Thermoelectric Properties of Layered CuCr0.99Ln0.01S2 (Ln = La…Lu) Disulfides: Effects of Lanthanide Doping
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ushakov, A.V.; Kukusta, D.A.; Yaresko, A.N.; Khomskii, D.I. Magnetism of Layered Chromium Sulfides MCrS2 (M=Li, Na, K, Ag, and Au): A First-Principles Study. Phys. Rev. B—Condens. Matter Mater. Phys. 2013, 87, 014418. [Google Scholar] [CrossRef]
- Engelsman, F.M.R.; Wiegers, G.A.; Jellinek, F.; Van Laar, B. Crystal Structures and Magnetic Structures of Some Metal(I) Chromium(III) Sulfides and Selenides. J. Solid State Chem. 1973, 6, 574–582. [Google Scholar] [CrossRef]
- Karmakar, A.; Dey, K.; Chatterjee, S.; Majumdar, S.; Giri, S. Spin Correlated Dielectric Memory and Rejuvenation in Multiferroic CuCrS2. Appl. Phys. Lett. 2014, 104, 052906. [Google Scholar] [CrossRef]
- Hansen, A.-L.; Dankwort, T.; Groß, H.; Etter, M.; König, J.; Duppel, V.; Kienle, L.; Bensch, W. Structural Properties of the Thermoelectric Material CuCrS2 and of Deintercalated CuxCrS2 on Different Length Scales: X-ray Diffraction, Pair Distribution Function and Transmission Electron Microscopy Studies. J. Mater. Chem. C 2017, 5, 9331–9338. [Google Scholar] [CrossRef]
- Lee, H.K.; Ban, Y.J.; Lee, H.J.; Kim, J.H.; Park, S.J. One-Pot Synthesis and Characterization of CuCrS2/ZnS Core/Shell Quantum Dots as New Blue-Emitting Sources. Materials 2023, 16, 762. [Google Scholar] [CrossRef]
- Sanchez Rodriguez, J.J.; Nunez Leon, A.N.; Abbasi, J.; Shinde, P.S.; Fedin, I.; Gupta, A. Colloidal Synthesis, Characterization, and Photoconductivity of Quasi-Layered CuCrS2 Nanosheets. Nanomaterials 2022, 12, 4164. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhong, T.; Zuo, N.; Li, Z.; Li, D.; Pi, L.; Chen, P.; Wu, M.; Zhai, T.; Zhou, X. High-TC Two-Dimensional Ferroelectric CuCrS2 Grown via Chemical Vapor Deposition. ACS Nano 2022, 16, 8141–8149. [Google Scholar] [CrossRef] [PubMed]
- Zhong, T.; Li, X.; Wu, M.; Liu, J.M. Room-Temperature Multiferroicity and Diversified Magnetoelectric Couplings in 2D Materials. Natl. Sci. Rev. 2020, 7, 373–380. [Google Scholar] [CrossRef]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, É.V.; Abdullin, A.R. Investigation of Superionic Phase Transition in the CuCr1−XVxS2 System by X-Ray Diffraction and Magnetic Methods. Phys. Solid State 2000, 42, 1508–1511. [Google Scholar] [CrossRef]
- Vassilieva, I.G.; Kardash, T.Y.; Malakhov, V.V. Phase Transformations of CuCrS2: Structural and Chemical Study. J. Struct. Chem. 2009, 50, 288–295. [Google Scholar] [CrossRef]
- Vasilyeva, I.G. Chemical Aspect of the Structural Disorder in CuCrS2 and CuCr1−XVxS2 Solid Solutions. J. Struct. Chem. 2017, 58, 1009–1017. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Sotnikov, A. V Effect of the Order-Disorder Transition on the Electronic Structure and Physical Properties of Layered CuCrS2. Materials 2021, 14, 2729. [Google Scholar] [CrossRef] [PubMed]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, E.V.; Abdullin, A.R. Synthesis and X-Ray Diffraction Study of CuCr1−xVxS2. Inorg. Mater. 2000, 36, 437–440. [Google Scholar] [CrossRef]
- Almukhametov, R.F.; Yakshibayev, R.A.; Gabitov, E.V.; Abdullin, A.R.; Kutusheva, R.M. Structural Properties and Ionic Conductivities of CuCr1−x VxS2 Solid Solutions. Phys. Status Solidi Basic Res. 2003, 236, 29–33. [Google Scholar] [CrossRef]
- Titov, S.V.; Gorbenko, A.P.; Yakshibaev, R.A.; Reznichenko, L.A.; Al’mukhametov, R.F.; Titov, V.V.; Shilkina, L.A. Ion Conductivity, Structural Features, and Multifractal Properties of Grain Boundaries in CuCr1−XVxS2. Bull. Russ. Acad. Sci. Phys. 2007, 71, 719–720. [Google Scholar] [CrossRef]
- Almukhametov, R.F.; Yakshibayev, R.A.; Kutusheva, R.M.; Amineva, A. Structural Properties and Ionic Conductivity of New CuCr1−XVxSe2 Solid Solutions. Solid State Ion. 2003, 158, 409–414. [Google Scholar] [CrossRef]
