Geomechanical Modeling of the Northern Katpar Deposit (Kazakhstan): Assessing the Impact of Rock Mass Disturbance on Stability Safety Factor
Abstract
1. Introduction
2. Materials and Methods
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Narimani, S.; Davarpanah, S.M.; Bar, N.; Török, Á.; Vásárhelyi, B. Geological Strength Index Relationships with the Q-System and Q-Slope. Sustainability 2023, 15, 11233. [Google Scholar] [CrossRef]
- Wei, Z.; Yin, G.; Wan, L.; Shen, L. Case history of controlling a landslide at Panluo open-pit mine in China. Environ. Geol. 2008, 54, 699–709. [Google Scholar] [CrossRef]
- Dryzhenko, A.; Moldabayev, S.; Shustov, A.; Adamchuk, A.; Sarybayev, N. Open pit mining technology of steeply dipping mineral occurrences by steeply inclined sublayers. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference, Albena, Bulgaria, 29 June–5 July 2017; Volume 17, pp. 599–605. [Google Scholar] [CrossRef]
- Garzón-Roca, J.; Torrijo, F.J.; Rodríguez-Peces, M.J.; Ramos, A. Geological Strength Index quantitative estimation of flysch rock masses from on-field geomechanical data based on AI tools. Bull. Eng. Geol. Environ. 2025, 84, 348. [Google Scholar] [CrossRef]
- Syedina, S.A. Geomechanical Support for the Stability of Pit Walls During Deepening. Ph.D. Thesis, D.A. Kunaev Institute of Mining, Satbayev University, Almaty, Kazakhstan, 4 May 2019. [Google Scholar]
- Tsirel, S.V.; Pavlovich, A.A. Problems and development directions of geomechanical justification methods for pit wall parameters. Min. J. 2019, 2017, 39–45. (In Russian) [Google Scholar]
- Luo, H.; Zhou, W.; Jiskani, I.M.; Wang, Z. Analyzing characteristics of particulate matter pollution in open-pit coal mines: Implications for green mining. Energies 2021, 14, 2680. [Google Scholar] [CrossRef]
- Somodi, G.; Bar, N.; Török, Á.; Vásárhelyi, B. Empirical relationship between the Geological Strength Index (GSI) and rock mass quality (Q-system) in granite and sedimentary rocks. Bull. Eng. Geol. Environ. 2025, 84, 264. [Google Scholar] [CrossRef]
- Bozhanova, V.; Korenyuk, P.; Lozovskyi, O.; Belous-Sergeeva, S.; Bielienkova, O.; Koval, V. Green enterprise logistics management system in circular economy. Int. J. Math. Eng. Manag. Sci. 2022, 7, 350–363. [Google Scholar] [CrossRef]
- Kovrov, A.S. Stability of Pit Walls in a Complex-Structured Soft Rock Mass. Ph.D. Thesis, National Mining University, Dnipro, Ukraine, 2013. (In Russian). [Google Scholar]
- Yang, Z.; Gao, Q.; Li, M.; Zhang, G. Stability analysis and design of open pit mine slope in China. Electron. J. Geotech. Eng. 2014, 19, 10247–10266. [Google Scholar]
- Rysbekov, K.; Bitimbayev, M.; Akhmetkanov, D.; Yelemessov, K.; Barmenshinova, M.; Toktarov, A.; Baskanbayeva, D. Substantiation of mining systems for steeply dipping low-thickness ore bodies with controlled continuous stope extraction. Min. Miner. Depos. 2022, 16, 64–72. [Google Scholar] [CrossRef]
- Yanuardian, A.R.; Hermawan, K.; Martireni, A.T.; Tohari, A. The influence of discontinuities on rock mass quality and overall stability of andesite rock slope in West Java. Rudarsko-Geološko-Naftni Zbornik 2020, 35, 67–76. [Google Scholar] [CrossRef]
