Assessing Hydrogen Embrittlement in Pipeline Steels for Natural Gas-Hydrogen Blends: Implications for Existing Infrastructure
Abstract
:1. Introduction
2. Materials
3. Experimental
3.1. Test Specimens
3.2. Electrochemical Hydrogen Charging
3.3. Tensile and Fatigue Tests
4. Results and Discussion
4.1. Tensile Behavior
4.2. Fractography of Tensile Samples
4.3. Fatigue Behavior
4.4. Fractography of Fatigue Samples
5. Conclusions
- Hydrogen charging increases YS for both steels due to the solid solution strengthening effect of interstitial hydrogen. Specifically, the maximum difference between the tensile strength of precharged AO-C1 and N-C1 samples compared to uncharged samples was 36% and 16%, respectively.
- The elongation and toughness at fracture decreased for both steels upon hydrogen charging. For instance, AO-C1’s total elongation decreased from 15.5% (uncharged) to 9% (charged with 0.5 wppm hydrogen content), while N-C1’s elongation decreased from 13% (uncharged) to 8.7% (charged with 1.4 wppm hydrogen content).
- AO-C1 samples exhibited a 70% reduction in fatigue life at 1 wppm hydrogen content. The fatigue test results for N-C1 samples showed higher fatigue life compared to AO-C1 when tested at the same stress levels, but lower fatigue life at 80% of YS compared to AO-C1 samples tested at 80% YS.
- The fractography analysis revealed that uncharged tensile samples exhibit a ductile fracture characterized by reduced fracture area, distinct cup-and-cone morphology and dimple features, while hydrogen-charged samples show a transition to brittle fracture with sharp edges, cleavage facets, and microcracks indicative of HE. Also, the fractography of fatigue samples revealed an overload zone characterized by brittle fracture features, which shifted to the center of the fracture surface in hydrogen-charged samples. Increased numbers of crack origins and ratchet marks were observed with higher hydrogen content, indicating hydrogen-induced defects and microcracks.
- Conduct in-situ mechanical tests to investigate the impact of applied stresses on hydrogen embrittlement in real-time. This will help in understanding the dynamic interaction between mechanical stress and hydrogen diffusion within the steel matrix.
- Perform fatigue crack growth rate tests to validate the predictive models for fatigue life. This will aid in developing more accurate life prediction models for pipeline steels exposed to hydrogen environments.
- Conduct experiments to determine hydrogen fugacity and solubility (Sieverts’ constant) for both steels from desorption spectrometry data. Correlating electrochemical charging current density to the pressure of hydrogen in pipelines will provide a more comprehensive understanding of hydrogen behavior in pipeline steels.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leung, D.Y.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- Shindell, D.; Smith, C. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 2019, 573, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Sofian, M.; Haq, M.B.; Al Shehri, D.; Rahman, M.M.; Muhammed, N.S. A review on hydrogen blending in gas network: Insight into safety, corrosion, embrittlement, coatings and liners, and bibliometric analysis. Int. J. Hydrogen Energy 2024, 60, 867–889. [Google Scholar] [CrossRef]
- Haeseldonckx, D.; D’haeseleer, W. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure. Int. J. Hydrogen Energy 2007, 32, 1381–1386. [Google Scholar] [CrossRef]
