Use of Electrochemical Impedance Spectroscopy, Capacity, and Electrochemical Noise Measurements to Study Aging of Lithium-Ion Batteries
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussions
3.1. Electrochemical Impedance Spectroscopy
3.2. Capacity Measurements
3.3. Electrochemical Noise Measurements
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pistoia, G. Lithium-Ion Batteries: Advances and Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-0-444-59513-3. [Google Scholar]
- Korthauer, R. Lithium-Ion Batteries: Basics and Applications; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-662-53069-6. [Google Scholar]
- Kebede, A.A.; Coosemans, T.; Messagie, M.; Jemal, T.; Behabtu, H.A.; Van Mierlo, J.; Berecibar, M. Techno-Economic Analysis of Lithium-Ion and Lead-Acid Batteries in Stationary Energy Storage Application. J. Energy Storage 2021, 40, 102748. [Google Scholar] [CrossRef]
- Pesaran, A.A. Lithium-Ion Battery Technologies for Electric Vehicles: Progress and Challenges. IEEE Electrif. Mag. 2023, 11, 35–43. [Google Scholar] [CrossRef]
- Hesse, H.C.; Schimpe, M.; Kucevic, D.; Jossen, A. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids. Energies 2017, 10, 2107. [Google Scholar] [CrossRef]
- Kebede, A.A.; Kalogiannis, T.; Van Mierlo, J.; Berecibar, M. A Comprehensive Review of Stationary Energy Storage Devices for Large Scale Renewable Energy Sources Grid Integration. Renew. Sustain. Energy Rev. 2022, 159, 112213. [Google Scholar] [CrossRef]
- Wang, L.; Chen, B.; Ma, J.; Cui, G.; Chen, L. Reviving Lithium Cobalt Oxide-Based Lithium Secondary Batteries-toward a Higher Energy Density. Chem. Soc. Rev. 2018, 47, 6505–6602. [Google Scholar] [CrossRef] [PubMed]
- Dubarry, M.; Liaw, B.Y.; Chen, M.-S.; Chyan, S.-S.; Han, K.-C.; Sie, W.-T.; Wu, S.-H. Identifying Battery Aging Mechanisms in Large Format Li Ion Cells. J. Power Sources 2011, 196, 3420–3425. [Google Scholar] [CrossRef]
- Dwivedi, S.; Akula, A. Comprehensive Analysis of Charging Profile Dynamics for Lithium-Ion Battery Capacity Estimation. IEEE Trans. Intell. Veh. 2024, 1, 1–9. [Google Scholar] [CrossRef]
- Hossain, M.H.; Islam, M.A.; Chowdhury, M.A.; Hossain, N. Prospects and Challenges of Anode Materials for Lithium-Ion Batteries–A Review. Clean. Energy Syst. 2024, 9, 100145. [Google Scholar] [CrossRef]
- Jareer, M.; Brijesh, K.; Safa, S.; Shahgaldi, S. The Recent Advancements in Lithium-Silicon Alloy for next Generation Batteries: A Review Paper. J. Alloys Compd. 2025, 1010, 177124. [Google Scholar] [CrossRef]
- Kühn, S.P.; Edström, K.; Winter, M.; Cekic-Laskovic, I. Face to Face at the Cathode Electrolyte Interphase: From Interface Features to Interphase Formation and Dynamics. Adv. Mater. Interfaces 2022, 9, 2102078. [Google Scholar] [CrossRef]
- Zhang, J.-N.; Li, Q.; Wang, Y.; Zheng, J.; Yu, X.; Li, H. Dynamic Evolution of Cathode Electrolyte Interphase (CEI) on High Voltage LiCoO2 Cathode and Its Interaction with Li Anode. Energy Storage Mater. 2018, 14, 1–7. [Google Scholar] [CrossRef]
- Gantenbein, S.; Schönleber, M.; Weiss, M.; Ivers-Tiffée, E. Capacity Fade in Lithium-Ion Batteries and Cyclic Aging over Various State-of-Charge Ranges. Sustainability 2019, 11, 6697. [Google Scholar] [CrossRef]
- Birkl, C.R.; Roberts, M.R.; McTurk, E.; Bruce, P.G.; Howey, D.A. Degradation Diagnostics for Lithium Ion Cells. J. Power Sources 2017, 341, 373–386. [Google Scholar] [CrossRef]
- Dubarry, M.; Truchot, C.; Liaw, B.Y. Synthesize Battery Degradation Modes via a Diagnostic and Prognostic Model. J. Power Sources 2012, 219, 204–216. [Google Scholar] [CrossRef]
- Arora, P.; White, R.E.; Doyle, M. Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries. J. Electrochem. Soc. 1998, 145, 3647. [Google Scholar] [CrossRef]
