, Y.; Neubauer, T.A.; Kadolsky, D.; Landau, B.M. A Rupelian mangrove swamp mollusc fauna from the Thrace Basin in Turkey. Arch. Für Molluskenkd. 2016, 145, 23–58. [Google Scholar] [CrossRef]
  75. de Grateloup, J.P.S. Description de plusieurs espèces de coquilles fossiles des environs de Dax (Landes). Bull. D’histoire Nat. De La Société Linnéenne De Bordx. 1827, 2, 3–26. Available online: https://www.biodiversitylibrary.org/item/110491#page/7/mode/1up (accessed on 27 January 2023).
  76. de Grateloup, J.P.S. Tableau des coquilles fossiles qu’on rencontre dans les terrains calcaires tertiaires (Faluns) des environs de Dax, dans le département des Landes. 1er article. Bull. D’histoire Nat. De La Société Linnéenne De Bordx. 1828, 2, 72–109. Available online: https://www.biodiversitylibrary.org/item/110491#page/82/mode/1up (accessed on 27 January 2023).
  77. de Grateloup, J.P.S. Conchyliologie fossile du Bassin de l’Adour. 5ème mémoire. Famille des Plicacés (Trachélipodes). Description des genres et des espèces de coquilles fossiles, appartenant à cette famille de Trachélipodes, qu’on observe dans les couches des terrains marins supérieurs du bassin de l’Adour, aux environs de Dax (Landes). Actes De La Société Linnéenne De Bordx. 1838, 10, 251–290. Available online: https://www.biodiversitylibrary.org/item/101658#page/269/mode/1up (accessed on 27 January 2023).
  78. de Grateloup, J.P.S. Conchyliologie Fossile des Terrains Tertiaires du Bassin de l’Adour, (Environs de Dax). Tome Ier. Univalves. Atlas; Th. Lafargue: Bordeaux, France, 1847; Available online: https://archive.org/details/conchyliologief00gratgoog (accessed on 27 January 2023).
  79. Pictet, F.J. Traité de Paléontologie ou Histoire Naturelle des Animaux Fossiles Considérés Dans Leurs Rapports Zoologiques et Géologiques; Baillières: Paris, France, 1855; Volume 3, 727p, Available online: https://www.biodiversitylibrary.org/item/48930#page/9/mode/1up (accessed on 27 January 2023).
  80. Raulin, V. Distribution géologique des animaux vertébrés et des mollusqucs terrestres et fluviatiles fossiles de 1′Aquitane, précédée d’une note sur les divers faluns de la Gironde. Recl. Des Actes De L‘Académie Impériale Des Sci. Belles-Lett. Et Arts De Bordx. 1856, 18, 363–408. [Google Scholar]
  81. Tournouër, R. Auriculidées fossiles des faluns. J. De Conchyliol. 1872, 20, 77–116. Available online: https://www.biodiversitylibrary.org/item/53466#page/81/mode/1up (accessed on 27 January 2023).
  82. Benoist, E.A. Description de coquilles fossiles des terrains tertiaires moyens. Actes De La Société Linnéenne De Bordx. 1875, 30, 47–73. Available online: https://www.biodiversitylibrary.org/item/106216#page/709/mode/1up (accessed on 27 January 2023).
  83. Hoernes, R. Elemente der Palaeontologie (Palaeozoologie), 8th ed.; Veit & Co., Ltd.: Leipzig, Germany, 1884; Volume 16, 594p, Available online: https://www.zobodat.at/pdf/MON-GEO_0049_0001-0594.pdf (accessed on 27 January 2023).
  84. Zittel, K.A. Handbuch der Palaeontologie. I. Abtheilung, Palaeozoologie; Oldenbourg: München, Germany; Leipzig, Germany, 1885; Volume 2, 893p, Available online: https://www.biodiversitylibrary.org/item/79170#page/6/mode/1up (accessed on 27 January 2023).
  85. Raulin, V. Sur la faune Oligocène de Gaas (Landes). Bull. De La Société Géologique De Fr. 1896, 23, 546–555. Available online: https://www.biodiversitylibrary.org/item/97296#page/555/mode/1up (accessed on 27 January 2023).