- Tabkhi, F.; Azzaro-Pantel, C.; Pibouleau, L.; Domenech, S. A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection. Int. J. Hydrogen Energy 2008, 33, 6222–6231. [Google Scholar] [CrossRef]
- Öney, F.; Veziro⋗lu, T.N.; Dülger, Z. Evaluation of pipeline transportation of hydrogen and natural gas mixtures. Int. J. Hydrogen Energy 1994, 19, 813–822. [Google Scholar] [CrossRef]
- Liu, B.; Liu, S.; Guo, S.; Zhang, S. Economic study of a large-scale renewable hydrogen application utilizing surplus renewable energy and natural gas pipeline transportation in China. Int. J. Hydrogen Energy 2019, 45, 1385–1398. [Google Scholar] [CrossRef]
- Cerniauskas, S.; Jose Chavez Junco, A.; Grube, T.; Robinius, M.; Stolten, D. Options of natural gas pipeline reassignment for hydrogen: Cost assessment for a Germany case study. Int. J. Hydrogen Energy 2020, 45, 12095–12107. [Google Scholar] [CrossRef]
- Zhu, Y.-Q.; Song, W.; Wang, H.-B.; Qi, J.-T.; Zeng, R.-C.; Ren, H.; Jiang, W.-C.; Meng, H.-B.; Li, Y.-X. Advances in reducing hydrogen effect of pipeline steels on hydrogen-blended natural gas transportation: A systematic review of mitigation strategies. Renew. Sustain. Energy Rev. 2024, 189, 113950. [Google Scholar] [CrossRef]
- Topolski, K.; Reznicek, E.P.; Erdener, B.C.; San Marchi, C.W.; Ronevich, J.A.; Fring, L.; Simmons, K.; Fernandez, O.J.G.; Hodge, B.-M.; Chung, M. Hydrogen Blending into Natural Gas Pipeline Infrastructure: Review of the State of Technology; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2022. [Google Scholar]
- Johnson, W.H. On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids. Nature 1875, 11, 393. [Google Scholar] [CrossRef]
- Nagumo, M. Fundamentals of Hydrogen Embrittlement; Springer: Berlin/Heidelberg, Germany, 2016; Volume 921. [Google Scholar]
- Zapffe, C.; Sims, C. Hydrogen embrittlement, internal stress and defects in steel. Trans. Aime 1941, 145, 225–271. [Google Scholar]
- Pfeil, L.B. The effect of occluded hydrogen on the tensile strength of iron. Proc. R. Soc. Lond. A 1926, 112, 182–195. [Google Scholar]
- Gerberich, W.W.; Oriani, R.A.; Lji, M.J.; Chen, X.; Foecke, T. The necessity of both plasticity and brittleness in the fracture thresholds of iron. Philos. Mag. A 1991, 63, 363–376. [Google Scholar] [CrossRef]
- Beachem, C.D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metall. Mater. Trans. B 1972, 3, 441–455. [Google Scholar] [CrossRef]
- Lynch, S. Hydrogen embrittlement and liquid-metal embrittlement in nickel single crystals. Scr. Metall. 1979, 13, 1051–1056. [Google Scholar] [CrossRef]
- Nagumo, M. Hydrogen related failure of steels—A new aspect. Mater. Sci. Technol. 2004, 20, 940–950. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Q.; Venezuela, J.; Zhang, M.; Atrens, A. Evaluation of the influence of hydrogen on some commercial DP, Q&P and TWIP advanced high-strength steels during automobile service. Eng. Fail. Anal. 2018, 94, 249–273. [Google Scholar]
- Westlake, D. Generalized Model for Hydrogen Embrittlement; Argonne National Lab., Ill.: Lemont, IL, USA, 1969. [Google Scholar]
- Uhlig, H. Stress-Corrosion Cracking. In Engineering Fundamentals and Environmental Effects; Staehle, R.W., Forty, A.J., Van Ruoyan, D., Eds.; NACE: Houston, TX, USA, 1969. [Google Scholar]
- Dwivedi, S.K.; Vishwakarma, M. Hydrogen embrittlement in different materials: A review. Int. J. Hydrogen Energy 2018, 43, 21603–21616. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Vishwakarma, M. Effect of hydrogen in advanced high strength steel materials. Int. J. Hydrogen Energy 2019, 44, 28007–28030. [Google Scholar] [CrossRef]
