A Review on Hydration Process and Setting Time of Limestone Calcined Clay Cement (LC3)
Abstract
:1. Introduction
2. History and Composition of LC3 Cement Paste
2.1. History of Calcined Clay
2.2. Different Types of Clays
2.3. High-Reactivity Clay to Form Calcined Clay
2.4. Mechanism of Metakaolin
2.4.1. Hydration–Acceleration Effect
2.4.2. Filling Compaction Effect
2.4.3. Pozzolanic Activity Effect
3. Performance of LC3
3.1. Mechanical Properties of LC3
3.2. Durability of LC3
3.3. Workability of LC3
4. Description of Cement Hydration and Setting
4.1. Portland Cement
4.2. Effect of Calcined Clay on Cement Hydration
4.3. Effect of Limestone on Cement Hydration
4.4. Effect of Gypsum on Cement Hydration
4.5. Effect of W/C Ratio on Cement Hydration
5. Conclusions
- The mechanisms of hydration process of LC3 concrete needs to be further studied. The test devices such as the ultrasound pulse velocity test, Vicat apparatus, and isothermal calorimetry can be used to explore the setting time and hydration heat. The relationship between setting time and hydration heat should be clarified.
- The effect of mix design parameters such as w/c ratio, cement replacement, gypsum, and contents of limestone and calcined clay in LC3 cement on the setting time needs to be comprehensively considered. For instance, it is an interesting research question whether the w/c ratio or increase in the contents of limestone and calcined clay in LC3 has a positive effect on the hydration and setting time of LC3 cement.
- The rheological properties of LC3 cement can be further examined through various designs to develop an optimized protocol for flow curve measurement and elucidate its association with heat flow.
- With the development of sustainable concrete materials such as LC3 cement, LC3 concrete can be utilized in the engineering field. However, the research on LC3 cement should be extended from the hydration process and setting time to the long-term structural performance of concrete structures.
Funding
Acknowledgments
Conflicts of Interest
References
- Ishak, S.; Hashim, H. Low carbon measures for cement plant—A review. J. Clean. Prod. 2015, 103, 260–274. [Google Scholar] [CrossRef]
- Antonia, M.; Rossena, J.; Martirena, F.; Scrivenera, K. Cement Substitution by a Combination of Metakaolin and Limestone. Cem. Concr. Res. 2012, 42, 1579–1589. [Google Scholar] [CrossRef]
- Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined clay limestone cements (LC3). Cem. Concr. Res. 2018, 114, 49–56. [Google Scholar] [CrossRef]
- Antoni, M. Investigation of Cement Substitution by Blends of Calcined Clays and Limestone. Ph.D. Thesis, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland, 2013. [Google Scholar]
- Mielenz, R.; Witte, L.; Glantz, O. Effect of Calcination on Natural Pozzolans. In Symposium on Use of Pozzolanic Materials in Mortars and Concretes; ASTM International: West Conshohocken, PA, USA, 1950; pp. 43–92. [Google Scholar] [CrossRef]
- Mielenz, R.; Greene, K.; Schieltz, N. Natural pozzolans for concrete. Econ. Geol. 1951, 46, 311–328. [Google Scholar] [CrossRef]
- Saad, M.; de Andrade, W.; Paulon, V. Properties of Mass Concrete Con Taining an Active Pozzo-lan Made from Clay. Concr. Int. 1982, 4, 59–65. [Google Scholar]
- He, H.; Yuan, P.; Guo, J.; Zhu, J.; Hu, C. The influence of random defect density on the thermal stability of kaolinites. J. Am. Ceram. Soc. 2005, 88, 1017–1019. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, R.; Martirena, F.; Scrivener, K. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Habib, A.; Aiad, I.; Youssef, T.; El-Aziz, A.A. Effect of some chemical admixtures on the phys-ico-chemical and rheological properties of oil well cement pastes. Constr. Build. Mater. 2016, 120, 80–88. [Google Scholar] [CrossRef]