- Akhmatnurov, D.R.; Zamaliyev, N.M.; Demin, V.F.; Ganyukov, N.Y. Modeling the stability of mining excavations. Min. J. Kazakhstan 2025, 2, 18–23. [Google Scholar] [CrossRef]
- Pysmennyi, S.; Fedko, M.; Chukharev, S.; Rysbekov, K.; Kyelgyenbai, K.; Anastasov, D. Technology for mining of complex-structured bodies of stable and unstable ores. IOP Conf. Ser. Earth Environ. Sci. 2022, 970, 012040. [Google Scholar] [CrossRef]
- Kalybekov, T.; Rysbekov, K.; Sandibekov, M.; Bi, Y.L.; Toktarov, A. Substantiation of the intensified dump reclamation in the process of field development. Min. Miner. Depos. 2020, 14, 59–65. [Google Scholar] [CrossRef]
- Panin, V.I.; Rybin, V.V.; Konstantinov, K.N. New information on the physical properties of ores and rocks of the Kola Peninsula deposits and its use in mining development projects in the region. In Proceedings of the Russian Scientific-Technical Conference with International Participation, Organizing Committee, Larnaca, Cyprus, 24–27 September 2013; Monitoring of Natural and Technogenic Processes in Mining. pp. 155–160. (In Russian). [Google Scholar]
- Gholamnejad, J.; Azimi, A.; Lotfian, R.; Kasmaeeyazdi, S.; Tinti, F. The application of a stockpile stochastic model into long-term open pit mine production scheduling to improve the feed grade for the processing plant. Rudarsko-Geološko-Naftni Zbornik 2020, 35, 115–129. [Google Scholar] [CrossRef]
- Hussan, B.; Takhanov, D.; Kuzmin, S.; Abdibaitov, S. Research into influence of drilling-and-blasting operations on the stability of the Kusmuryn open-pit sides in the Republic of Kazakhstan. Min. Miner. Depos. 2021, 15, 130–136. [Google Scholar] [CrossRef]
- Melnikov, N.N.; Kozyrev, A.A.; Reshetnyak, S.P.; Kasparyan, E.V.; Rybin, V.V.; Svinin, V.S.; Ryzhkov, A.N. The concept of forming non-working pit walls in deep quarries of the Kola Arctic. Min. J. 2004, 16, 45–50. (In Russian) [Google Scholar]
- Methodological Guidelines for Monitoring Deformations of Pit Walls, Bench Slopes, and Dumps in Open-Pit Mines and Developing Measures to Ensure Their Stability. Approved by the Ministry of Emergency Situations of the Republic of Kazakhstan (Order No. 39 of 28 September 2008). Available online: https://online.zakon.kz/Document/?doc_id=30399772 (accessed on 10 June 2025).
- Krukovskyi, O.; Bulich, Y.; Kurnosov, S.; Yanzhula, O.; Demin, V. Substantiating the parameters for selecting a pillar width to protect permanent mine workings at great depths. IOP Conf. Ser. Earth Environ. Sci. 2022, 970, 012049. [Google Scholar] [CrossRef]
- VNIIMI. Methodological Guidelines for Determining the Inclination Angles of Pit Walls, Bench Slopes and Dumps of Constructed and Operated Open-Pit Mines; VNIIMI: Leningrad, Russia, 1972. [Google Scholar]
- Hussan, B.; Takhanov, D.K.; Oralbay, A.O.; Kuzmin, S.L. Assessing the quality of drilling-and-blasting operations at the open-pit limiting contour. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2021, 6, 42–48. [Google Scholar] [CrossRef]
- Chauhan, V.S.; Sadique, R.; Alam, M.M.; Farooqi, M.A. Development of a Reliable Rock Slope Stability Model Incorporating GSI Classification for Very Weak and Sheared Rock Masses. Artif. Intell. Geosci. 2025, 6, 100158. [Google Scholar] [CrossRef]
