Revealing Factors Influencing mHealth Adoption Intention Among Generation Y: An Empirical Study Using SEM-ANN-IPMA Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Unified Theory of Acceptance and Use of Technology-UTAUT
2.2. Health Belief Model (HBM)
2.3. The Integrated Model
2.4. Prior mHealth Related Studies
2.5. Hypotheses Development
2.5.1. Performance Expectancy (PE)
2.5.2. Effort Expectancy (EE)
2.5.3. Social Influence (SI)
2.5.4. Facilitating Conditions (FC)
2.5.5. Perceived Susceptibility (PSU)
2.5.6. Perceived Severity (PS)
2.5.7. Health Benefit (HB)
2.5.8. Health Motivation (HM)
3. Research Method
3.1. The Measures
3.2. Pre-Test
3.3. The Study Settings, Target Population, and Sampling
3.4. Data Collection Procedure
3.5. Common Method Bias (CMB)
3.6. Data Analysis
3.6.1. Linear Analysis (SEM-PLS-IPMA)
3.6.2. Non-Linear Analysis (ANN—Artificial Neural Network)
4. Empirical Results
4.1. Demographic Results
4.2. Measurement Model Evaluation
4.3. Structural Model Analysis
4.4. IPMA Findings
4.5. Neural Network Results
4.6. Ranking and Comparison Between SEM and ANN
5. Discussion
6. Implications of the Study
6.1. Theoretical Contributions
6.2. Practical Contributions
7. Limitations and Future Recommendations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, E.; Han, S. Determinants of adoption of mobile health services. Online Inf. Rev. 2015, 39, 556–573. [Google Scholar] [CrossRef]
- Vrontis, D.; El Chaarani, H.; El Abiad, Z.; El Nemar, S.; Haddad, A.Y. Managerial innovative capabilities, competitive advantage, and performance of healthcare sector during COVID-19 pandemic period. Foresight 2022, 24, 504–526. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hasan, N.; Zhang, J.; Moral, I.H.; Hossain, G.M.S. Women’s adoption of wearable health-monitoring technology: Empirical evidence from a least developed country. Aslib J. Inf. Manag. 2024, 76. [Google Scholar] [CrossRef]
- Pal, S.; Biswas, B.; Gupta, R.; Kumar, A.; Gupta, S. Exploring the factors that affect user experience in mobile-health applications: A text-mining and machine-learning approach. J. Bus. Res. 2023, 156, 113484. [Google Scholar] [CrossRef] [PubMed]
- International Telecommunication Union. Measuring Digital Development: Facts and Figures 2021; International Telecommunication Union: Geneva, Switzerland, 2021; Available online: https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx (accessed on 8 January 2025).
- Edo, O.C.; Ang, D.; Etu, E.E.; Tenebe, I.; Edo, S.; Diekola, O.A. Why do healthcare workers adopt digital health technologies? A cross-sectional study integrating the TAM and UTAUT model in a developing economy. Int. J. Inf. Manag. Data Insights 2023, 3, 100186. [Google Scholar] [CrossRef]
- Sampa, M.B.; Rahman, M.M.; Ahmmed, R.; Ahmed, M.R.; Zaman, M.U.; Akter, S.; Hasan, M.M.; Faruque, F.; Saha, S.; Bhuiyan, M.N.; et al. Redesigning Portable Health Clinic Platform as a Remote Healthcare System to Tackle COVID-19 Pandemic Situation in Unreached Communities. Int. J. Environ. Res. Public Health 2020, 17, 4709. [Google Scholar] [CrossRef]
- Alam, M.Z.; Hu, W.; Kaium, M.A.; Hoque, M.R.; Alam, M.M.D. Understanding the determinants of mHealth apps adoption in Bangladesh: A SEM-Neural network approach. Technol. Soc. 2020, 61, 101255. [Google Scholar] [CrossRef]
- Hossain, M. Digital Bangladesh Vision and the Current State of Digitalization. In Digital Transformation and Economic Development in Bangladesh: Rethinking Digitalization Strategies for Leapfrogging; Springer Nature Singapore: Singapore, 2022; pp. 29–56. [Google Scholar]