- Frías, M.; Cabrera, J. Influence of MK on the reaction kinetics in MK/lime and MK-blended ce-ment systems at 20 °C. Cem. Concr. Res. 2001, 31, 519–527. [Google Scholar] [CrossRef]
- Autef, A.; Joussein, E.; Gasgnier, G.; Pronier, S.; Sobrados, I.; Sanz, J.; Rossignol, S. Role of metakaolin dehydroxylation in geopolymer synthesis. Powder Technol. 2013, 250, 33–39. [Google Scholar] [CrossRef]
- Mobili, A.; Belli, A.; Giosue, C.; Bellezze, T.; Tittarelli, F. Metakaolin and fly ash alkali-activated mortars compared with cementitious mortars at the same strength class. Cem. Concr. Res. 2016, 88, 198–210. [Google Scholar] [CrossRef]
- Gedam, B.; Bhandari, N.; Upadhyay, A. Influence of supplementary cementitious materials on shrinkage, creep, and durability of high-performance concrete. J. Mater. Civ. Eng. 2016, 28, 04015173. [Google Scholar] [CrossRef]
- Wild, S.; Khatib, J.; Jones, A. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem. Concr. Res. 1996, 26, 1537–1544. [Google Scholar] [CrossRef]
- Ghafari, E.; Ghahari, S.; Costa, H.; Julio, E.; Portugal, A.; Duraes, L. Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete. Constr. Build. Mater. 2016, 127, 43–48. [Google Scholar] [CrossRef]
- Lothenbach, B.; le Saout, G.; Gallucci, E.; Scrivener, K. Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 2008, 38, 848–860. [Google Scholar] [CrossRef]
- Vance, K.; Aguayo, M.; Oey, T.; Sant, G.; Neithalath, N. Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin. Cem. Concr. Compos. 2013, 39, 93–103. [Google Scholar] [CrossRef]
- Alvarez, G.; Nazari, A.; Bagheri, A.; Sanjayan, J.; de Lange, C. Microstructure, electrical and me-chanical properties of steel fibres reinforced cement mortars with partial metakaolin and limestone addition. Constr. Build. Mater. 2017, 135, 8–20. [Google Scholar] [CrossRef]
- Tironi, A.; Scian, A.; Irassar, E. Blended cements with limestone filler and kaolinitic calcined clay: Filler and pozzolanic effects. J. Mater. Civ. Eng. 2017, 29, 01017116. [Google Scholar] [CrossRef]
- Ramlochan, T.; Thomas, M. Effect of metakaolin on external sulfate attack. Am. Concr. Inst. ACI Spec. Publ. 2000, 192, 239–252. [Google Scholar]
- Berriel, S.; Favier, A.; Dominguez, E.; Machado, I.; Heierli, U.; Scrivener, K.; Hernandez, F.; Habert, G. Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba. J. Clean. Prod. 2016, 124, 361–369. [Google Scholar] [CrossRef]
- Gruber, K.; Ramlochan, T.; Boddy, A.; Hooton, R.; Thomas, M. Increasing concrete durability with high-reactivity metakaolin. Cem. Concr. Compos. 2001, 23, 479–484. [Google Scholar] [CrossRef]
- Sui, T.; Wang, B.; Zhang, L.; Cheng, Z. Meta-Kaolin for High Performance Concrete. Calcined Clays for Sustain. Concr. 2015, 10, 467–477. [Google Scholar]
- Sabir, B.; Wild, S.; Bai, J. Metakaolin and calcined clays as pozzolans for concrete: A review. Cem. Concr. Compos. 2001, 23, 441–454. [Google Scholar] [CrossRef]
- Siddique, R.; Klaus, J. Influence of metakaolin on the properties of mortar and concrete: A review. Appl. Clay Sci. 2009, 43, 392–400. [Google Scholar] [CrossRef]
- Puerta-Falla, G.; Balonis, M.; le Saout, G.; Neithalath, N.; Sant, G. The influence of metakaolin on limestone reactivity in cementitious materials. In Calcined Clays for Sustainable Concrete; RILEM Bookseries; Springer: Dordrecht, The Netherlands, 2015; Volume 10, pp. 11–19. [Google Scholar]
- Palou, M.; Kuzielová, E.; Žemlička, M.; Boháč, M.; Novotný, R. The effect of curing temperature on the hydration of binary Portland cement: Slag and Portland cement—Metakaolin-blended cements. J. Therm. Anal. Calorim. 2016, 125, 1301–1310. [Google Scholar] [CrossRef]