- Lynch, S. Discussion of some recent literature on hydrogen-embrittlement mechanisms: Addressing common misunderstandings. Corros. Rev. 2019, 37, 377–395. [Google Scholar] [CrossRef]
- Li, Q.; Ghadiani, H.; Jalilvand, V.; Alam, T.; Farhat, Z.; Islam, M.A. Hydrogen Impact: A Review on Diffusibility, Embrittlement Mechanisms, and Characterization. Materials 2024, 17, 965. [Google Scholar] [CrossRef]
- Koren, E.; Hagen, C.M.; Wang, D.; Lu, X.; Johnsen, R.; Yamabe, J. Experimental comparison of gaseous and electrochemical hydrogen charging in X65 pipeline steel using the permeation technique. Corros. Sci. 2023, 215, 111025. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Liu, G. Effect of hydrogen on ductility of high strength 3Ni–Cr–Mo–V steels. Mater. Sci. Eng. A 2014, 594, 40–47. [Google Scholar] [CrossRef]
- Elhoud, A.M.; Renton, N.C.; Deans, W.F. Hydrogen embrittlement of super duplex stainless steel in acid solution. Int. J. Hydrogen Energy 2010, 35, 6455–6464. [Google Scholar] [CrossRef]
- Dong, C.-F.; Xiao, K.; Liu, Z.-Y.; Yang, W.-J.; Li, X.-G. Hydrogen induced cracking of X80 pipeline steel. Int. J. Miner. Metall. Mater. 2010, 17, 579–586. [Google Scholar] [CrossRef]
- Parkins, R. Development of Strain-Rate Testing and Its Implications; ASTM International: Conshohocken, PA, USA, 1979. [Google Scholar]
- Hagihara, Y.; Ito, C.; Hisamori, N.; Suzuki, H.; Takai, K.; Akiyama, E. Evaluation of delayed fracture characteristics of high strength steel based on CSRT method. Tetsu Hagane/J. Iron Steel Inst. Jpn. 2008, 94, 215–221. [Google Scholar] [CrossRef]
- Hagihara, Y. Evaluation of delayed fracture characteristics of high-strength bolt steels by CSRT. ISIJ Int. 2012, 52, 292–297. [Google Scholar] [CrossRef]
- San Marchi, C.W.; Somerday, B.P. Technical Reference for Hydrogen Compatibility of Materials; Sandia National Laboratories (SNL): Albuquerque, NM, USA; Livermore, CA, USA, 2012.
- Xu, K.; Rana, M. Tensile and fracture properties of carbon and low alloy steels in high pressure hydrogen. Eff. Hydrog. Mater. 2009, 357–364. [Google Scholar]
- Laureys, A.; Depraetere, R.; Cauwels, M.; Depover, T.; Hertelé, S.; Verbeken, K. Use of existing steel pipeline infrastructure for gaseous hydrogen storage and transport: A review of factors affecting hydrogen induced degradation. J. Nat. Gas Sci. Eng. 2022, 101, 104534. [Google Scholar] [CrossRef]
- Sun, Z.; Benoit, G.; Moriconi, C.; Hamon, F.; Halm, D.; Hamon, F.; Hénaff, G. Fatigue crack propagation under gaseous hydrogen in a precipitation-hardened martensitic stainless steel. Int. J. Hydrogen Energy 2011, 36, 8641–8644. [Google Scholar] [CrossRef]
- Alvaro, A.; Wan, D.; Olden, V.; Barnoush, A. Hydrogen enhanced fatigue crack growth rates in a ferritic Fe-3 wt% Si alloy and a X70 pipeline steel. Eng. Fract. Mech. 2019, 219, 106641. [Google Scholar] [CrossRef]
- Lee, S.G.; Kim, I.S. Effect of pre-charged hydrogen on fatigue crack growth of low alloy steel at 288 °C. Mater. Sci. Eng. A 2006, 420, 279–285. [Google Scholar] [CrossRef]
- Colombo, C.; Fumagalli, G.; Bolzoni, F.; Gobbi, G.; Vergani, L. Fatigue behavior of hydrogen pre-charged low alloy Cr–Mo steel. Int. J. Fatigue 2016, 83, 2–9. [Google Scholar] [CrossRef]
- ASTM E 647; Standard Test Method for Measurement of Fatigue Crack Growth Rates. American Society of Testing and Materials: Philadelphia, PA, USA, 2001.
