Research Progress and Perspectives on Curved Image Sensors for Bionic Eyes
Abstract
1. Introduction
2. The Fundamental Performance Parameters of Curved Image Sensors
2.1. Responsivity (R)
2.2. Specific Detectivity (D*)
2.3. External Quantum Efficiency (EQE)
3. Bionic Eye Image Sensors
3.1. Bionic Eye Design
3.2. Curved Image Sensors
4. Perovskite Photodetectors for Image Sensing
4.1. Planar Perovskite Photodetectors
4.2. Curved Perovskite Photodetectors
4.3. Perovskite Hemispherical Photodetectors
5. Structural Engineering of Curved Image Sensors
5.1. Single-Chambered Eyes
5.2. Compound Eyes
6. Material-Heterogeneous Curved Image Sensors
6.1. Zero-Dimensional (0D) Nanomaterials
6.2. One-Dimensional (1D) Nanomaterials
6.3. Two-Dimensional (2D) Nanomaterials
6.4. Three-Dimensional (3D) Nanomaterials
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EQE | External Quantum Efficiency |
AVS | Artificial Vision Systems |
FOV | field of view |
CCDs | Charge-Coupled Devices |
CMOS | Complementary Metal-Oxide-Semiconductor |
FWHM | Full-Width-at-Half-Maximum |
2DMCs | 2D Molecular Crystals |
PDs | photodetectors |
NIR | Near-Infrared |
UV | Ultraviolet |
EC-Eye | ElectroChemical Eye |
SHR-E | Self-powered Hemispherical Retinomorphic Eye |
QDs | Quantum dots |
0D\1D\2D\3D | Zero-dimensional\One-dimensional\Two-dimensional\Three-dimensional |
References
- Zhu, S.; Xie, T.; Lv, Z.; Leng, Y.-B.; Zhang, Y.-Q.; Xu, R.; Qin, J.; Zhou, Y.; Roy, V.A.L.; Han, S.-T. Hierarchies in visual pathway: Functions and inspired artificial vision. Adv. Mater. 2024, 36, 2301986. [Google Scholar] [CrossRef]
- Chai, Y. In-sensor computing for machine vision. Nature 2020, 579, 32–33. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, M.S.; Lee, G.J.; Sunwoo, S.-H.; Chang, S.; Song, Y.M.; Kim, D.-H. Bio-inspired artificial vision and neuromorphic image processing devices. Adv. Mater. Technol. 2022, 7, 2100144. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, W.; Zhang, J.; Yu, S.; Fang, L. Ultrafast dynamic machine vision with spatiotemporal photonic computing. Sci. Adv. 2023, 9, eadg4391. [Google Scholar] [CrossRef] [PubMed]
- Mennel, L.; Symonowicz, J.; Wachter, S.; Polyushkin, D.K.; Molina-Mendoza, A.J.; Mueller, T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020, 579, 62–66. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, Z.; Ding, Y.; Yuan, Z.; Qiu, X.; Cao, Y.B.; Wan, Z.; Long, Z.; Poddar, S.; Kumar, S.; et al. An ultrawide field-of-view pinhole compound eye using hemispherical nanowire array for robot vision. Sci. Robot. 2024, 9, eadi8666. [Google Scholar] [CrossRef] [PubMed]
- Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A survey of autonomous driving: Common practices and emerging technologies. IEEE Access 2020, 8, 58443–58469. [Google Scholar] [CrossRef]
- Hsieh, M.-R.; Lin, Y.-L.; Hsu, W.H. Drone-based object counting by spatially regularized regional proposal network. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4165–4173. [Google Scholar]
- Yang, S.; Luo, P.; Loy, C.C.; Tang, X. WIDER FACE: A face detection benchmark. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 5525–5533. [Google Scholar]
- He, X.; Yan, S.; Hu, Y.; Niyogi, P.; Zhang, H.-J. Face recognition using Laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 328–340. [Google Scholar]
- Alonso, V.; Dacal-Nieto, A.; Barreto, L.; Amaral, A.; Rivero, E. Industry 4.0 implications in machine vision metrology: An overview. Procedia Manuf. 2019, 41, 359–366. [Google Scholar] [CrossRef]
- Golnabi, H.; Asadpour, A. Design and application of industrial machine vision systems. Robot. Comput. Integr. Manuf. 2007, 23, 630–637. [Google Scholar] [CrossRef]