- Khan, M.M.H.; Grübner, O.; Krämer, A. Frequently Used Healthcare Services in Urban Slums of Dhaka and Adjacent Rural Areas and Their Determinants. J. Public Health 2012, 34, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Windasari, N.A.; Kusumawati, N.; Larasati, N.; Amelia, R.P. Digital-only banking experience: Insights from Gen Y and Gen Z. J. Innov. Knowl. 2022, 7, 100170. [Google Scholar] [CrossRef]
- Duh, H.I. Childhood family experiences and young Generation Y money attitudes and materialism. Personal. Individ. Differ. 2016, 95, 134–139. [Google Scholar] [CrossRef]
- Walle, A.D.; Ferede, T.A.; Shibabaw, A.A.; Wubante, S.M.; Guadie, H.A.; Yehula, C.M.; Demsash, A.W. Willingness of diabetes mellitus patients to use mHealth applications and its associated factors for self-care management in a low-income country: An input for digital health implementation. BMJ Health Care Inform. 2023, 30, e100186. [Google Scholar] [CrossRef] [PubMed]
- Dolničar, V.; Petrovčič, A.; Škafar, M.; Laznik, J.; Prevodnik, K.; Hvalič-Touzery, S. Determinants of the intention to use mHealth in the future: Evidence from an intervention study of patients with chronic diseases in Slovenia. Int. J. Med. Inform. 2024, 190, 105537. [Google Scholar] [CrossRef] [PubMed]
- Aranha, M.; Shemie, J.; James, K.; Deasy, C.; Heavin, C. Behavioural intention of mobile health adoption: A study of older adults presenting to the emergency department. Smart Health 2024, 31, 100435. [Google Scholar] [CrossRef]
- Wu, X.; Liu, C.; Wang, L.; Bilal, M. Internet of Things-enabled real-time health monitoring system using deep learning. Neural Comput. Appl. 2023, 35, 14565–14576. [Google Scholar] [CrossRef]
- Yang, M.; Al Mamun, A.; Gao, J.; Rahman, M.K.; Salameh, A.A.; Alam, S.S. Predicting mHealth acceptance from the perspective of unified theory of acceptance and use of technology. Sci. Rep. 2024, 14, 339. [Google Scholar] [CrossRef]
- Gumasing, M.J.J.; Carrillo, G.Z.D.V.; De Guzman, M.A.A.; Suñga, C.A.R.; Tan, S.Y.B.; Mascariola, M.M.; Ong, A.K.S. Investigating user-centric factors influencing smartwatch adoption and user experience in the Philippines. Sustainability 2024, 16, 5401. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Kijsanayotin, B.; Pannarunothai, S.; Speedie, S.M. Factors influencing health information technology adoption in Thailand’s community health centers: Applying the UTAUT model. Int. J. Med. Inform. 2009, 78, 404–416. [Google Scholar] [CrossRef]
- Kim, Y.; Park, Y.-J.; Choi, J.; Yeon, J. An empirical study on the adoption of “Fintech” service: Focused on mobile payment services. Adv. Sci. Technol. Lett. 2015, 114, 136–140. [Google Scholar]
- Mahfuz, M.A.; Khanam, L.; Mutharasu, S.A. The influence of website quality on m-banking services adoption in Bangladesh: Applying the UTAUT2 model using PLS. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT); IEEE: Piscataway, NJ, USA, 2016; pp. 2329–2335. [Google Scholar] [CrossRef]
- Yuen, K.F.; Chua, J.Y.; Li, X.; Wang, X. The determinants of users’ intention to adopt telehealth: Health belief, perceived value and self-determination perspectives. J. Retail. Consum. Serv. 2023, 73, 103346. [Google Scholar] [CrossRef]
- Akinnuwesi, B.A.; Uzoka, F.M.E.; Okwundu, O.S.; Fashoto, G. Exploring biometric technology adoption in a developing country context using the modified UTAUT. Int. J. Bus. Inf. Syst. 2016, 23, 482–521. [Google Scholar] [CrossRef]
