Comparative Assessment of Surface Lattice Resonance Characteristics in Plasmonic Titanium Nitride and Gold Nanodisk Arrays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of TiN Thin Film and Nanodisk Arrays
2.2. Fabrication of Au Nanodisk Arrays
2.3. Characterization
2.4. Simulation
2.5. Microspectroscopy
3. Results
3.1. Fabrication and Characterization of Plasmonic TiN Thin Films
3.2. Fabrication and Simulation of Plasmonic TiN Nanodisk Arrays
3.3. Comparison of the Characteristic SLR of TiN and Au Nanodisk Arrays
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandey, S.; Baburaj, N.; Joseph, S.; Joseph, J. Resonant optical modes in periodic nanostructures. ISSS J. Micro Smart Syst. 2022, 11, 113–137. [Google Scholar] [CrossRef]
- Cherqui, C.; Bourgeois, M.R.; Wang, D.; Schatz, G.C. Plasmonic Surface Lattice Resonances: Theory and Computation. Acc. Chem. Res. 2019, 52, 2548–2558. [Google Scholar] [CrossRef] [PubMed]
- Kravets, V.G.; Schedin, F.; Grigorenko, A.N. Extremely Narrow Plasmon Resonances Based on Diffraction Coupling of Localized Plasmons in Arrays of Metallic Nanoparticles. Phys. Rev. Lett. 2008, 101, 087403. [Google Scholar] [CrossRef] [PubMed]
- Kurt, H.; Pishva, P.; Pehlivan, Z.S.; Arsoy, E.G.; Saleem, Q.; Bayazıt, M.K.; Yüce, M. Nanoplasmonic biosensors: Theory, structure, design, and review of recent applications. Anal. Chim. Acta 2021, 1185, 338842. [Google Scholar] [CrossRef] [PubMed]
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Ji, F.; Guo, T.; Yan, Z.; Huang, Z.; Deng, J.; Tang, C. Ultraviolet thermally tunable silicon magnetic plasmon induced transparency. Opt. Commun. 2025, 575, 131312. [Google Scholar] [CrossRef]
- Hasegawa, M.; Watanabe, K.; Namigata, H.; Welling, T.A.J.; Suga, K.; Nagao, D. Surface lattice resonance in three-dimensional plasmonic arrays fabricated via self-assembly of silica-coated gold nanoparticles. J. Colloid Interface Sci. 2023, 633, 226–232. [Google Scholar] [CrossRef]
- Günaydın, B.N.; Çetinkaya, A.O.; Torabfam, M.; Tütüncüoğlu, A.; Kayalan, C.I.; Bayazıt, M.K.; Yüce, M.; Kurt, H. Plasmonic group IVB transition metal nitrides: Fabrication methods and applications in biosensing, photovoltaics and photocatalysis. Adv. Colloid Interface Sci. 2024, 333, 103298. [Google Scholar] [CrossRef] [PubMed]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef]
- Wang, P.; Krasavin, A.V.; Liu, L.; Jiang, Y.; Li, Z.; Guo, X.; Tong, L.; Zayats, A.V. Molecular Plasmonics with Metamaterials. Chem. Rev. 2022, 122, 15031–15081. [Google Scholar] [CrossRef] [PubMed]
- Khabbaz Abkenar, S.; Tufani, A.; Ozaydin Ince, G.; Kurt, H.; Turak, A.; Ow-Yang, C.W. Transfer printing gold nanoparticle arrays by tuning the surface hydrophilicity of thermo-responsive poly N-isopropylacrylamide (pNIPAAm). Nanoscale 2017, 9, 2969–2973. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Reiter, S.; Schlipf, J.; Mai, C.; Spirito, D.; Jose, J.; Wenger, C.; Fischer, I.A. Strongly enhanced sensitivities of CMOS compatible plasmonic titanium nitride nanohole arrays for refractive index sensing under oblique incidence. Opt. Express 2023, 31, 17389. [Google Scholar] [CrossRef] [PubMed]
- Günaydın, B.N.; Hız, D.; Cankurtaran, S.E.; Gülmez, M.; Yüce, M.; Kurt, H. Plasmonic (Ti/Hf)N vs. Au nanodisk arrays: A comparative study of refractometric sensitivity. In Optical Sensing and Detection VIII; Berghmans, F., Zergioti, I., Eds.; SPIE: Bellingham, WA, USA, 2024; Volume 12999, p. 29. [Google Scholar] [CrossRef]