- Song, Y.M.; Xie, Y.; Malyarchuk, V.; Xiao, J.; Jung, I.; Choi, K.-J.; Liu, Z.; Park, H.; Lu, C.; Kim, R.-H.; et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Zidan, M.A.; Strachan, J.P.; Lu, W.D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29. [Google Scholar] [CrossRef]
- Sousounis, K.; Ogura, A.; Tsonis, P.A. Transcriptome analysis of nautilus and pygmy squid developing eye provides insights in lens and eye evolution. PLoS ONE 2013, 8, e78054. [Google Scholar] [CrossRef] [PubMed]
- Hanke, F.D.; Kelber, A. The eye of the common octopus (Octopus vulgaris). Front. Physiol. 2020, 10, 01637. [Google Scholar] [CrossRef]
- Frech, B.; Vogtsberger, M.; Neumeyer, C. Visual discrimination of objects differing in spatial depth by goldfish. J. Comp. Physiol. A 2012, 198, 53–60. [Google Scholar] [CrossRef]
- Navarro, R. The optical design of the human eye: A critical review. J. Optom. 2009, 2, 3–18. [Google Scholar] [CrossRef]
- Wässle, H. Optical quality of the cat eye. Vis. Res. 1971, 11, 995–1006. [Google Scholar] [CrossRef]
- Müller, B.; Glösmann, M.; Peichl, L.; Knop, G.C.; Hagemann, C.; Ammermüller, J. Bat eyes have ultraviolet-sensitive cone photoreceptors. PLoS ONE 2009, 4, e6390. [Google Scholar] [CrossRef]
- Reymond, L. Spatial visual acuity of the eagle Aquila audax: A behavioural, optical and anatomical investigation. Vis. Res. 1985, 25, 1477–1491. [Google Scholar] [CrossRef]
- Jezeera, M.A.; Tichit, P.; Balamurali, G.S.; Baird, E.; Kelber, A.; Somanathan, H. Spatial resolution and sensitivity of the eyes of the stingless bee, Tetragonula iridipennis. J. Comp. Physiol. A 2022, 208, 225–238. [Google Scholar] [CrossRef]
- Land, M.F.; Gibson, G.; Horwood, J.; Zeil, J. Fundamental differences in the optical structure of the eyes of nocturnal and diurnal mosquitoes. J. Comp. Physiol. A 1999, 185, 91–103. [Google Scholar] [CrossRef]
- Lee, K.C.; Yu, Q.; Erb, U. Mesostructure of ordered corneal nano-nipple arrays: The role of 5–7 coordination defects. Sci. Rep. 2016, 6, 28342. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, D.-E.; Odselius, R. Regionally different optical systems in the compound eye of the water-flea Polyphemus (Cladocera, Crustacea). Proc. R. Soc. London. B 1983, 217, 163–175. [Google Scholar]
- Pix, W.; Zanker, J.M.; Zeil, J. The optomotor response and spatial resolution of the visual system in male Xenos vesparum (Strepsiptera). J. Exp. Biol. 2000, 203, 3397–3409. [Google Scholar] [CrossRef] [PubMed]
- Wardill, T.J.; Fabian, S.T.; Pettigrew, A.C.; Stavenga, D.G.; Nordström, K.; Gonzalez-Bellido, P.T. A novel interception strategy in a miniature robber fly with extreme visual acuity. Curr. Biol. 2017, 27, 854–859. [Google Scholar] [CrossRef]
- Schwarz, S.; Narendra, A.; Zeil, J. The properties of the visual system in the Australian desert ant Melophorus bagoti. Arthropod Struct. Dev. 2011, 40, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Marshall, N.J.; Land, M.F.; Cronin, T.W. Shrimps that pay attention: Saccadic eye movements in stomatopod crustaceans. Philos. Trans. R. Soc. B 2014, 369, 20130042. [Google Scholar] [CrossRef]
- Land, M.; Layne, J. The visual control of behaviour in fiddler crabs. J. Comp. Physiol. A 1995, 177, 81–90. [Google Scholar] [CrossRef]
- Sun, X.; Wang, F.; Guo, X.; Wu, J.; Li, S.; Shi, Y.; Pan, L. Flexible Photodetector Arrays Based on Polycrystalline CsPbI3-xBrx Perovskite Films. IEEE Electron Device Lett. 2024, 45, 621–624. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, C.; Li, H.; Yu, H.; Zhang, J.; Qiu, H.; Liang, J.; Wu, J.; Su, M.; Shi, Y.; et al. Wearable Near-Field Communication Sensors for Healthcare: Materials, Fabrication and Application. Micromachines 2022, 13, 784. [Google Scholar] [CrossRef]
- Lee, G.J.; Choi, C.; Kim, D.-H.; Song, Y.M. Bioinspired artificial eyes: Optic components, digital cameras, and visual prostheses. Adv. Funct. Mater. 2018, 28, 1705202. [Google Scholar] [CrossRef]