- Faqih, K.M.; Jaradat, M.I.R.M. Integrating TTF and UTAUT2 theories to investigate the adoption of augmented reality technology in education: Perspective from a developing country. Technol. Soc. 2021, 67, 101787. [Google Scholar] [CrossRef]
- El-Masri, M.; Tarhini, A. Factors affecting the adoption of e-learning systems in Qatar and USA: Extending the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2). Educ. Technol. Res. Dev. 2017, 65, 743–763. [Google Scholar] [CrossRef]
- Al Halbusi, H.; Al-Sulaiti, K.; Abdelfattah, F.; Ahmad, A.B.; Hassan, S. Understanding consumers’ adoption of e-pharmacy in Qatar: Applying the unified theory of acceptance and use of technology. J. Sci. Technol. Policy Manag. 2024. [Google Scholar] [CrossRef]
- Addy, M.N.; Addo, E.T.; Kwofie, T.E.; Yartey, J.E. Predicting the adoption of e-procurement in construction project delivery in Sub-Saharan Africa: An application of UTAUT2. Constr. Innov. 2023, 23, 1038–1053. [Google Scholar] [CrossRef]
- Pai, R.R.; Alathur, S. Determinants of individuals’ intention to use mobile health: Insights from India. Transform. Gov. People Process Policy 2019, 13, 306–326. [Google Scholar] [CrossRef]
- Glanz, K.; Burke, L.E.; Rimer, B.K. Health behavior theories. In Philosophies and Theories for Advanced Nursing Practice; Jones & Bartlett Learning: Burlington, MA, USA, 2011; pp. 247–270. [Google Scholar]
- Alhemimah, A. Understanding tourists’ attitude toward online travel health information during and post-COVID-19: A health belief model application. Tour. Hosp. Res. 2024, 24, 257–271. [Google Scholar] [CrossRef]
- Walrave, M.; Waeterloos, C.; Ponnet, K. Adoption of a contact tracing app for containing COVID-19: A health belief model approach. JMIR Public Health Surveill. 2020, 6, e20572. [Google Scholar] [CrossRef]
- Wang, M.; Huang, L.; Pan, C.; Bai, L. Adopt proper food-handling intention: An application of the health belief model. Food Control 2021, 127, 108169. [Google Scholar] [CrossRef]
- Overdijkink, S.B.; Velu, A.V.; Rosman, A.N.; Van Beukering, M.D.; Kok, M.; Steegers-Theunissen, R.P. The usability and effectiveness of mobile health technology–based lifestyle and medical intervention apps supporting health care during pregnancy: Systematic review. JMIR Mhealth Uhealth 2018, 6, e8834. [Google Scholar] [CrossRef]
- Greiwe, J.; Nyenhuis, S.M. Wearable technology and how this can be implemented into clinical practice. Curr. Allergy Asthma Rep. 2020, 20, 36. [Google Scholar] [CrossRef]
- Han, H.; Yoon, H.J. Hotel customers’ environmentally responsible behavioral intention: Impact of key constructs on decision in green consumerism. Int. J. Hosp. Manag. 2015, 45, 22–33. [Google Scholar] [CrossRef]
- Jackson, J.D.; Mun, Y.Y.; Park, J.S. An empirical test of three mediation models for the relationship between personal innovativeness and user acceptance of technology. Inf. Manag. 2013, 50, 154–161. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, R.; Luan, J.; Zhu, M. Factors affecting physicians using mobile health applications: An empirical study. BMC Health Serv. Res. 2022, 22, 24. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.S.; Islam, M.A.; Sobhani, F.A.; Hassan, M.M.; Hassan, M.A. Patients’ intention to adopt fintech services: A study on Bangladesh healthcare sector. Int. J. Environ. Res. Public Health 2022, 19, 15302. [Google Scholar] [CrossRef]
- Lu, H.H.; Lin, W.S.; Raphael, C.; Wen, M.J. A study investigating user adoptive behavior and the continuance intention to use mobile health applications during the COVID-19 pandemic era: Evidence from telemedicine applications utilized in Indonesia. Asia Pac. Manag. Rev. 2023, 28, 52–59. [Google Scholar] [CrossRef]