  86. Raulin, V. Succession des Mollusques terrestres et d’eau douce dans le basin tertiaire de l’Aquitaine. Bull. De La Société Géologique De Fr. Ser. 3 1900, 28, 45–54. Available online: https://www.biodiversitylibrary.org/item/96117#page/51/mode/1up (accessed on 27 January 2023).
  87. Magne, A. Note sur la faune terrestre et fluviatile de la marnière de Bis, à Gaas. Procès-Verbaux Des Séances De La Société Linnéenne De Bordx. 1936, 88, 36–38. Available online: https://www.biodiversitylibrary.org/page/54716234 (accessed on 27 January 2023).
  88. Oppenheim, P. Beiträge zur Kenntniss des Oligozäns und seiner Fauna in den venetischen Voralpen. Z. Der Dtsch. Geol. Ges. 1900, 52, 243–326. Available online: https://www.biodiversitylibrary.org/item/148377#page/287/mode/1up (accessed on 27 January 2023).
  89. Romero, P.E.; Pfenninger, M.; Kano, Y.; Klussmann-Kolb, A. Molecular phylogeny of the Ellobiidae (Gastropoda: Panpulmonata) supports independent terrestrial invasions. Mol. Phylogenetics Evol. 2016, 97, 43–54. [Google Scholar] [CrossRef] [PubMed]
  90. Itoigawa, J.; Shibata, H.; Nishimoto, H. Molluscan fossils of the Mizunami Group. Bull. Mizunami Foss. Mus. 1974, 1, 43–203. Available online: http://www2.city.mizunami.gifu.jp/bulletin/list/15/pdf/2/1/BMFM01-002Itoigawaetal.%201974.pdf (accessed on 27 January 2023).
  91. Itoigawa, J.; Shibata, H.; Nishimoto, H.; Okumura, K. Miocene fossils of the Mizunami Group, central Japan. 2. Molluscs. Monogr. Mizunami Foss. Mus. 1981, 3A, 1–53. Available online: http://www2.city.mizunami.gifu.jp/bulletin/list/8/pdf/1/1/MMFM03A-Itoigawaetal.,1981.pdf (accessed on 27 January 2023).
  92. Itoigawa, J.; Shibata, H.; Nishimoto, H.; Okumura, K. Miocene fossils of the Mizunami Group, central Japan. 2. Molluscs (continued). Monogr. Mizunami Foss. Mus. 1982, 3B, 1–330. Available online: http://www2.city.mizunami.gifu.jp/bulletin/list/8/pdf/2/1/MMFM03B-Itoigawaetal.,1982.pdf (accessed on 27 January 2023).
  93. Matsubara, T.; Komori, K. The first record of fossil Ellobium (Gastropoda: Ellobiidae) from northeastern Japan. Venus 2007, 65, 325–331. [Google Scholar] [CrossRef]
  94. Dharma, B. Recent and Fossil Indonesian Shells; Conchbooks: Hackenheim, Germany, 2005; 424p. [Google Scholar]
  95. Kase, T.; Yolanda, M.A.; Koji, K.; Ryoji, W. A mangrove-forest dwelling gastropod Ellobium aurismidae Linnaeus Ellobiidae, Pulmonata from the Mapulo Formation, Batangas Province, southern Luzon, Philippines. Natl. Sci. Mus. Monogr. 2004, 24, 187–195. [Google Scholar]
  96. Oyama, K. Studies of fossil molluscan biocoenosis, No. 1. Biocoenological studies on the mangrove swamps, with descriptions of new species from Yatuo Group. Rep. Geol. Surv. Jpn. 1950, 132, 1–16. [Google Scholar]
  97. Woodring, W.P. Geology and Paleontology of Canal Zone and adjoining parts of Panama description of Tertiary Mollusks (Gastropods: Eulimidae, Marginellidae to Helminthoglyptidae). Geol. Surv. Prof. Pap. 1970, 306-D, 299–452. Available online: https://pubs.usgs.gov/pp/0306d/report.pdf (accessed on 27 January 2023).
  98. Harzhauser, M.; Mandic, O.; Piller, W.E.; Reuter, M.; Kroh, A. Tracing back the origin of the Indo-Pacific mollusc fauna—Basal Tridacninae from the Oligocene and Miocene of the Sultanate of Oman. Palaeontology 2008, 51, 199–213. [Google Scholar] [CrossRef]
  99. Harzhauser, M.; Kroh, A.; Mandic, O.; Piller, W.E.; Göhlich, U.; Reuter, M.; Berning, B. Biogeographic responses to geodynamics: A key study all around the Oligo-Miocene Tethyan Seaway. J. Comp. Zool. 2007, 246, 241–256. [Google Scholar] [CrossRef]
  100. Yasuhara, M.; Huang, H.H.; Reuter, M.; Tian, S.Y.; Cybulski, J.D.; O’Dea, A.; Mamo, B.L.; Cotton, L.J.; Di Martino, E.; Feng, R.; et al. Hotspots of Cenozoic tropical marine biodiversity. Oceanogr. Mar. Biol. Annu. Rev. 2022, 60, 243–300. [Google Scholar] [CrossRef]