- Tsay, L.; Yu, S.; Huang, R.-T. Effect of austenite instability on the hydrogen-enhanced crack growth of austenitic stainless steels. Corros. Sci. 2007, 49, 2973–2984. [Google Scholar] [CrossRef]
- Álvarez, G.; Zafra, A.; Belzunce, F.J.; Rodríguez, C. Effect of Internal Hydrogen on the Fatigue Crack Growth Rate in the Coarse-Grain Heat-Affected Zone of a CrMo Steel. Metals 2022, 12, 673. [Google Scholar] [CrossRef]
- Stewart, A.T. The influence of environment and stress ratio on fatigue crack growth at near threshold stress intensities in low-alloy steels. Eng. Fract. Mech. 1980, 13, 463–478. [Google Scholar] [CrossRef]
- Toplosky, J.; Ritchie, R. On the influence of gaseous hydrogen in decelerating fatigue crack growth rates in ultrahigh strength steels. Scr. Metall. 1981, 15, 905–908. [Google Scholar] [CrossRef]
- Dmytrakh, I.; Leshchak, R.; Syrotyuk, A.; Barna, R. Effect of hydrogen concentration on fatigue crack growth behaviour in pipeline steel. Int. J. Hydrogen Energy 2017, 42, 6401–6408. [Google Scholar] [CrossRef]
- Yamabe, J.; Yoshikawa, M.; Matsunaga, H.; Matsuoka, S. Hydrogen trapping and fatigue crack growth property of low-carbon steel in hydrogen-gas environment. Int. J. Fatigue 2017, 102, 202–213. [Google Scholar] [CrossRef]
- An, T.; Peng, H.; Bai, P.; Zheng, S.; Wen, X.; Zhang, L. Influence of hydrogen pressure on fatigue properties of X80 pipeline steel. Int. J. Hydrogen Energy 2017, 42, 15669–15678. [Google Scholar] [CrossRef]
- Cheng, A.; Chen, N.-Z. Fatigue crack growth modelling for pipeline carbon steels under gaseous hydrogen conditions. Int. J. Fatigue 2017, 96, 152–161. [Google Scholar] [CrossRef]
- Anderson, T.L.; Anderson, T.L. Fracture Mechanics: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Meng, B.; Gu, C.; Zhang, L.; Zhou, C.; Li, X.; Zhao, Y.; Zheng, J.; Chen, X.; Han, Y. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures. Int. J. Hydrogen Energy 2017, 42, 7404–7412. [Google Scholar] [CrossRef]
- Faucon, L.E.; Boot, T.; Riemslag, T.; Scott, S.P.; Liu, P.; Popovich, V. Hydrogen-Accelerated Fatigue of API X60 Pipeline Steel and Its Weld. Metals 2023, 13, 563. [Google Scholar] [CrossRef]
- Nahm, S.-H.; Shim, H.-B.; Baek, U.; Suh, C.-M. Very High Cycle Fatigue Behaviors and Surface Crack Growth Mechanism of Hydrogen-Embrittled AISI 304 Stainless Steels. Mater. Sci. Appl. 2018, 09, 393–411. [Google Scholar] [CrossRef]
- Zhang, P.; Laleh, M.; Hughes, A.E.; Marceau, R.; Hilditch, T.; Tan, M. A systematic study on the influence of electrochemical charging conditions on the hydrogen embrittlement behaviour of a pipeline steel. Int. J. Hydrogen Energy 2023, 48, 16501–16516. [Google Scholar] [CrossRef]
- Devanathan, M.; Stachurski, Z. The adsorption and diffusion of electrolytic hydrogen in palladium. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1962, 270, 90–102. [Google Scholar]
- ISO 17081; Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique. International Organization for Standardization: Geneva, Switzerland, 2014.
- Iyer, R.N.; Pickering, H.W.; Zamanzadeh, M. Analysis of hydrogen evolution and entry into metals for the discharge-recombination process. J. Electrochem. Soc. 1989, 136, 2463. [Google Scholar] [CrossRef]
- Perng, T.; Wu, J. A brief review note on mechanisms of hydrogen entry into metals. Mater. Lett. 2003, 57, 3437–3438. [Google Scholar] [CrossRef]
- Devanathan, M.; Stachurski, Z. The mechanism of hydrogen evolution on iron in acid solutions by determination of permeation rates. J. Electrochem. Soc. 1964, 111, 619. [Google Scholar] [CrossRef]
- Duprez, L.; Verbeken, K.; Verhaege, M. Effect of hydrogen on the mechanical properties of multiphase high strength steels. Eff. Hydrogen Mater. 2009, 39, 62–69. [Google Scholar]