- Bertozzi, M.; Broggi, A.; Cellario, M.; Fascioli, A.; Lombardi, P.; Porta, M. Artificial vision in road vehicles. Proc. IEEE 2002, 90, 1258–1271. [Google Scholar] [CrossRef]
- Regal, S.; Troughton, J.; Djenizian, T.; Ramuz, M. Biomimetic models of the human eye, and their applications. Nanotechnology 2021, 32, 302001. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Cao, J.; Zhang, Y.; Hao, Q. Review of state-of-the-art artificial compound eye imaging systems. Bioinspir. Biomim. 2019, 14, 31002. [Google Scholar] [CrossRef]
- Muller, K.J. Photoreceptors in the crayfish compound eye: Electrical interactions between cells as related to polarized-light sensitivity. J. Physiol. 1973, 232, 573–595. [Google Scholar] [CrossRef]
- Wu, W.; Han, X.; Li, J.; Wang, X.; Zhang, Y.; Huo, Z.; Chen, Q.; Sun, X.; Xu, Z.; Tan, Y.; et al. Ultrathin and Conformable Lead Halide Perovskite Photodetector Arrays for Potential Application in Retina-Like Vision Sensing. Adv. Mater. 2021, 33, 2006006. [Google Scholar] [CrossRef]
- Wu, W.; Lu, H.; Han, X.; Wang, C.; Xu, Z.; Han, S.-T.; Pan, C. Recent Progress on Wavelength-Selective Perovskite Photodetectors for Image Sensing. Small Methods 2023, 7, 2201499. [Google Scholar] [CrossRef]
- Yao, Q.; Xue, Q.; Li, Z.; Zhang, K.; Zhang, T.; Li, N.; Yang, S.; Brabec, C.J.; Yip, H.-L.; Cao, Y. Graded 2D/3D perovskite heterostructure for efficient and operationally stable MA-free perovskite solar cells. Adv. Mater. 2020, 32, 2000571. [Google Scholar] [CrossRef]
- Liu, R.; Zhou, H.; Song, Z.; Yang, X.; Wu, D.; Song, Z.; Wang, H.; Yan, Y. Low-reflection, (110)-orientation-preferred CsPbBr3 nanonet films for application in high-performance perovskite photodetectors. Nanoscale 2019, 11, 9302–9309. [Google Scholar] [CrossRef]
- Cao, M.; Tian, J.; Cai, Z.; Peng, L.; Yang, L.; Wei, D. Perovskite heterojunction based on CH3NH3PbBr3. single crystal for high-sensitive self-powered photodetector. Appl. Phys. Lett. 2016, 109, 233303. [Google Scholar] [CrossRef]
- Li, X.; Wu, G.; Wang, M.; Yu, B.; Zhou, J.; Wang, B.; Zhang, X.; Xia, H.; Yue, S.; Wang, K.; et al. Water-assisted crystal growth in quasi-2D perovskites with enhanced charge transport and photovoltaic performance. Adv. Energy Mater. 2020, 10, 2001832. [Google Scholar] [CrossRef]
- Wang, T.; Lian, G.; Huang, L.; Zhu, F.; Cui, D.; Wang, Q.; Meng, Q.; Jiang, H.; Zhou, G.; Wong, C.-P. A crystal-growth boundary-fusion strategy to prepare high-quality MAPbI3 films for excellent vis-NIR photodetectors. Nano Energy. 2019, 64, 103914. [Google Scholar] [CrossRef]
- Shen, K.; Li, X.; Xu, H.; Wang, M.; Dai, X.; Guo, J.; Zhang, T.; Li, S.; Zou, G.; Choy, K.-L.; et al. Enhanced performance of ZnO nanoparticle decorated all-inorganic CsPbBr3. quantum dot photodetectors. J. Mater. Chem. A 2019, 7, 6134–6142. [Google Scholar] [CrossRef]
- Sun, T.; Chen, T.; Chen, J.; Lou, Q.; Liang, Z.; Li, G.; Lin, X.; Yang, G.; Zhou, H. High-performance p-i-n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode. Nanoscale 2023, 15, 7803–7811. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Liu, K.; Rafique, S.; Xu, Z.; Niu, W.; Li, X.; Wang, Y.; Deng, L.; Wang, J.; Yue, X.; et al. Highly Efficient and Stable Self-Powered Mixed Tin-Lead Perovskite Photodetector Used in Remote Wearable Health Monitoring Technology. Adv. Sci. 2023, 10, 2205879. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bai, R.; Fu, Y.; Hao, Y.; Peng, X.; Wang, J.; Ge, B.; Liu, J.; Hu, Y.; Ouyang, X.; et al. High energy resolution CsPbBr3 alpha particle detector with a full-customized readout application specific integrated circuit. Nat. Commun. 2024, 15, 6333. [Google Scholar] [CrossRef]
- Kim, J.H.; Liess, A.; Stolte, M.; Krause, A.M.; Stepanenko, V.; Zhong, C.; Bialas, D.; Spano, F.; Würthner, F. An Efficient Narrowband Near-Infrared at 1040 nm Organic Photodetector Realized by Intermolecular Charge Transfer Mediated Coupling Based on a Squaraine Dye. Adv. Mater. 2021, 33, 2100582. [Google Scholar] [CrossRef]