- Miao, R.; Wu, Q.; Wang, Z.; Zhang, X.; Song, Y.; Zhang, H.; Jiang, Z. Factors that influence users’ adoption intention of mobile health: A structural equation modeling approach. Int. J. Prod. Res. 2017, 55, 5801–5815. [Google Scholar] [CrossRef]
- Yan, M.; Filieri, R.; Raguseo, E.; Gorton, M. Mobile apps for healthy living: Factors influencing continuance intention for health apps. Technol. Forecast. Soc. Change 2021, 166, 120644. [Google Scholar] [CrossRef]
- Saheb, T. An empirical investigation of the adoption of mobile health applications: Integrating big data and social media services. Health Technol. 2020, 10, 1063–1077. [Google Scholar] [CrossRef]
- Hasan, N.; Bao, Y.; Chiong, R. A multi-method analytical approach to predicting young adults’ intention to invest in mHealth during the COVID-19 pandemic. Telemat. Inform. 2022, 68, 101765. [Google Scholar] [CrossRef]
- Khashan, M.A.; Alasker, T.H.; Ghonim, M.A.; Elsotouhy, M.M. Understanding physicians’ adoption intentions to use Electronic Health Record (EHR) systems in developing countries: An extended TRAM approach. Mark. Intell. Plan. 2024, 43, 1–27. [Google Scholar] [CrossRef]
- Segars, A.H.; Grover, V. Strategic information systems planning success: An investigation of the construct and its measurement. MIS Q. 1998, 22, 139–163. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Luo, J.; Ahmad, S.F.; Alyaemeni, A.; Ou, Y.; Irshad, M.; Alyafi-Alzahri, R.; Unnisa, S.T. Role of perceived ease of use, usefulness, and financial strength on the adoption of health information systems: The moderating role of hospital size. Humanit. Soc. Sci. Commun. 2024, 11, 516. [Google Scholar] [CrossRef]
- Cherif, E.; Mzoughi, M. Electronic health record adopters: A typology based on patients’ privacy concerns and perceived benefits. Public Health 2022, 207, 46–53. [Google Scholar] [CrossRef]
- Chan, Y.K.; Tang, Y.M.; Teng, L. A comparative analysis of digital health usage intentions towards the adoption of virtual reality in telerehabilitation. Int. J. Med. Inform. 2023, 174, 105042. [Google Scholar] [CrossRef]
- Xiong, F.; Shen, W.; Chen, H.; Pan, S.; Wang, X.; Yan, Z. Exploiting implicit influence from information propagation for social recommendation. IEEE Trans. Cybern. 2019, 50, 4186–4199. [Google Scholar] [CrossRef]
- Isaac, J.T.; Sherali, Z. Secure mobile payment systems. IT Prof. 2014, 16, 36–43. [Google Scholar] [CrossRef]
- Cao, J.; Feng, H.; Lim, Y.; Kodama, K.; Zhang, S. How social influence promotes the adoption of mobile health among young adults in China: A systematic analysis of trust, health consciousness, and user experience. Behav. Sci. 2024, 14, 498–521. [Google Scholar] [CrossRef]
- Janz, N.K.; Becker, M.H. The health belief model: A decade later. Health Educ. Q. 1984, 11, 1–47. [Google Scholar] [CrossRef]
- Zhao, Y.; Ni, Q.; Zhou, R. What factors influence the mobile health service adoption? A meta-analysis and the moderating role of age. Int. J. Inf. Manag. 2018, 43, 342–350. [Google Scholar] [CrossRef]
- Deng, Z.; Hong, Z.; Ren, C.; Zhang, W.; Xiang, F. What predicts patients’ adoption intention toward mHealth services in China: Empirical study. JMIR mHealth uHealth 2018, 6, e9316. [Google Scholar] [CrossRef]
- Sutarno, M. The interaction of perceived susceptibility with predictors of mHealth technology usage. Am. J. Health Behav. 2022, 46, 716–728. [Google Scholar] [CrossRef]