- Shustov, O.O.; Haddad, J.S.; Adamchuk, A.A.; Rastsvietaiev, V.O.; Cherniaiev, O.V. Improving the construction of mechanized complexes for reloading points while developing deep open pits. J. Min. Sci. 2019, 55, 946–953. [Google Scholar] [CrossRef]
- Yang, B. Why Engineers Should Not Attempt to Quantify GSI. Geosciences 2022, 12, 417. [Google Scholar] [CrossRef]
- Zhang, G.; Zhu, J.; Chen, C.; Tang, R.; Zhu, S.; Luo, X. Analytical Reliability Evaluation Framework of Three-Dimensional Engineering Slopes. Buildings 2022, 12, 268. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, T.; Li, L.; Bu, J.; Wang, T.; Xiao, P. Assessment of the rock slope stability of Fushun West Open-pit Mine. Arab. J. Geosci. 2021, 14, 1459. [Google Scholar] [CrossRef]
- Belandria, N.; Úcar, R.; Corredor, A.; Hassani, F. Safety factor on rock slopes with tensile cracks using numerical and limit equilibrium models. Geotech. Geol. Eng. 2021, 39, 2287–2300. [Google Scholar] [CrossRef]
- Congress, S.S.C.; Puppala, A.J.; Kumar, P.; Banerjee, A.; Patil, U. Methodology for resloping of rock slope using 3D models from UAV-CRP technology. J. Geotech. Geoenvironmental Eng. 2021, 147, 05021005. [Google Scholar] [CrossRef]
- Theocharis, A.I.; Zevgolis, I.E.; Deliveris, A.V.; Karametou, R.; Koukouzas, N.C. From climate conditions to the numerical slope stability analysis of surface coal mines. Appl. Sci. 2022, 12, 1538. [Google Scholar] [CrossRef]
- Kavvadas, M.; Roumpos, C.; Servou, A.; Paraskevis, N. Geotechnical issues in decommissioning surface lignite mines—The case of Amyntaion Mine in Greece. Mining 2022, 2, 278–296. [Google Scholar] [CrossRef]
- Krukovskyi, O.; Krukovska, V. Numerical simulation of the stress state of layered gas-bearing rocks in the bottom of mine working. E3S Web Conf. 2019, 109, 00043. [Google Scholar] [CrossRef]
- Akhmatnurov, D.; Zamaliyev, N.; Mussin, R.; Demin, V.; Ganyukov, N.; Zagórski, K.; Skrzypkowski, K.; Korzeniowski, W.; Stasica, J. Optimization of reinforcement schemes for stabilizing the working floor in coal mines based on an assessment of its deformation state. Materials 2025, 18, 3094. [Google Scholar] [CrossRef]
- Lewińska, P.; Matuła, R.; Dyczko, A. Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave) as a means of improving monitoring of spoil tip stability. In Baltic Geodetic Congress; IEEE: Piscataway, NJ, USA, 2017; pp. 232–236. [Google Scholar] [CrossRef]
- Karakul, H. Saturation effect on the Geological Strength Index (GSI) for rock mass characterization. Environ. Earth Sci. 2025, 84, 509. [Google Scholar] [CrossRef]
- Jele, R.; Dunn, M.J. Economic significance of geotechnical uncertainties in open pit mines. In Proceedings of the First International Conference on Mining Geomechanical Risk (MGR 2019), Perth, Australia, 9–11 April 2019; Australian Centre for Geomechanics: Perth, Australia, 2019; pp. 111–126. [Google Scholar] [CrossRef]
- Spencer, E. A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces. Geotechnique 1967, 17, 11–26. [Google Scholar] [CrossRef]
- Fellenius, W.K.A. Erdstatistische Berechnungen mit Reibung und Kohäsion (Swedish Method of Slices); Ernst & Sohn: Berlin, Germany, 1927. [Google Scholar]