- García de Arquer, F.P.; Armin, A.; Meredith, P.; Sargent, E.H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, C.; Ma, Y.; Yang, K.; Liu, M.; Zhu, X.; Zhou, Z.; Shen, L.; Yuan, G.; Zhang, F. Ultraviolet Narrowband Photomultiplication Type Organic Photodetectors with Fabry−Pérot Resonator Architecture. Adv. Funct. Mater. 2022, 32, 2203606. [Google Scholar] [CrossRef]
- Xing, S.; Nikolis, V.C.; Kublitski, J.; Guo, E.; Jia, X.; Wang, Y.; Spoltore, D.; Vandewal, K.; Kleemann, H.; Benduhn, J.; et al. Miniaturized VIS-NIR Spectrometers Based on Narrowband and Tunable Transmission Cavity Organic Photodetectors with Ultrahigh Specific Detectivity above 1014 Jones. Adv. Mater. 2021, 33, 2102967. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, C.; Ma, Y.; Ma, X.; Zhu, X.; Niu, L.; Shen, L.; Zhou, Z.; Zhang, F. Filter-Free Narrowband Photomultiplication-Type Planar Heterojunction Organic Photodetectors. Adv. Funct. Mater. 2023, 33, 2212149. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Xu, Z.; Yang, Z.; Liu, S. 2D Perovskite Single Crystals with Suppressed Ion Migration for High-Performance Planar-Type Photodetectors. Small 2020, 16, 2003145. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, X.; Li, T.; Wang, Z.; Li, N.; Zhao, X.; Wei, W.; Zhan, X.; Shen, L. Amplified narrowband perovskite photodetector enable by independent multiplicaiotn layers for anti-interference light detection. Sci Adv. 2025, 11, eadq1127. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Chen, Y.; Wang, H.; Samorì, P. Organic photodetectors based on supramolecular nanostructures. Smart Mat. 2020, 1, 1. [Google Scholar] [CrossRef]
- Tian, B.; Zheng, X.; Kempa, T.J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C.M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889. [Google Scholar] [CrossRef]
- Wicklein, A.; Ghosh, S.; Sommer, M.; Wurthner, F.; Thelakkat, M. Self-assembly of semiconductor organogelator nanowires for photoinduced charge separation. ACS Nano 2009, 3, 1107–1114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhong, X.; Pavlica, E.; Li, S.; Klekachev, A.; Bratina, G.; Ebbesen, T.W.; Orgiu, E.; Samorì, P. A nanomesh scaffold for supramolecular nanowire optoelectronic devices. Nat. Nanotechnol. 2016, 11, 900–906. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Wang, J.; Pei, J.; Cao, Y. Highly sensitive, air-stable photodetectors based on single organic sub-micrometer ribbons self-assembled through solution processing. Adv. Mater. 2008, 20, 3745–3749. [Google Scholar] [CrossRef]
- Mukherjee, B.; Mukherjee, M. One-step fabrication of ordered organic crystalline array for novel optoelectronic applications. Org. Electron. 2011, 12, 1980–1987. [Google Scholar] [CrossRef]
- Roy, S.; Kumar Maiti, D.; Panigrahi, S.; Basak, D.; Banerjee, A. A new hydrogel from an amino acid-based perylene bisimide and its semiconducting, photo-switching behaviour. RSC Adv. 2012, 2, 11053–11060. [Google Scholar] [CrossRef]
- Rekab, W.; Stoeckel, M.A.; El Gemayel, M.; Gobbi, M.; Orgiu, E.; Samorì, P. High-performance phototransistors based on PDIF-CN2 solution-processed single fiber and multifiber assembly. ACS Appl. Mater. Interfaces 2016, 8, 9829–9838. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Du, C.; Yu, G.; Di, C.; Jiang, S.; Xi, H.; Zheng, J.; Yan, S.; Yu, C.; Hu, W.; et al. High-performance phototransistors based on organic microribbons prepared by a solution self-assembly process. Adv. Funct. Mater. 2010, 20, 1019–1024. [Google Scholar] [CrossRef]
- Mukherjee, B.; Mukherjee, M.; Sim, K.; Pyo, S. Solution processed, aligned arrays of TCNQ micro crystals for low-voltage organic phototransistor. J. Mater. Chem. 2011, 21, 1931–1936. [Google Scholar] [CrossRef]