- Lu, W.; Wei, D.; Li, C.; Gao, P.; Ma, R.; Zhai, Y.; Wang, C. How to promote telemedicine patient adoption behavior for greener healthcare? J. Clean. Prod. 2024, 434, 139884. [Google Scholar] [CrossRef]
- Tajeri Moghadam, M.; Zobeidi, T.; Sieber, S.; Löhr, K. Investigating the adoption of precautionary behaviors among young rural adults in South Iran during COVID-19. Front. Public Health 2022, 10, 787929. [Google Scholar] [CrossRef] [PubMed]
- Kumari, N.; Biswas, A. Does M-payment service quality and perceived value co-creation participation magnify M-payment continuance usage intention? Moderation of usefulness and severity. Int. J. Bank Mark. 2023, 41, 1330–1359. [Google Scholar] [CrossRef]
- Shao, H.; Liu, C.; Tang, L.; Wang, B.; Xie, H.; Zhang, Y. Factors Influencing the Behavioral Intentions and Use Behaviors of Telemedicine in Patients with Diabetes: Web-Based Survey Study. JMIR Human Factors 2023, 10, e46624. [Google Scholar] [CrossRef]
- An, H.Y.; Chen, W.; Wang, C.W.; Yang, H.F.; Huang, W.T.; Fan, S.Y. The relationships between physical activity and life satisfaction and happiness among young, middle-aged, and older adults. Int. J. Environ. Res. Public Health 2020, 17, 4817. [Google Scholar] [CrossRef]
- Palos-Sanchez, P.R.; Saura, J.R.; Rios Martin, M.A.; Aguayo-Camacho, M. Toward a better understanding of the intention to use mHealth apps: Exploratory study. JMIR Mhealth Uhealth 2021, 9, 220–235. [Google Scholar] [CrossRef]
- Tandon, U.; Ertz, M.; Shashi. Continued Intention of mHealth Care Applications among the Elderly: An Enabler and Inhibitor Perspective. Int. J. Hum. Comput. Interact. 2024, 40, 5026–5041. [Google Scholar] [CrossRef]
- Hsieh, P.J. Determinants of physicians’ intention to use AI-assisted diagnosis: An integrated readiness perspective. Comput. Hum. Behav. 2023, 147, 107868. [Google Scholar] [CrossRef]
- Tao, D.; Liu, K. How do self-motivation and social motivation contribute to consumers’ acceptance of m-health services? Health Policy Technol. 2024, 13, 100878. [Google Scholar] [CrossRef]
- Tu, M.; Wu, L.; Wan, H.; Ding, Z.; Guo, Z.; Chen, J. The adoption of QR code mobile payment technology during COVID-19: A social learning perspective. Front. Psychol. 2022, 12, 798199. [Google Scholar] [CrossRef] [PubMed]
- Abdollahzadeh, G.; Sharifzadeh, M.S. Predicting farmers’ intention to use PPE for preventing pesticide adverse effects: An examination of the health belief model (HBM). J. Saudi Soc. Agric. Sci. 2021, 20, 40–47. [Google Scholar]
- Kabir, M.H.; Sato, M.; Habbiba, U.; Yousuf, T.B. Assessment of urban disaster resilience in Dhaka North City Corporation (DNCC), Bangladesh. Procedia Eng. 2018, 212, 1107–1114. [Google Scholar] [CrossRef]
- Zheng, G.-W.; Rahman, M.K.; Ashraf, S.F.; Rahman, M.M.; Khan, A.; Várallyai, L. Organic foods purchase behavior among Generation Y of Bangladesh: The moderation effect of trust and price consciousness. Foods 2021, 10, 2278. [Google Scholar] [CrossRef]
- Alam, S.S.; Ahmed, S.; Kokash, H.A.; Mahmud, M.S.; Sharnali, S.Z. Utility and Hedonic Perception—Customers’ Intention Towards Using of QR Codes in Mobile Payment of Generation Y and Generation Z. Electron. Commer. Res. Appl. 2024, 65, 1–13. [Google Scholar] [CrossRef]