  101. Kronenberg, G.C.; Lee, H.G. Genera of American strombid gastropods (Gastropoda: Strombidae) and remarks on their phylogeny. Veliger 2007, 49, 256–264. Available online: https://www.biodiversitylibrary.org/page/42498213 (accessed on 27 January 2023).
  102. Harzhauser, M. Marine und brachyhaline Gastropoden aus dem Karpatium des Korneuburger Beckens und der Kreuzstettener Bucht (Österreich, Untermiozän). Beiträge Zur Paläontologie 2002, 27, 61–159. Available online: https://www.zobodat.at/pdf/Beitr-Palaeontologie_27_0061-0159.pdf (accessed on 27 January 2023).
  103. Zuschin, M.; Harzhauser, M.; Hengst, B.; Mandic, O.; Roetzel, R. Long-term ecosystem stability in a lower Miocene estuarine succession. Geology 2014, 42, 7–10. [Google Scholar] [CrossRef] [Green Version]
  104. Roberts, A.P.; Wilson, G.S.; Harwood, D.M.; Verosub, K.L. Glaciation across the Oligocene–Miocene boundary in southern McMurdo Sound, Antarctica: New chronology from the CIROS-1 drill hole. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 198, 113–130. [Google Scholar] [CrossRef]
  105. Greenop, R.; Sosdian, S.; Henehan, M.J.; Wilson, P.A.; Lear, C.; Foster, G.L. Orbital forcing, ice volume, and CO2 across the Oligocene-Miocene Transition. Paleoceanogr. Paleoclimatology 2019, 34, 316–328. [Google Scholar] [CrossRef] [Green Version]
  106. von Schlotheim, E.F. Die Petrefactenkunde Auf Ihrem Jetztigen Standpunkte Durch die Beschreibung Seiner Sammlung Versteinerter und Fossiler Überreste des Thier- und Pflanzenreichs der Vorwelt; Becker: Gotha, Germany, 1820; pp. lxii + 437; Available online: http://books.google.at/books/about/Die_Petrefactenkunde_auf_ihrem_jetzigen.html?id=4SQ-AAAAcAAJ&redir_esc=y (accessed on 27 January 2023).
  107. Esu, D.; Girotti, O. The Late Oligocene Molluscan Fauna from Otranto (Apulia, Southern Italy): An example of alternating freshwater, lagoonal and emerged environments. Palaeontology 2010, 53, 137–174. [Google Scholar] [CrossRef]
Figure 1. Recent Ellobium species: (A1A3) Ellobium aurismidae NHMW-MO-83901/G/19, Moluccas; (A1) apertural view, (A2) oblique apertural view, (A3) dorsal view; (B1B3) Ellobium aurisjudae NHMW-MO-75000/E/9194, New Guinea, (B1) apertural view, (B2) oblique apertural view, (B3) dorsal view.
Figure 1. Recent Ellobium species: (A1A3) Ellobium aurismidae NHMW-MO-83901/G/19, Moluccas; (A1) apertural view, (A2) oblique apertural view, (A3) dorsal view; (B1B3) Ellobium aurisjudae NHMW-MO-75000/E/9194, New Guinea, (B1) apertural view, (B2) oblique apertural view, (B3) dorsal view.
Taxonomy 03 00007 g001
Figure 2. (A1A3) Eoellobium heberti (Vasseur, 1881), lectotype MNHN.F.J04020 (Vasseur coll.) designated herein, Bartonian (Middle Eocene), Bartonian; Bois-Goüet at Saffré, Loire-Atlantique, France; (A1) apertural view, (A2) dorsal view, (A3) lateral view; (B1B3) MNHN.F.A87734 (Pacaud coll.), Bartonian (Middle Eocene), Bartonian; Bois-Goüet at Saffré, Loire-Atlantique, France, (B1) apertural view, (B2) dorsal view, (B3) lateral view; (C1,C2) MNHN.F.A87733 (Pacaud coll.), Bartonian (Middle Eocene), Bartonian; Bois-Goüet at Saffré, Loire-Atlantique, France, (C1) apertural view, (C2) dorsal view.
Figure 2. (A1A3) Eoellobium heberti (Vasseur, 1881), lectotype MNHN.F.J04020 (Vasseur coll.) designated herein, Bartonian (Middle Eocene), Bartonian; Bois-Goüet at Saffré, Loire-Atlantique, France; (A1) apertural view, (A2) dorsal view, (A3) lateral view; (B1B3) MNHN.F.A87734 (Pacaud coll.), Bartonian (Middle Eocene), Bartonian; Bois-Goüet at Saffré, Loire-Atlantique, France, (B1) apertural view, (B2) dorsal view, (B3) lateral view; (C1,C2) MNHN.F.A87733 (Pacaud coll.), Bartonian (Middle Eocene), Bartonian; Bois-Goüet at Saffré, Loire-Atlantique, France, (C1) apertural view, (C2) dorsal view.