- Mukherjee, B.; Sim, K.; Shin, T.J.; Lee, J.; Mukherjee, M.; Ree, M.; Pyo, S. Organic phototransistors based on solution grown, ordered single crystalline arrays of a π-conjugated molecule. J. Mater. Chem. 2012, 22, 3192–3200. [Google Scholar] [CrossRef]
- Hu, M.; Liu, J.; Zhao, Q.; Liu, D.; Zhang, Q.; Zhou, K.; Li, J.; Dong, H.; Hu, W. Organic single-crystal phototransistor with unique wavelength-detection characteristics. Sci. China Mater. 2019, 62, 729–735. [Google Scholar] [CrossRef]
- Gu, P.; Hu, M.; Ding, S.; Zhao, G.; Yao, Y.; Liu, F.; Zhang, X.; Dong, H.; Wang, X.; Hu, W. High performance organic transistors and phototransistors based on diketopyrrolopyrrole-quaterthiophene copolymer thin films fabricated via low-concentration solution processing. Chin. Chem. Lett. 2018, 29, 1675–1680. [Google Scholar] [CrossRef]
- El Gemayel, M.; Treier, M.; Musumeci, C.; Li, C.; Müllen, K.; Samorì, P. Tuning the photoresponse in organic field-effect transistors. J. Am. Chem. Soc. 2012, 134, 2429–2433. [Google Scholar] [CrossRef]
- Novoselov, K.S. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Dong, R.; Han, P.; Arora, H.; Ballabio, M.; Karakus, M.; Zhang, Z.; Shekhar, C.; Adler, P.; Petkov, P.S.; Erbe, A.; et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework. Nat. Mater. 2018, 17, 1027–1032. [Google Scholar] [CrossRef]
- Sahabudeen, H.; Qi, H.; Glatz, B.A.; Tranca, D.; Dong, R.; Hou, Y.; Zhang, T.; Kuttner, C.; Lehnert, T.; Seifert, G.; et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 2016, 7, 13461. [Google Scholar] [CrossRef]
- Arora, H.; Dong, R.; Venanzi, T.; Zscharschuch, J.; Schneider, H.; Helm, M.; Feng, X.; Cánovas, E.; Erbe, A. Demonstration of a broadband photodetector based on a two-dimensional metal-organic framework. Adv. Mater. 2020, 32, 1907063. [Google Scholar] [CrossRef] [PubMed]
- Li, C.G.; Wang, Y.S.; Zou, Y.; Zhang, X.T.; Dong, H.L.; Hu, W.P. Two-dimensional conjugated polymer synthesized by interfacial Suzuki reaction: Towards electronic device applications. Angew. Chem. Int. Ed. Engl. 2020, 59, 9403–9407. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Cheng, S.; Zhang, X.; Ren, X.; Li, R.; Dong, H.; Hu, W. 2D organic materials for optoelectronic applications. Adv. Mater. 2018, 30, 1702415. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Wang, C.; Sun, Y.; Yao, J.; Wang, Y.; Ge, F.; Yang, F.; Liu, Z.; Dang, Y.; Zhang, X.; et al. A “phase separation” molecular design strategy towards large-area 2D molecular crystals. Adv. Mater. 2019, 31, 1901437. [Google Scholar] [CrossRef]
- Chun, D.H.; Choi, Y.J.; In, Y.; Nam, J.K.; Choi, Y.J.; Yun, S.; Kim, W.; Choi, D.; Kim, D.; Shin, H.; et al. Halide perovskite nanopillar photodetector. ACS Nano 2018, 12, 8564–8571. [Google Scholar] [CrossRef]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef]
- Li, L.; Chen, H.; Fang, Z.; Meng, X.; Zuo, C. An electrically modulated single-color/dual-color imaging photodetector. Adv. Mater. 2020, 32, 1907257. [Google Scholar] [CrossRef]
- Tyagi, D.; Wang, H.; Huang, W.; Hu, L.; Tang, Y.; Guo, Z.; Ouyang, Z.; Zhang, H. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 2020, 12, 3535–3559. [Google Scholar] [CrossRef]
- Wang, H.; Kim, D.H. Perovskite-based photodetectors: Materials and devices. Chem. Soc. Rev. 2017, 46, 5204–5236. [Google Scholar] [CrossRef]
- Xu, X.; Han, Z.; Zou, Y.; Li, J.; Gu, Y.; Hu, D.; He, Y.; Liu, J.; Yu, D.; Cao, F.; et al. Miniaturized multispectral detector derived from gradient response units on single MAPbX3 microwire. Adv. Mater. 2022, 34, 2108408. [Google Scholar] [CrossRef]