- Yakshibaev, R.A.; Akmanova, G.R.; Almukhametov, R.F.; Konev, V.N. Ionic Conductivity and Diffusion in CuCrS2—AgCrS2 Mixed Conductors and Their Alloys. Phys. Status Solidi 1991, 124, 417–426. [Google Scholar] [CrossRef]
- Krengel, M.; Hansen, A.L.; Hartmann, F.; van Dinter, J.; Bensch, W. Elucidation of the Sodium—Copper Extrusion Mechanism in CuCrS2: A High Capacity, Long-Life Anode Material for Sodium-Ion Batteries. Batter. Supercaps 2018, 1, 176–183. [Google Scholar] [CrossRef]
- Akmanova, G.R.; Davletshina, A.D. Ionic Conductivity and Diffusion in Superionic Conductors CuCrS2—AgCrS2. Lett. Mater. 2013, 3, 76–78. [Google Scholar] [CrossRef]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Abdullin, A.R. Preparation and Magnetic Properties of CuCr1−XMnXS2 Solid Solutions. Inorg. Mater. 2002, 38, 447–449. [Google Scholar] [CrossRef]
- Abramova, G.M.; Petrakovskiĭ, G.A.; Vorotynov, A.M.; Velikanov, D.A.; Kiselev, N.I.; Bovina, A.F.; Szymczak, R.; Al’mukhametov, R.F. Phase Transitions and Colossal Magnetoresistance in CuVxCr1−xS2 Layered Disulfides. JETP Lett. 2006, 83, 118–121. [Google Scholar] [CrossRef]
- Abramova, G.M.; Petrakovskiǐ, G.A.; Vtyurin, A.N.; Vorotynov, A.M.; Velikanov, D.A.; Krylov, A.S.; Gerasimova, Y.; Sokolov, V.V.; Bovina, A.F. Magnetic Properties, Magnetoresistance, and Raman Spectra of CuVxCr1−XS2. Phys. Solid State 2009, 51, 532–536. [Google Scholar] [CrossRef]
- Abramova, G.M.; Petrakovskii, G.A. Metal-Insulator Transition, Magnetoresistance, and Magnetic Properties of 3d-Sulfides. Low Temp. Phys. 2006, 32, 725–734. [Google Scholar] [CrossRef]
- Abramova, G.M.; Vorotynov, A.M.; Petrakovskiǐ, G.A.; Kiselev, N.I.; Velikanov, D.A.; Bovina, A.F.; Al’Mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, É.V. Electron Transition in Intercalated Disulfide CuCrS2. Phys. Solid State 2004, 46, 2225–2228. [Google Scholar] [CrossRef]
- Tsujii, N.; Kitazawa, H.; Kido, G. Insulator to Metal Transition Induced by Substitution in the Nearly Two-Dimensional Compound CuCr1−XVxS2. Phys. Status Solidi 2006, 3, 2775–2778. [Google Scholar] [CrossRef]
- Romanenko, A.I.; Chebanova, G.E.; Katamanin, I.N.; Drozhzhin, M.V.; Artemkina, S.B.; Han, M.-K.; Kim, S.-J.; Wang, H. Enhanced Thermoelectric Properties of Polycrystalline CuCrS2−xSeX (x = 0, 0.5, 1.0, 1.5, 2) Samples by Replacing Chalcogens and Sintering. J. Phys. D. Appl. Phys. 2021, 55, 135302. [Google Scholar] [CrossRef]
- Srivastava, D.; Tewari, G.C.; Karppinen, M.; Nieminen, R.M. First-Principles Study of Layered Antiferromagnetic CuCrX2 (X = S, Se and Te). J. Phys. Condens. Matter 2013, 25, 105504. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Huang, S.; Feng, D.; Li, B.; Chen, Y.; Zhang, J.; He, J. Revisiting AgCrSe2 as a Promising Thermoelectric Material. Phys. Chem. Chem. Phys. 2016, 18, 23872–23878. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Basu, R.; Bhatt, R.; Pitale, S.; Singh, A.; Aswal, D.K.; Gupta, S.K.; Navaneethan, M.; Hayakawa, Y. CuCrSe2: A High Performance Phonon Glass and Electron Crystal Thermoelectric Material. J. Mater. Chem. A 2013, 1, 11289–11294. [Google Scholar] [CrossRef]
- Tewari, G.C.; Tripathi, T.S.; Kumar, P.; Rastogi, A.K.; Pasha, S.K.; Gupta, G. Increase in the Thermoelectric Efficiency of the Disordered Phase of Layered Antiferromagnetic CuCrS2. J. Electron. Mater. 2011, 40, 2368–2373. [Google Scholar] [CrossRef]