- Xiong, R.; Pan, Y.; Shen, W.; Li, H.; Sun, F. Lithium-Ion Battery Aging Mechanisms and Diagnosis Method for Automotive Applications: Recent Advances and Perspectives. Renew. Sustain. Energy Rev. 2020, 131, 110048. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Deng, Z.; Yang, L. Application of Electrochemical Impedance Spectroscopy in Battery Management System: State of Charge Estimation for Aging Batteries. J. Energy Storage 2023, 57, 106275. [Google Scholar] [CrossRef]
- Hu, W.; Peng, Y.; Wei, Y.; Yang, Y. Application of Electrochemical Impedance Spectroscopy to Degradation and Aging Research of Lithium-Ion Batteries. J. Phys. Chem. C 2023, 127, 4465–4495. [Google Scholar] [CrossRef]
- Tröltzsch, U.; Kanoun, O.; Tränkler, H.-R. Characterizing Aging Effects of Lithium Ion Batteries by Impedance Spectroscopy. Electrochim. Acta 2006, 51, 1664–1672. [Google Scholar] [CrossRef]
- Iurilli, P.; Brivio, C.; Wood, V. On the Use of Electrochemical Impedance Spectroscopy to Characterize and Model the Aging Phenomena of Lithium-Ion Batteries: A Critical Review. J. Power Sources 2021, 505, 229860. [Google Scholar] [CrossRef]
- Ma, R.; He, J.; Deng, Y. Investigation and Comparison of the Electrochemical Impedance Spectroscopy and Internal Resistance Indicators for Early-Stage Internal Short Circuit Detection through Battery Aging. J. Energy Storage 2022, 54, 105346. [Google Scholar] [CrossRef]
- Ciucci, F. Modeling Electrochemical Impedance Spectroscopy. Curr. Opin. Electrochem. 2019, 13, 132–139. [Google Scholar] [CrossRef]
- Ogihara, N.; Itou, Y.; Sasaki, T.; Takeuchi, Y. Impedance Spectroscopy Characterization of Porous Electrodes under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries. J. Phys. Chem. C 2015, 119, 4612–4619. [Google Scholar] [CrossRef]
- Sohaib, M.; Akram, A.S.; Choi, W. Analysis of Aging and Degradation in Lithium Batteries Using Distribution of Relaxation Time. Batteries 2025, 11, 34. [Google Scholar] [CrossRef]
- Pastor-Fernández, C.; Uddin, K.; Chouchelamane, G.H.; Widanage, W.D.; Marco, J. A Comparison between Electrochemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-Ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes within Battery Management Systems. J. Power Sources 2017, 360, 301–318. [Google Scholar] [CrossRef]
- He, R.; He, Y.; Xie, W.; Guo, B.; Yang, S. Comparative Analysis for Commercial Li-Ion Batteries Degradation Using the Distribution of Relaxation Time Method Based on Electrochemical Impedance Spectroscopy. Energy 2023, 263, 125972. [Google Scholar] [CrossRef]
- Martinet, S.; Durand, R.; Ozil, P.; Leblanc, P.; Blanchard, P. Application of Electrochemical Noise Analysis to the Study of Batteries: State-of-Charge Determination and Overcharge Detection. J. Power Sources 1999, 83, 93–99. [Google Scholar] [CrossRef]
- Astafev, E.A. Electrochemical Noise of Li-Ion Battery: Measurement with Load-Interrupt Technique. J. Solid State Electrochem 2019, 23, 1505–1512. [Google Scholar] [CrossRef]
- Astafev, E.A. The Measurement of Electrochemical Noise of a Li-Ion Battery during Charge-Discharge Cycling. Measurement 2020, 154, 107492. [Google Scholar] [CrossRef]
- Smith, A.J.; Dahn, J.R. Delta Differential Capacity Analysis. J. Electrochem. Soc. 2012, 159, A290. [Google Scholar] [CrossRef]
- Zheng, L.; Zhu, J.; Lu, D.D.-C.; Wang, G.; He, T. Incremental Capacity Analysis and Differential Voltage Analysis Based State of Charge and Capacity Estimation for Lithium-Ion Batteries. Energy 2018, 150, 759–769. [Google Scholar] [CrossRef]
- EIS Quality Indicators: THD, NSD & NSR Battery & Corrosion-Application Note 64. Available online: https://www.biologic.net/documents/eis-quality-indicators-thd-nsd-nsr-electrochemistry-battery-corrosion-application-note-64/ (accessed on 9 November 2024).
- THD: Parameters Affecting Its Value & Comparison with Other Methods of Linearity Assessment Battery & Corrosion-Application Note 65. Available online: https://www.biologic.net/documents/eis-quality-indicators-thd-electrochemistry-battery-corrosion-application-note-65/ (accessed on 9 November 2024).