- Feldmann, J.; Youngblood, N.; Karpov, M.; Gehring, H.; Li, X.; Stappers, M.; Le Gallo, M.; Fu, X.; Lukashchuk, A.; Raja, A.S.; et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 2021, 589, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Jung, I.; Xiao, J.; Malyarchuk, V.; Lu, C.; Li, M.; Liu, Z.; Yoon, J.; Huang, Y.; Rogers, J.A. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc. Natl Acad. Sci. USA 2011, 108, 1788–1793. [Google Scholar] [CrossRef] [PubMed]
- Galvez, F.; Monton, C.; Serrano, A.; Valmianski, I.; de la Venta, J.; Schuller, I.K.; Garcia, M.A. Effect of photodiode angular response on surface plasmon resonance measurements in the Kretschmann-Raether configuration. Rev. Sci. Instrum. 2012, 83, 093102. [Google Scholar] [CrossRef]
- Arbabi, A.; Arbabi, E.; Kamali, S.M.; Horie, Y.; Han, S.; Faraon, A. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 2016, 7, 13682. [Google Scholar] [CrossRef]
- Yu, H.; Li, H.; Sun, X.; Pan, L. Biomimetic Flexible Sensors and Their Applications in Human Health Detection. Biomimetics 2023, 8, 293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Jung, Y.H.; Mikael, S.; Seo, J.-H.; Kim, M.; Mi, H.; Zhou, H.; Xia, Z.; Zhou, W.; Gong, S.; et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat. Commun. 2017, 8, 1782. [Google Scholar] [CrossRef]
- Kogos, L.C.; Li, Y.; Liu, J.; Li, Y.; Tian, L.; Paiella, R. Plasmonic ommatidia for lensless compound-eye vision. Nat. Commun. 2020, 11, 1637. [Google Scholar] [CrossRef]
- Feng, X.; He, Y.; Qu, W.; Song, J.; Pan, W.; Tan, M.; Yang, B.; Wei, H. Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging. Nat. Commun. 2022, 13, 6106. [Google Scholar] [CrossRef]
- Chow, P.C.Y.; Someya, T. Organic photodetectors for next-generation wearable electronics. Adv. Mater. 2020, 32, e1902045. [Google Scholar] [CrossRef]
- Ball, J.M.; Lee, M.M.; Hey, A.; Snaith, H.J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 2013, 6, 1739–1743. [Google Scholar] [CrossRef]
- Snaith, J.H. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 2013, 4, 3623–3630. [Google Scholar] [CrossRef]
- Chiang, C.H.; Tseng, Z.L.; Wu, C.G. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. J. Mater. Chem. A 2014, 2, 15897–15903. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, Q.; Jiang, L.; Cao, G. Zno cathode buffer layers for inverted polymer solar cells. Energy Environ. Sci. 2015, 8, 3442–3476. [Google Scholar] [CrossRef]
- Leung, S.F.; Ho, K.T.; Kung, P.K.; Hsiao, V.K.; Alshareef, H.N.; Wang, Z.L.; He, J.H. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 2018, 30, 1704611. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Aydin, E.; De Bastiani, M.; Xiao, C.; Isikgor, F.H.; Xue, D.-J.; Chen, B.; Chen, H.; Bahrami, B.; Chowdhury, A.H.; et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 2020, 367, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Min, L.; Cao, F.; Li, L. Nested inverse opal perovskite toward superior flexible and self-powered photodetection performance. Adv. Mater. 2020, 32, 1906974. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, J.; Zhou, H.; Liu, R.; Wu, D.; Wang, R.; Shen, L.; Tao, L.; Zhang, J.; Wang, H. Single-Layer ZnO Hollow Hemispheres Enable High-Performance Self-Powered Perovskite Photodetector for Optical Communication. Nano-Micro Lett. 2021, 13, 70. [Google Scholar] [CrossRef]
- Kim, Y.; Zhu, C.; Lee, W.-Y.; Smith, A.; Ma, H.; Li, X.; Son, D.; Matsuhisa, N.; Kim, J.; Bae, W.-G.; et al. A Hemispherical Image Sensor Array Fabricated with Organic Photomemory Transistors. Adv. Mater. 2023, 35, 2203541. [Google Scholar] [CrossRef]
- Li, C.; Li, W.; Qu, W.; Hu, H.; Zong, J.; Wei, H. Stable and Lead-Free Perovskite Hemispherical Photodetector for Vivid Fourier Imaging. Adv. Sci. 2024, 12, 2414430. [Google Scholar] [CrossRef]
- Ko, H.C.; Stoykovich, M.P.; Song, J.; Malyarchuk, V.; Choi, W.M.; Yu, C.-J.; Geddes III, J.B.; Xiao, J.; Wang, S.; Huang, Y.; et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748–753. [Google Scholar] [CrossRef]