- Lee, H.; Chen, Y.J.; Sideris, J.; Watson, L.R.; Crais, E.R.; Baranek, G.T. Sensory features of young children from a large community sample: Latent factor structures of the Sensory Experiences Questionnaire (Version 2.1, Short Form). Am. J. Occup. Ther. 2022, 76, 7603205140. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; Organ, D.W. Self-reports in organizational research: Problems and prospects. J. Manag. 1986, 12, 531–544. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Dubey, B.; Kartikeyan, B.; Subbiah, M.M. Rational polynomial coefficients modeling and bias correction by using iterative polynomial augmentation. J. Indian Soc. Remote Sens. 2019, 47, 165–175. [Google Scholar] [CrossRef]
- Kock, N. Common method bias in PLS-SEM: A full collinearity assessment approach. Int. J. e-Collab. 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Mena, J.A. An assessment of the use of partial least squares structural equation modeling in marketing research. J. Acad. Mark. Sci. 2012, 40, 414–433. [Google Scholar] [CrossRef]
- Alam, M.M.D.; Alam, M.Z.; Rahman, S.A.; Taghizadeh, S.K. Factors Influencing mHealth Adoption and Its Impact on Mental Well-Being during COVID-19 Pandemic: A SEM-ANN Approach. J. Biomed. Inform. 2021, 116, 103722. [Google Scholar] [CrossRef] [PubMed]
- Najmi, A.; Kanapathy, K.; Aziz, A.A. Understanding Consumer Participation in Managing ICT Waste: Findings from Two-Staged Structural Equation Modeling–Artificial Neural Network Approach. Environ. Sci. Pollut. Res. 2021, 28, 14782–14796. [Google Scholar] [CrossRef]
- Hayat, N.; Salameh, A.A.; Mamun, A.A.; Helmi Ali, M.; Makhbul, Z.K.M. Tax compliance behavior among Malaysian taxpayers: A dual-stage PLS-SEM and ANN analysis. SAGE Open 2022, 12, 21582440221127190. [Google Scholar] [CrossRef]
- Rahman, A.; Ai Ping, T.; Mubeen, S.K.; Mahmud, I.; Abbasi, G.A. What influences home gardeners’ food waste composting intention in high-rise buildings in Dhaka megacity, Bangladesh? An integrated model of TPB and DMP. Sustainability 2022, 14, 9400. [Google Scholar] [CrossRef]
- Abbasi, G.A.; Tiew, L.Y.; Tang, J.; Goh, Y.N.; Thurasamy, R. The adoption of cryptocurrency as a disruptive force: Deep learning-based dual-stage structural equation modeling and artificial neural network analysis. PLoS ONE 2021, 16, e0247582. [Google Scholar] [CrossRef]
- Mahmud, I.; Sultana, S.; Rahman, A.; Ramayah, T.; Cheng Ling, T. E-waste recycling intention paradigm of small and medium electronics store managers in Bangladesh: An S–O–R perspective. Waste Manag. Res. 2020, 38, 1438–1449. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Ramayah, T.; Samat, N.; Lo, M.C. Market orientation, service quality and organizational performance in service organizations in Malaysia. Asia-Pac. J. Bus. Adm. 2011, 3, 8–27. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Ringle, C.M.; Sarstedt, M. Gain more insight from your PLS-SEM results: The importance-performance map analysis. Ind. Manag. Data Syst. 2016, 116, 1865–1886. [Google Scholar] [CrossRef]
- Khayer, A.; Talukder, M.S.; Bao, Y.; Hossain, M.N. Application-based mobile payment systems: Continuance intention and intention to recommend. Int. J. Mob. Commun. 2023, 21, 19–53. [Google Scholar] [CrossRef]
- Cheng, Y.; Sharma, S.; Sharma, P.; Kulathunga, K.M.M.C.B. Role of personalization in continuous use intention of mobile news apps in India: Extending the UTAUT2 model. Information 2020, 11, 33. [Google Scholar] [CrossRef]
- Haque, M.R.; Rubya, S. An overview of chatbot-based mobile mental health apps: Insights from app description and user reviews. JMIR Mhealth Uhealth 2023, 11, e44838. [Google Scholar] [CrossRef]
- Hamid, K.; Ibrar, M.; Delshadi, A.M.; Hussain, M.; Iqbal, M.W.; Hameed, A.; Noor, M. ML-based Meta-Model Usability Evaluation of Mobile Medical Apps. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 29–37. [Google Scholar] [CrossRef]