- Hoek, E.; Brown, E.T. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Sdvyzhkova, O.; Moldabayev, S.; Babets, D.; Bascetin, A.; Asylkhanova, G.; Nurmanova, A.; Prykhodko, V. Numerical modelling of the pit wall stability while optimizing its boundaries to ensure the ore mining completeness. Min. Miner. Depos. 2024, 18, 1–10. [Google Scholar] [CrossRef]
- Tolovkhan, B.; Smagulova, A.; Khuangan, N.; Asainov, S.; Issagulov, S.; Kaumetova, D.; Khussan, B.; Sandibekov, M. Studying rock mass jointing to provide bench stability while Northern Katpar deposit developing in Kazakhstan. Min. Miner. Depos. 2023, 17, 99–111. [Google Scholar] [CrossRef]
- Zerradi, A.; El Fekhaoui, M.; Aouad, A. Application of deterministic block theory for slope stability design in an open-pit mine. Min. Miner. Depos. 2021, 17, 53–61. [Google Scholar] [CrossRef]











| Rock Type | Strength Properties | Stiffness | Failure Range | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Compressive Strength | GSI | Mi | D | Poisson’s Ratio | Young’s Modulus, MPa | Unit Weight, MN/m3 | |||
| Shale | 35 | 40 | 50 | 6 | 60 | 0.7 | 0.23 | 7600 | 0.026 |
| Aleurolite | 95.8 | 40 | 50 | 7 | 60 | 0.7 | 0.23 | 87,470 | 0.027 |
| Sandstone | 107.4 | 40 | 50 | 17 | 60 | 0.7 | 0.24 | 71,590 | 0.027 |
| Metasomatite | 67.8 | 40 | 50 | 20 | 60 | 0.7 | 0.24 | 68,080 | 0.028 |
| Lab Sample Number from Geological Wells | VKR 4-21 | VKR 5-21 | VKR 11-21 | Average Value | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Lateral pressure, MPa | 0.1 | 0.2 | 0.3 | 0. | 0.2 | 0.3 | 0.1 | 0.2 | 0.3 | |
| Poisson’s ratio | 0 | 0.4 | 0.29 | 0.07 | 0.51 | 0.36 | 0 | 0.17 | 0.17 | 0.22 |
| Internal friction angle | 22 | 22 | 22 | 3 | 3 | 3 | 1 | 1 | 1 | 8.67 |
| Cohesion, MPa | 0.02 | 0.02 | 0.02 | 0.06 | 0.06 | 0.06 | 0.03 | 0.03 | 0.03 | 0.04 |
| Deformation modulus under load, E, MPa | 1.27 | 2.28 | 4.65 | 0.86 | 1.36 | 1.63 | 0.65 | 1.58 | 0.65 | 1.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmatnurov, D.; Zamaliyev, N.; Mussin, R.; Demin, V.; Tolovkhan, B.; Ganyukov, N.; Skrzypkowski, K.; Korzeniowski, W.; Stasica, J.; Rak, Z. Geomechanical Modeling of the Northern Katpar Deposit (Kazakhstan): Assessing the Impact of Rock Mass Disturbance on Stability Safety Factor. Mining 2025, 5, 73. https://doi.org/10.3390/mining5040073
Akhmatnurov D, Zamaliyev N, Mussin R, Demin V, Tolovkhan B, Ganyukov N, Skrzypkowski K, Korzeniowski W, Stasica J, Rak Z. Geomechanical Modeling of the Northern Katpar Deposit (Kazakhstan): Assessing the Impact of Rock Mass Disturbance on Stability Safety Factor. Mining. 2025; 5(4):73. https://doi.org/10.3390/mining5040073
Chicago/Turabian StyleAkhmatnurov, Denis, Nail Zamaliyev, Ravil Mussin, Vladimir Demin, Baurzhan Tolovkhan, Nikita Ganyukov, Krzysztof Skrzypkowski, Waldemar Korzeniowski, Jerzy Stasica, and Zbigniew Rak. 2025. "Geomechanical Modeling of the Northern Katpar Deposit (Kazakhstan): Assessing the Impact of Rock Mass Disturbance on Stability Safety Factor" Mining 5, no. 4: 73. https://doi.org/10.3390/mining5040073
APA StyleAkhmatnurov, D., Zamaliyev, N., Mussin, R., Demin, V., Tolovkhan, B., Ganyukov, N., Skrzypkowski, K., Korzeniowski, W., Stasica, J., & Rak, Z. (2025). Geomechanical Modeling of the Northern Katpar Deposit (Kazakhstan): Assessing the Impact of Rock Mass Disturbance on Stability Safety Factor. Mining, 5(4), 73. https://doi.org/10.3390/mining5040073