- Ying, S.; Li, J.; Huang, J.; Zhang, J.-H.; Zhang, J.; Jiang, Y.; Sun, X.; Pan, L.; Shi, Y. A Flexible Piezocapacitive Pressure Sensor with Microsphere-Array Electrodes. Nanomaterials. 2023, 13, 1702. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Poddar, S.; Lin, Y.; Long, Z.; Zhang, D.; Zhang, Q.; Shu, L.; Qiu, X.; Kam, M.; Javey, A.; et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 2020, 581, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Zhang, L.; Zhao, C.; Bachman, H.; Becker, R.; Mai, J.; Jiao, Z.; Li, W.; Zheng, L.; Wan, X.; et al. Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing. Nat. Commun. 2021, 12, 6458. [Google Scholar] [CrossRef] [PubMed]
- Rao, Z.; Lu, Y.; Li, Z.; Sim, K.; Ma, Z.; Xiao, J.; Yu, C. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nat. Electron. 2021, 4, 513–521. [Google Scholar] [CrossRef]
- Hu, Z.-Y.; Zhang, Y.-L.; Pan, C.; Dou, J.-Y.; Li, Z.-Z.; Tian, Z.-N.; Mao, J.-W.; Chen, Q.-D.; Sun, H.-B. Miniature optoelectronic compound eye camera. Nat. Commun. 2022, 13, 5634. [Google Scholar] [CrossRef]
- Lee, M.; Lee, G.J.; Jang, H.J.; Joh, E.; Cho, H.; Kim, M.S.; Kim, H.M.; Kang, K.M.; Lee, J.H.; Kim, M.; et al. An amphibious artificial vision system with a panoramic visual field. Nat. Electron. 2022, 5, 452–459. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, G.; Long, Z.; Zhou, Y.; Qiu, X.; Ren, B.; Zhang, Q.; Chi, C.; Wan, Z.; Huang, B.; et al. Uncooled self-powered hemispherical biomimetic pit organ for mid-to long-infrared imaging. Sci. Adv. 2022, 8, eabq8432. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Qiu, X.; Chan, C.L.J.; Sun, Z.; Yuan, Z.; Poddar, S.; Zhang, Y.; Ding, Y.; Gu, L.; Zhou, Y.; et al. A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina. Nat. Commun. 2023, 14, 1972. [Google Scholar] [CrossRef]
- Luo, X.; Chen, C.; He, Z.; Wang, M.; Pan, K.; Dong, X.; Li, Z.; Liu, B.; Zhang, Z.; Wu, Y.; et al. A bionic self-driven retinomorphic eye with ionogel photosynaptic retina. Nat. Commun. 2024, 15, 3086. [Google Scholar] [CrossRef]
- Bao, J.; Bawendi, M.G. A colloidal quantum dot spectrometer. Nature 2015, 523, 67–70. [Google Scholar] [CrossRef]
- Jo, C.; Kim, J.; Kwak, J.Y.; Kwon, S.M.; Park, J.B.; Kim, J.; Park, G.-S.; Kim, M.-G.; Kim, Y.-H.; Park, S.K. Retina-inspired color-cognitive learning via chromatically controllable mixed quantum dot synaptic transistor arrays. Adv. Mater. 2022, 34, 2108979. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-K.; Kim, J.; Yoon, J.; Koo, J.H.; Jung, H.; Kang, K.; Sunwoo, S.-H.; Yoo, S.; Chang, H.; Jo, J.; et al. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nat. Nanotechnol. 2022, 17, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Gargas, D.; Yang, P. Nanowire photonics. Nat. Photonics 2009, 3, 569–576. [Google Scholar] [CrossRef]
- Tang, J.; Qin, N.; Chong, Y.; Diao, Y.; Yiliguma; Wang, Z.; Xue, T.; Jiang, M.; Zhang, J.; Zheng, G. Nanowire arrays restore vision in blind mice. Nat. Commun. 2018, 9, 786. [Google Scholar] [CrossRef]
- Yang, R.; Zhao, P.; Wang, L.; Feng, C.; Peng, C.; Wang, Z.; Zhang, Y.; Shen, M.; Shi, K.; Weng, S.; et al. Assessment of visual function in blind mice and monkeys with subretinally implanted nanowire arrays as artificial photoreceptors. Nat. Biomed. Eng. 2023, 8, 1018–1039. [Google Scholar] [CrossRef]
- Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 2018, 9, 5266. [Google Scholar] [CrossRef]
- Choi, C.; Choi, M.K.; Liu, S.; Kim, M.; Park, O.K.; Im, C.; Kim, J.; Qin, X.; Lee, G.J.; Cho, K.W.; et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 2017, 8, 1664. [Google Scholar] [CrossRef]