- Tütüncüoğlu, A.; Yüce, M.; Kurt, H. Titanium Nitride as an Alternative Plasmonic Material for Plasmonic Enhancement in Organic Photovoltaics. Crystals 2024, 14, 828. [Google Scholar] [CrossRef]
- Kurt, H.; Ow-Yang, C.W. Impedance spectroscopy analysis of the photophysical dynamics due to the nanostructuring of anode interlayers in organic photovoltaics. Phys. Status Solidi A 2016, 213, 3165–3177. [Google Scholar] [CrossRef]
- Wan, Y. Modulation of localized surface plasmon resonance of the titanium nitride nanoparticle array based on graphene. Optik 2020, 200, 163420. [Google Scholar] [CrossRef]
- Zakomirnyi, V.I.; Rasskazov, I.L.; Gerasimov, V.S.; Ershov, A.E.; Polyutov, S.P.; Karpov, S.V. Refractory titanium nitride two-dimensional structures with extremely narrow surface lattice resonances at telecommunication wavelengths. Appl. Phys. Lett. 2017, 111, 123107. [Google Scholar] [CrossRef]
- Patsalas, P.; Kalfagiannis, N.; Kassavetis, S. Optical Properties and Plasmonic Performance of Titanium Nitride. Materials 2015, 8, 3128–3154. [Google Scholar] [CrossRef]
- Patsalas, P.; Kalfagiannis, N.; Kassavetis, S.; Abadias, G.; Bellas, D.; Lekka, C.; Lidorikis, E. Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics. Mater. Sci. Eng. R Rep. 2018, 123, 1–55. [Google Scholar] [CrossRef]
- Naik, G.V.; Schroeder, J.L.; Ni, X.; Kildishev, A.V.; Sands, T.D.; Boltasseva, A. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2012, 2, 478–489. [Google Scholar] [CrossRef]
- Shabani, A.; Roknabadi, M.R.; Behdani, M.; Nezhad, M.K.; Rahmani, N. Extraordinary optical transmission of periodic array of subwavelength holes within titanium nitride thin film. J. Nanophotonics 2017, 11, 036006. [Google Scholar] [CrossRef]
- Baturina, O.A.; Epshteyn, A.; Simpkins, B.S.; Bhattarai, N.; Brintlinger, T.H.; Santiago, E.Y.; Govorov, A.O. Comparing Photoelectrochemical Methanol Oxidation Mechanisms for Gold versus Titanium Nitride Nanoparticles Dispersed in TiO2 Matrix. J. Electrochem. Soc. 2019, 166, H485–H4893. [Google Scholar] [CrossRef]
- Cortie, M.B.; Giddings, J.; Dowd, A. Optical properties and plasmon resonances of titanium nitride nanostructures. Nanotechnology 2010, 21, 115201. [Google Scholar] [CrossRef] [PubMed]
- Reese, T.; Reed, A.N.; Sample, A.D.; Freire-Fernández, F.; Schaller, R.D.; Urbas, A.M.; Odom, T.W. Ultrafast Spectroscopy of Plasmonic Titanium Nitride Nanoparticle Lattices. ACS Photonics 2021, 8, 1556–1561. [Google Scholar] [CrossRef]
- Guler, U.; Zemlyanov, D.; Kim, J.; Wang, Z.; Chandrasekar, R.; Meng, X.; Stach, E.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide. Adv. Opt. Mater. 2017, 5, 1600717. [Google Scholar] [CrossRef]
- Günaydın, B.N.; Gülmez, M.; Torabfam, M.; Pehlivan, Z.S.; Tütüncüoğlu, A.; Kayalan, C.I.; Saatçioğlu, E.; Bayazıt, M.K.; Yüce, M.; Kurt, H. Plasmonic Titanium Nitride Nanohole Arrays for Refractometric Sensing. ACS Appl. Nano Mater. 2023, 6, 20612–20622. [Google Scholar] [CrossRef]
- Asencios, J.; Moro, R.; Luyo, C.; Talledo, A. High Sensitive Biosensors Based on the Coupling Between Surface Plasmon Polaritons on Titanium Nitride and a Planar Waveguide Mode. Sensors 2020, 20, 1784. [Google Scholar] [CrossRef]
- Sato, R.; Ishii, S.; Nagao, T.; Naito, M.; Takeda, Y. Broadband Plasmon Resonance Enhanced Third-Order Optical Nonlinearity in Refractory Titanium Nitride Nanostructures. ACS Photonics 2018, 5, 3452–3458. [Google Scholar] [CrossRef]