- Qian, X.; Zhan, S.; Li, Z. Research of the physical and mechanical properties of the high perfor-mance concrete with metakaolin. Jianzhu Cailiao Xuebao/J. Build. Mater. 2001, 4, 75–78. [Google Scholar]
- Murtaza, M.; Rahman, M.; Al-Majed, A. Effect of Nanoclay on Mechanical and Rheological Properties of Oil Well Cement Slurry Under HPHT Environment. In Proceedings of the International Petroleum Technology Conference, Bangkok, Thailand, 14–16 November 2016. [Google Scholar]
- Wild, S.; Khatib, J.; Roose, L. Chemical shrinkage and autogenous shrinkage of Portland cement-metakaolin pastes. Adv. Cem. Res. 1998, 10, 109–119. [Google Scholar] [CrossRef]
- Paiva, H.; Velosa, A.; Cachim, P.; Ferreira, V. Effect of metakaolin dispersion on the fresh and hardened state properties of concrete. Cem. Concr. Res. 2012, 42, 607–612. [Google Scholar] [CrossRef]
- Bai, J.; Wild, S.; Sabir, B.; Kinuthia, J. Workability of concrete incorporating pulverized fuel ash and metakaolin. Mag. Concr. Res. 1999, 51, 207–216. [Google Scholar] [CrossRef]
- Lota, J.; Kendall, K.; Bensted, J. Mechanism for the modification of Portland cement hydration using polyacrylic acid. Adv. Cem. Res. 2000, 12, 45–56. [Google Scholar] [CrossRef]
- Mohamed, A.; Elsalamawy, M.; Ragab, M. Modeling the influence of limestone addition on cement hydration. Alex. Eng. J. 2015, 54, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kakali, G.; Tsivilis, S.; Aggeli, E.; Bati, M. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem. Concr. Res. 2000, 30, 1073–1077. [Google Scholar] [CrossRef]
- Bouasker, M.; Mounanga, P.; Turcry, P.; Loukili, A.; Khelidj, A. Chemical shrinkage of cement pastes and mortars at very early age: Effect of limestone filler and granular inclusions. Cem. Concr. Compos. 2008, 30, 13–22. [Google Scholar] [CrossRef]
- Thongsanitgarn, P.; Wongkeo, W.; Chaipanich, A.; Poon, C. Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size. Constr. Build. Mater. 2014, 66, 410–417. [Google Scholar] [CrossRef]
- Jelenić, I.; Panović, A.; Halle, R.; Gaćeša, T. Effect of gypsum on the hydration and strength de-velopment of commercial portland cements containing alkali sulfates. Cem. Concr. Res. 1977, 7, 239–245. [Google Scholar] [CrossRef]
- Bentz, D. Influence of water-to-cement ratio on hydration kinetics: Simple models based on spatial considerations. Cem. Concr. Res. 2006, 36, 238–244. [Google Scholar] [CrossRef]
Indicators | Pilot Level | Industrial Level | BAT Level |
---|---|---|---|
Kaolinite clay distance (km) | 150 | 60–150 | <100 |
Type of fuel | Cuban crude oil | Pet-coke + Cuban crude oil | Gas + waste |
Clinker technology | Wet rotary kiln | Four-stage pre-heater + pre-calciner | Six-stage pre-heater + pre-calciner |
Clay calcining technology | Wet rotary kiln | Retrofitted calciner | Optimized flash calciner |
Material Name | Group | Isomorphous Substitution | Interlayer Bond | Ideal Formula | Crystal System | Basal Spacing |
---|---|---|---|---|---|---|
Kaolinite | 1:1 | Very little | O-OH, strong | Triclinic | 7.2 A | |
Illite | 2:1 | Some Si by Al, balanced by K between layers | K ions, strong | Monoclinc | 10 A | |
Montmorill onite | 2:1 | Mg for Al | O-O, very weak, expanding lattice | Monoclinic | >9.6 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, Y. A Review on Hydration Process and Setting Time of Limestone Calcined Clay Cement (LC3). Solids 2023, 4, 24-38. https://doi.org/10.3390/solids4010003
Zhao Y, Zhang Y. A Review on Hydration Process and Setting Time of Limestone Calcined Clay Cement (LC3). Solids. 2023; 4(1):24-38. https://doi.org/10.3390/solids4010003
Chicago/Turabian StyleZhao, Yuhan, and Yingda Zhang. 2023. "A Review on Hydration Process and Setting Time of Limestone Calcined Clay Cement (LC3)" Solids 4, no. 1: 24-38. https://doi.org/10.3390/solids4010003