Taxonomy 03 00007 g002
Figure 3. Chattian (Late Oligocene) Ellobium species: (A1E3). Ellobium kerwaense nov. sp. (A1A3). NHMW 2022/0285/0001, holotype, (A1) apertural view, (A2) oblique apertural view, (A3) dorsal view; (B1B3). 2022/0285/0002, paratype, (B1) apertural view, (B2) oblique apertural view, (B3) dorsal view; (C1C3). 2022/0285/0003, paratype, (C1) apertural view, (C2) oblique apertural view, (C3) dorsal view; (D1D3). MNHN.F.A87731, paratype, (D1) apertural view, (D2) oblique apertural view, (D3) dorsal view; (E1E3). MNHN.F.A87732, paratype, (E1) apertural view, (E2) oblique apertural view, (E3) dorsal view; all specimens Máriahalom, Hungary.
Figure 3. Chattian (Late Oligocene) Ellobium species: (A1E3). Ellobium kerwaense nov. sp. (A1A3). NHMW 2022/0285/0001, holotype, (A1) apertural view, (A2) oblique apertural view, (A3) dorsal view; (B1B3). 2022/0285/0002, paratype, (B1) apertural view, (B2) oblique apertural view, (B3) dorsal view; (C1C3). 2022/0285/0003, paratype, (C1) apertural view, (C2) oblique apertural view, (C3) dorsal view; (D1D3). MNHN.F.A87731, paratype, (D1) apertural view, (D2) oblique apertural view, (D3) dorsal view; (E1E3). MNHN.F.A87732, paratype, (E1) apertural view, (E2) oblique apertural view, (E3) dorsal view; all specimens Máriahalom, Hungary.
Taxonomy 03 00007 g003
Figure 4. Rupelian (Early Oligocene) Ellobium species: (A1,A2) Ellobium subjudae (d’Orbigny, 1852), syntype, UB n° 65-2-153 (Grateloup collection), Lesbarritz, Gaas (Landes), France; (A1) apertural view, (A2) lateral view; (B1B3) Ellobium vicentinum (Fuchs, 1870), lectotype, NHMW 2022/0286/0001, Soggio di Brin at Salcedo, Vicenza, Italy; (B1) apertural view, (B2) dorsal view, (B3) lateral view.
Figure 4. Rupelian (Early Oligocene) Ellobium species: (A1,A2) Ellobium subjudae (d’Orbigny, 1852), syntype, UB n° 65-2-153 (Grateloup collection), Lesbarritz, Gaas (Landes), France; (A1) apertural view, (A2) lateral view; (B1B3) Ellobium vicentinum (Fuchs, 1870), lectotype, NHMW 2022/0286/0001, Soggio di Brin at Salcedo, Vicenza, Italy; (B1) apertural view, (B2) dorsal view, (B3) lateral view.
Taxonomy 03 00007 g004
Figure 5. Middle Eocene to Holocene geographic and stratigraphic distribution of Eoellobium and Ellobium.
Figure 5. Middle Eocene to Holocene geographic and stratigraphic distribution of Eoellobium and Ellobium.
Taxonomy 03 00007 g005
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Harzhauser, M.; Pacaud, J.-M.; Landau, B.M. The Origin of the Mangrove and Saltmarsh Snail Ellobium (Eupulmonata, Ellobiidae). Taxonomy 2023, 3, 68-84. https://doi.org/10.3390/taxonomy3010007

AMA Style

Harzhauser M, Pacaud J-M, Landau BM. The Origin of the Mangrove and Saltmarsh Snail Ellobium (Eupulmonata, Ellobiidae). Taxonomy. 2023; 3(1):68-84. https://doi.org/10.3390/taxonomy3010007

Chicago/Turabian Style

Harzhauser, Mathias, Jean-Michel Pacaud, and Bernard M. Landau. 2023. "The Origin of the Mangrove and Saltmarsh Snail Ellobium (Eupulmonata, Ellobiidae)" Taxonomy 3, no. 1: 68-84. https://doi.org/10.3390/taxonomy3010007

APA Style

Harzhauser, M., Pacaud, J. -M., & Landau, B. M. (2023). The Origin of the Mangrove and Saltmarsh Snail Ellobium (Eupulmonata, Ellobiidae). Taxonomy, 3(1), 68-84. https://doi.org/10.3390/taxonomy3010007

Article Metrics

Back to TopTop