- Depover, T.; Wallaert, E.; Verbeken, K. On the synergy of diffusible hydrogen content and hydrogen diffusivity in the mechanical degradation of laboratory cast Fe-C alloys. Mater. Sci. Eng. A 2016, 664, 195–205. [Google Scholar] [CrossRef]
- Cottrell, A.H.; Bilby, B.A. Dislocation Theory of Yielding and Strain Ageing of Iron. Proc. Phys. Society. Sect. A 1949, 62, 49. [Google Scholar] [CrossRef]
- Michler, T.; Ebling, F.; Oesterlin, H.; Fischer, C.; Wackermann, K. Comparison of tensile properties of X60 pipeline steel tested in high pressure gaseous hydrogen using tubular and conventional specimen. Int. J. Hydrogen Energy 2022, 47, 34676–34688. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Park, J.; Kim, W.S.; Nahm, S.H.; Beak, U.B. Effect of low partial hydrogen in a mixture with methane on the mechanical properties of X70 pipeline steel. Int. J. Hydrogen Energy 2020, 45, 2368–2381. [Google Scholar] [CrossRef]
- Banerjee, K.; Chatterjee, U.K. Hydrogen permeation and hydrogen content under cathodic charging in HSLA 80 and HSLA 100 steels. Scr. Mater. 2001, 44, 213–216. [Google Scholar] [CrossRef]
- Matsumoto, K.; Kobayashi, Y.; Ume, K.; Murakami, K.; Taira, K.; Arikata, K. Hydrogen induced cracking susceptibility of high-strength line pipe steels. Corrosion 1986, 42, 337–345. [Google Scholar] [CrossRef]
- Park, G.T.; Koh, S.U.; Jung, H.G.; Kim, K.Y. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel. Corros. Sci. 2008, 50, 1865–1871. [Google Scholar] [CrossRef]
- Manson, S.; Hirschberg, M. The role of ductility, tensile strength and fracture toughness in fatigue. J. Frankl. Inst. 1970, 290, 539–548. [Google Scholar] [CrossRef]
- Sachs, N.W. Understanding the surface features of fatigue fractures: How they describe the failure cause and the failure history. J. Fail. Anal. Prev. 2005, 5, 11–15. [Google Scholar] [CrossRef]
C | Mn | Al | Mo | Cu | Si | Ni | Sn + Nb + V + Ti | Fe | |
---|---|---|---|---|---|---|---|---|---|
AO-C1 | 0.28 | 1.02 | 0.03 | <0.01 | 0.16 | 0.04 | 0.06 | 0.07 | Bal |
N-C1 | 0.05 | 1.44 | 0.03 | 0.17 | 0.17 | 0.23 | 0.12 | 0.1 | Bal |
Charging Current Density (mA/cm2) | Deff (m2/s) | C0R (mol/m3) | tss (min) | |
---|---|---|---|---|
AO-C1 | 10 | 0.49 | 73 | |
N-C1 | 10 | 3.14 | 123 |
CH (wppm) | AO-C1 | N-C1 | ||
---|---|---|---|---|
Charging Time (min) | Charging Current Density (mA/cm2) | Charging Time (min) | Charging Current Density (mA/cm2) | |
0.07 | 110 | 12.3 | 185 | 0.3 |
0.2 | 100.4 | 2.5 | ||
0.5 | 627.8 | 15.6 | ||
1.0 | 2511.2 | 62.5 | ||
1.4 | - | 122.5 | ||
2.0 | - | 249.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghadiani, H.; Farhat, Z.; Alam, T.; Islam, M.A. Assessing Hydrogen Embrittlement in Pipeline Steels for Natural Gas-Hydrogen Blends: Implications for Existing Infrastructure. Solids 2024, 5, 375-393. https://doi.org/10.3390/solids5030025
Ghadiani H, Farhat Z, Alam T, Islam MA. Assessing Hydrogen Embrittlement in Pipeline Steels for Natural Gas-Hydrogen Blends: Implications for Existing Infrastructure. Solids. 2024; 5(3):375-393. https://doi.org/10.3390/solids5030025
Chicago/Turabian StyleGhadiani, Hesamedin, Zoheir Farhat, Tahrim Alam, and Md. Aminul Islam. 2024. "Assessing Hydrogen Embrittlement in Pipeline Steels for Natural Gas-Hydrogen Blends: Implications for Existing Infrastructure" Solids 5, no. 3: 375-393. https://doi.org/10.3390/solids5030025
APA StyleGhadiani, H., Farhat, Z., Alam, T., & Islam, M. A. (2024). Assessing Hydrogen Embrittlement in Pipeline Steels for Natural Gas-Hydrogen Blends: Implications for Existing Infrastructure. Solids, 5(3), 375-393. https://doi.org/10.3390/solids5030025