- Boukamp, B.A. A Linear Kronig-Kramers Transform Test for Immittance Data Validation. J. Electrochem. Soc. 1995, 142, 1885–1894. [Google Scholar] [CrossRef]
- Gantenbein, S.; Weiss, M.; Ivers-Tiffée, E. Impedance Based Time-Domain Modeling of Lithium-Ion Batteries: Part I. J. Power Sources 2018, 379, 317–327. [Google Scholar] [CrossRef]
- Iqbal, N.; Choi, J.; Lee, C.; Khan, A.; Tanveer, M.; Lee, S. A Review on Modeling of Chemo-Mechanical Behavior of Particle–Binder Systems in Lithium-Ion Batteries. Multiscale Sci. Eng. 2022, 4, 79–93. [Google Scholar] [CrossRef]
- Plank, C.; Rüther, T.; Jahn, L.; Schamel, M.; Schmidt, J.P.; Ciucci, F.; Danzer, M.A. A Review on the Distribution of Relaxation Times Analysis: A Powerful Tool for Process Identification of Electrochemical Systems. J. Power Sources 2024, 594, 233845. [Google Scholar] [CrossRef]
- Ciucci, F. The Gaussian Process Hilbert Transform (GP-HT): Testing the Consistency of Electrochemical Impedance Spectroscopy Data. J. Electrochem. Soc. 2020, 167, 126503. [Google Scholar] [CrossRef]
- Effat, M.B.; Ciucci, F. Bayesian and Hierarchical Bayesian Based Regularization for Deconvolving the Distribution of Relaxation Times from Electrochemical Impedance Spectroscopy Data. Electrochim. Acta 2017, 247, 1117–1129. [Google Scholar] [CrossRef]
- Ciucci, F.; Chen, C. Analysis of Electrochemical Impedance Spectroscopy Data Using the Distribution of Relaxation Times: A Bayesian and Hierarchical Bayesian Approach. Electrochim. Acta 2015, 167, 439–454. [Google Scholar] [CrossRef]
- Liu, J.; Wan, T.H.; Ciucci, F. A Bayesian View on the Hilbert Transform and the Kramers-Kronig Transform of Electrochemical Impedance Data: Probabilistic Estimates and Quality Scores. Electrochim. Acta 2020, 357, 136864. [Google Scholar] [CrossRef]
- Maradesa, A.; Py, B.; Wan, T.H.; Effat, M.B.; Ciucci, F. Selecting the Regularization Parameter in the Distribution of Relaxation Times. J. Electrochem. Soc. 2023, 170, 030502. [Google Scholar] [CrossRef]
- Wan, T.H.; Saccoccio, M.; Chen, C.; Ciucci, F. Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools. Electrochim. Acta 2015, 184, 483–499. [Google Scholar] [CrossRef]
- Dubarry, M.; Anseán, D. Best Practices for Incremental Capacity Analysis. Front. Energy Res. 2022, 10, 1023555. [Google Scholar] [CrossRef]
- Jenu, S.; Hentunen, A.; Haavisto, J.; Pihlatie, M. State of Health Estimation of Cycle Aged Large Format Lithium-Ion Cells Based on Partial Charging. J. Energy Storage 2022, 46, 103855. [Google Scholar] [CrossRef]
- Olson, J.Z.; López, C.M.; Dickinson, E.J.F. Differential Analysis of Galvanostatic Cycle Data from Li-Ion Batteries: Interpretative Insights and Graphical Heuristics. Chem. Mater. 2023, 35, 1487–1513. [Google Scholar] [CrossRef]
- Astafev, E.A. Electrochemical Noise of a Li-Ion Battery: Measurement and Spectral Analysis. J. Solid State Electrochem. 2019, 23, 1145–1153. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukhssim, A.; Yassine, H.; Leroy, G.; Carru, J.-C.; Mascot, M.; Poupin, C.; Kassem, M. Use of Electrochemical Impedance Spectroscopy, Capacity, and Electrochemical Noise Measurements to Study Aging of Lithium-Ion Batteries. Solids 2025, 6, 44. https://doi.org/10.3390/solids6030044
Boukhssim A, Yassine H, Leroy G, Carru J-C, Mascot M, Poupin C, Kassem M. Use of Electrochemical Impedance Spectroscopy, Capacity, and Electrochemical Noise Measurements to Study Aging of Lithium-Ion Batteries. Solids. 2025; 6(3):44. https://doi.org/10.3390/solids6030044
Chicago/Turabian StyleBoukhssim, Abdelfattah, Hassan Yassine, Gérard Leroy, Jean-Claude Carru, Manuel Mascot, Christophe Poupin, and Mohammad Kassem. 2025. "Use of Electrochemical Impedance Spectroscopy, Capacity, and Electrochemical Noise Measurements to Study Aging of Lithium-Ion Batteries" Solids 6, no. 3: 44. https://doi.org/10.3390/solids6030044
APA StyleBoukhssim, A., Yassine, H., Leroy, G., Carru, J.-C., Mascot, M., Poupin, C., & Kassem, M. (2025). Use of Electrochemical Impedance Spectroscopy, Capacity, and Electrochemical Noise Measurements to Study Aging of Lithium-Ion Batteries. Solids, 6(3), 44. https://doi.org/10.3390/solids6030044