- Gui, L.; Bagheri, S.; Strohfeldt, N.; Hentschel, M.; Zgrabik, C.M.; Metzger, B.; Linnenbank, H.; Hu, E.L.; Giessen, H. Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas. Nano Lett. 2016, 16, 5708–5713. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-W.; Huang, C.-T.; Wu, J.-S.; Song, Z.-H.; Liao, C.-H.; Dang, Q.T.; Lu, Y.-J.; Lee, H.W.H.; Ahn, H.; Gwo, S. Ultrathin Titanium Nitride Epitaxial Structures for Tunable Infrared Plasmonics. J. Phys. Chem. C 2023, 127, 21186–21193. [Google Scholar] [CrossRef]
- Ponon, N.K.; Appleby, D.J.; Arac, E.; King, P.; Ganti, S.; Kwa, K.S.; O’Neill, A. Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films. Thin Solid Film. 2015, 578, 31–37. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, F.; Yang, Y.; Yan, M.; Zhang, Y.; Guo, J.; Li, H. Effects of sputtering gas on microstructure and tribological properties of titanium nitride films. Appl. Surf. Sci. 2019, 488, 61–69. [Google Scholar] [CrossRef]
- Mascaretti, L.; Barman, T.; Bricchi, B.R.; Münz, F.; Bassi, A.L.; Kment, Š.; Naldoni, A. Controlling the plasmonic properties of titanium nitride thin films by radiofrequency substrate biasing in magnetron sputtering. Appl. Surf. Sci. 2021, 554, 149543. [Google Scholar] [CrossRef]
- Shah, D.; Reddy, H.; Kinsey, N.; Shalaev, V.M.; Boltasseva, A. Optical Properties of Plasmonic Ultrathin TiN Films. Adv. Opt. Mater. 2017, 5, 1700065. [Google Scholar] [CrossRef]
- Ontoria, A.B.; Vasquez, M.R. Color control of titanium nitride thin films. J. Vac. Sci. Technol. B 2023, 41, 32204. [Google Scholar] [CrossRef]
- Markel, V.A. Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres. J. Phys. B At. Mol. Opt. Phys. 2005, 38, L115–L121. [Google Scholar] [CrossRef]
- Judek, J.; Wróbel, P.; Michałowski, P.P.; Ożga, M.; Witkowski, B.; Seweryn, A.; Struzik, M.; Jastrzębski, C.; Zberecki, K. Titanium Nitride as a Plasmonic Material from Near-Ultraviolet to Very-Long-Wavelength Infrared Range. Materials 2021, 14, 7095. [Google Scholar] [CrossRef]
- Zou, S.; Janel, N.; Schatz, G.C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 2004, 120, 10871–10875. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Pérez, L.A.; Alonso, M.I.; Mihi, A. High Q-Factor Plasmonic Surface Lattice Resonances in Colloidal Nanoparticle Arrays. ACS Appl. Mater. Interfaces 2024, 16, 1259–1267. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Günaydın, B.N.; Çelik, S.; Yüce, M.; Kurt, H. Comparative Assessment of Surface Lattice Resonance Characteristics in Plasmonic Titanium Nitride and Gold Nanodisk Arrays. Solids 2025, 6, 8. https://doi.org/10.3390/solids6010008
Günaydın BN, Çelik S, Yüce M, Kurt H. Comparative Assessment of Surface Lattice Resonance Characteristics in Plasmonic Titanium Nitride and Gold Nanodisk Arrays. Solids. 2025; 6(1):8. https://doi.org/10.3390/solids6010008
Chicago/Turabian StyleGünaydın, Beyza Nur, Süleyman Çelik, Meral Yüce, and Hasan Kurt. 2025. "Comparative Assessment of Surface Lattice Resonance Characteristics in Plasmonic Titanium Nitride and Gold Nanodisk Arrays" Solids 6, no. 1: 8. https://doi.org/10.3390/solids6010008
APA StyleGünaydın, B. N., Çelik, S., Yüce, M., & Kurt, H. (2025). Comparative Assessment of Surface Lattice Resonance Characteristics in Plasmonic Titanium Nitride and Gold Nanodisk Arrays. Solids, 6(1), 8. https://doi.org/10.3390/solids6010008