- Choi, C.; Leem, J.; Kim, M.; Taqieddin, A.; Cho, C.; Cho, K.W.; Lee, G.J.; Seung, H.; Bae, H.J.; Song, Y.M.; et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 2020, 11, 5934. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Hong, E.; Yan, T. Effective Dual Cation Release in Quasi-2D Perovskites for Ultrafast UV Light-Powered Imaging. Adv. Mater. 2025, 37, 2412014. [Google Scholar] [CrossRef]
- Feng, X.; Li, C.; Song, J.; He, Y.; Qu, W.; Li, W.; Guo, K.; Liu, L.; Yang, B.; Wei, H. Differential perovskite hemispherical photodetector for intelligent imaging and location tracking. Nat. Commun. 2024, 15, 577. [Google Scholar] [CrossRef]
- Li, H.; Yu, H.; Wu, D.; Sun, X.; Pan, L. Recent Advances in Bioinspired Vision Sensor Arrays Based on Advanced Optoelectronic Materials. APL Mater. 2023, 11, 080601. [Google Scholar] [CrossRef]
- Sim, K.; Chen, S.; Li, Z.; Rao, Z.; Liu, J.; Lu, Y.; Jang, S.; Ershad, F.; Chen, J.; Xiao, J.; et al. Three-dimensional curvy electronics created using conformal additive stamp printing. Nat. Electron. 2019, 2, 471–479. [Google Scholar] [CrossRef]
- Yang, H.; Ding, S.; Wang, J.; Sun, S.; Swaminathan, R.; Ng, S.W.L.; Pan, X.; Ho, G.W. Computational Design of Ultra-Robust Strain Sensors for Soft Robot Perception and Autonomy. Nat. Commun. 2024, 15, 1636. [Google Scholar] [CrossRef]
- Long, Z.; Zhou, Y.; Ding, Y.; Qiu, X.; Poddar, S.; Fan, Z. Biomimetic Optoelectronics with Nanomaterials for Artificial Vision. Nat. Rev. Mater. 2025, 10, 128–146. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.S.; Kim, J.; Chang, S.; Lee, M.; Lee, G.J.; Song, Y.M.; Kim, D.-H. Avian eye-inspired perovskite artificial vision system for foveated and multispectral imaging. Sci. Robot. 2024, 9, eadk6903. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Ding, Y.; Sun, Z.; Ji, H.; Zhou, Y.; Long, Z.; Liu, G.; Wang, P.; Poddar, S.; Ren, B.; et al. A tetrachromatic sensor for imaging beyond the visible spectrum in harsh conditions. Device 2024, 2, 100357. [Google Scholar] [CrossRef]
- Liang, H.; Yang, W.; Xia, J.; Gu, H.; Meng, X.; Yang, G.; Fu, Y.; Wang, B.; Cai, H.; Chen, Y.; et al. Strain Effects on Flexible Perovskite Solar Cells. Adv. Sci. 2023, 10, 2304733. [Google Scholar] [CrossRef]
- Chen, Z.; Cheng, Q.; Chen, H.; Wu, Y.; Ding, J.; Wu, X.; Yang, H.; Liu, H.; Chen, W.; Tang, X.; et al. Perovskite Grain-Boundary Manipulation Using Room-Temperature Dynamic Self-Healing “Ligaments” for Developing Highly Stable Flexible Perovskite Solar Cells with 23.8% Efficiency. Adv. Mater. 2023, 35, 2300513. [Google Scholar] [CrossRef]
- Lu, H.; Wu, W.; He, Z.; Han, X.; Pan, C. Recent progress in construction methods and applications of perovskite photodetector arrays. Nanoscale Horiz. 2023, 8, 1014–1033. [Google Scholar] [CrossRef]
Materials | Detectivity (Jones) | EQE | Responsivity (W/A) | Ref. |
---|---|---|---|---|
Hybrid tin-lead perovskite | 1.8 × 1012 | 75% | 0.51 | [47] |
PEDOT-PSS perovskite bulk | 1.35 × 1013 | 0.47 | [98] | |
ZnO/CsPbBr3 hemispherical arrays | 4.2 × 1012 | 0.1 | [99] | |
lead-free hemispherical | 1.49 × 1013 | 0.188 | [101] | |
FAPbI3 hemispherical | 2 × 1013 | 1000% | 5.1 | [122] |
PEA2FAn−1PbnX3n+1 hemispherical | ≈1011 | 5% | 13.8 | [123] |
MAPbI3−xClx film | 9.4 × 1011 | 2.17 | [131] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, T.; Lu, Q.; Sun, X. Research Progress and Perspectives on Curved Image Sensors for Bionic Eyes. Solids 2025, 6, 34. https://doi.org/10.3390/solids6030034
He T, Lu Q, Sun X. Research Progress and Perspectives on Curved Image Sensors for Bionic Eyes. Solids. 2025; 6(3):34. https://doi.org/10.3390/solids6030034
Chicago/Turabian StyleHe, Tianlong, Qiuchun Lu, and Xidi Sun. 2025. "Research Progress and Perspectives on Curved Image Sensors for Bionic Eyes" Solids 6, no. 3: 34. https://doi.org/10.3390/solids6030034
APA StyleHe, T., Lu, Q., & Sun, X. (2025). Research Progress and Perspectives on Curved Image Sensors for Bionic Eyes. Solids, 6(3), 34. https://doi.org/10.3390/solids6030034