- Tewari, G.C.; Tripathi, T.S.; Rastogi, A.K. Thermoelectric Properties of Layer-Antiferromagnet CuCrS2. J. Electron. Mater. 2010, 39, 1133–1139. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Pelmenev, K.G.; Zvereva, V.V.; Peregudova, N.N. Seebeck Coefficient of Cation-Substituted Disulfides CuCr1−xFexS2 and Cu1−xFexCrS2. J. Electron. Mater. 2018, 47, 3392–3397. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y. Thermoelectric and Magnetic Properties and Electronic Structure of Solid Solutions CuCr1−XLaxS2. J. Compos. Sci. 2023, 7, 436. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Sotnikov, A.V.; Kalinkin, A.V. The Charge Distribution, Seebeck Coefficient, and Carrier Concentration of CuCr0.99Ln0.01S2 (Ln = Dy–Lu). Materials 2023, 16, 2431. [Google Scholar] [CrossRef] [PubMed]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Sotnikov, A.V.; Kalinkin, A.V. Charge Distribution in Layered Lanthanide-Doped CuCr0.99Ln0.01S2 (Ln = Pr–Tb) Thermoelectric Materials. Materials 2022, 15, 8747. [Google Scholar] [CrossRef] [PubMed]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Trubina, S.V.; Nikolenko, A.D.; Ivlyushkin, D.V.; Zavertkin, P.S.; Sotnikov, A.V.; Kriventsov, V.V. XANES Investigation of Novel Lanthanide-Doped CuCr0.99Ln0.01S2 (Ln = La, Ce) Solid Solutions. Appl. Phys. A Mater. Sci. Process. 2020, 126, 537. [Google Scholar] [CrossRef]
- Dmitriev, A.V.; Zvyagin, I.P. Current Trends in the Physics of Thermoelectric Materials. Uspekhi Fiz. Nauk. 2010, 180, 821. [Google Scholar] [CrossRef]
- Shevelkov, A.V.; IIIeвeлькoв, A.B. Chemical Aspects of the Design of Thermoelectric Materials. Russ. Chem. Rev. 2008, 77, 1–19. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Kalinkin, A.V.; Sotnikov, A.V. Valence Band Structure and Charge Distribution in the Layered Lanthanide-Doped CuCr0.99Ln0.01S2 (Ln = La, Ce) Solid Solutions. Sci. Rep. 2021, 11, 18934. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Trubina, S.V.; Nikolenko, A.D.; Ivlyushkin, D.V.; Zavertkin, P.S.; Kriventsov, V.V. The Conduction Band of the Lanthanide Doped Chromium Disulfides CuCr0.99Ln0.01S2 (Ln=La, Ce, Gd): XANES Investigations. In AIP Conference Proceedings, Proceedings of the Synchrotron and Free Electron Laser Radiation: Generation and Application (SFR-2020), Novosibirsk, Russia, 13–16 July 2020; AIP Publishing: New York, NY, USA, 2020; Volume 2299, p. 080004. [Google Scholar]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Zvereva, V.V. Magnetic Properties of Novel Layered Disulfides CuCr0.99Ln0.01S2 (Ln = La…Lu). Materials 2021, 14, 5101. [Google Scholar] [CrossRef]
- Terasaki, I. Thermal Conductivity and Thermoelectric Power of Semiconductors. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–40. ISBN 9780128035818. [Google Scholar]
- Aswal, D.K.; Basu, R.; Singh, A. Key Issues in Development of Thermoelectric Power Generators: High Figure-of-Merit Materials and Their Highly Conducting Interfaces with Metallic Interconnects. Energy Convers. Manag. 2016, 114, 50–67. [Google Scholar] [CrossRef]
- Kaltzoglou, A.; Vaqueiro, P.; Barbier, T.; Guilmeau, E.; Powell, A.V. Ordered-Defect Sulfides as Thermoelectric Materials. J. Electron. Mater. 2014, 43, 2029–2034. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Zhang, B.-P.; Ge, Z.-H.; Shang, P.-P. Preparation and Thermoelectric Properties of Ternary Superionic Conductor CuCrS2. J. Solid State Chem. 2012, 186, 109–115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korotaev, E.V.; Syrokvashin, M.M. Thermoelectric Properties of Layered CuCr0.99Ln0.01S2 (Ln = La…Lu) Disulfides: Effects of Lanthanide Doping. Solids 2024, 5, 256-266. https://doi.org/10.3390/solids5020016
Korotaev EV, Syrokvashin MM. Thermoelectric Properties of Layered CuCr0.99Ln0.01S2 (Ln = La…Lu) Disulfides: Effects of Lanthanide Doping. Solids. 2024; 5(2):256-266. https://doi.org/10.3390/solids5020016
Chicago/Turabian StyleKorotaev, Evgeniy V., and Mikhail M. Syrokvashin. 2024. "Thermoelectric Properties of Layered CuCr0.99Ln0.01S2 (Ln = La…Lu) Disulfides: Effects of Lanthanide Doping" Solids 5, no. 2: 256-266. https://doi.org/10.3390/solids5020016
APA StyleKorotaev, E. V., & Syrokvashin, M. M. (2024). Thermoelectric Properties of Layered CuCr0.99Ln0.01S2 (Ln = La…Lu) Disulfides: Effects of Lanthanide Doping. Solids, 5(2), 256-266. https://doi.org/10.3390/solids5020016