- Islam, M.N.; Mim, S.T.; Tasfia, T.; Hossain, M.M. Enhancing patient treatment through automation: The development of an efficient scribe and prescribe system. Inform. Med. Unlocked 2024, 45, 101456. [Google Scholar] [CrossRef]
- Akdim, K.; Casaló, L.V.; Flavián, C. The role of utilitarian and hedonic aspects in the continuance intention to use social mobile apps. J. Retail. Consum. Serv. 2022, 66, 102888. [Google Scholar] [CrossRef]
- Vidal-Silva, C.; Sánchez-Ortiz, A.; Serrano-Malebrán, J.; Arriagada, V.; Flores, M.; Godoy, M.; Vargas, C. Social influence, performance expectancy, and price value as determinants of telemedicine services acceptance in Chile. Heliyon 2024, 10, e27067. [Google Scholar] [CrossRef] [PubMed]
- Martinez, B.M.; McAndrews, L.E. Do you take…? The effect of mobile payment solutions on use intention: An application of UTAUT2. J. Mark. Anal. 2023, 11, 458–469. [Google Scholar] [CrossRef]
- Migliore, G.; Wagner, R.; Cechella, F.S.; Liébana-Cabanillas, F. Antecedents to the adoption of mobile payment in China and Italy: An integration of UTAUT2 and innovation resistance theory. Inf. Syst. Front. 2022, 24, 2099–2122. [Google Scholar] [CrossRef] [PubMed]
- Hatteberg, S.J.; Kollath-Cattano, C. Applying the Health Belief Model to examine college students’ early-stage adoption of non-pharmaceutical interventions in response to COVID-19. J. Am. Coll. Health 2024, 72, 340–345. [Google Scholar] [CrossRef]
- Hesse-Biber, S. Qualitative approaches to mixed methods practice. Qual. Inq. 2010, 16, 455–468. [Google Scholar] [CrossRef]
No. | Source/Year | Country | Sample/Size | Theory | DV | IV |
---|---|---|---|---|---|---|
1 | [41] | India | Individual (409) | TAM and HBM | Intention to use | MSEE; PI; SN; HC; PU |
2 | [38] | China | Physicians (418) | UTAUT2 | Usage behavior | PE; EE; SI; AL; FC; HB; CT; ORT; BI |
3 | [15] | Ireland | Older citizen (119) | UTAUT | Intention to use | SE; P/C; ED; SHS; PVC, PE, EE, SI, AGE |
4 | [41] | China | Patients (519) | TAM | Adoption intention | PEOU; PU; TF; SN; NE; CF; EDOS |
5 | [42] | China | App Users (397) | TAM | Continuance intention | PU; PEOU; SN; FE; BCT; SAT |
6 | [8] | Bangladesh | Generation Y (297) | UTAUT2 | Actual usage | PE; EE; SI; FC; PR; PV |
7 | [39] | Bangladesh | Patients (279) | UTAUT | Adoption intention | PEOU; SI; FC; PI, PT |
8 | [40] | Indonesia | Individuals (472) | ECT | Continuance intention | CV; PU, HS, SAT |
9 | [17] | Indonesia | Telegram users (2068) | UTAUT | Adoption | HC; HM; PTA; PCM; PPP; PU, PC |
10 | [3] | Bangladesh | Female (314) | UTAUT2 | Actual usage | PE; EE; SI; FC; PV; HM; HAB; ATT; LS |
11 | [43] | Iran | Female (582) | DOI and ISS | Usage behavior | PQ; PP; PR; PC; DR, US, EOA |
12 | [44] | Bangladesh | Individuals (558) | HBM and ECM | Intention | PS; PSE; HMO; PB; PBAR; PRV; COS; VFM; MIC, MIS |
13 | [18] | Philippines | Individuals (414) | UTAUT2 | Usage behavior | PE; EE; SI; FC; HAB; PV; HM; PP; PUSE. |
14 | [14] | Slovenia | Diabetics patients (103) | N/P | Future intention | IOMU; AOM; UOM; PIOME; |
15 | [13] | Ethiopia | Diabetes mellitus patients (883) | UTAUT2 | Intention | PE; EE; SI; FC; HAB; HM; PV; AGE; GEN |
16 | [23] | Singapore | Singaporean residents (500) | HBM, SDT, and PVT | Intention | PT; CTA; SE; PA, PRT; PVL; EM; PCV |
Variable | Adapted Source | Number of Items |
---|---|---|
Effort expectancy | [42] | III |
Facilitating condition | [8] | IV |
Health benefits | [67] | IV |
Health motivation | [68] | III |
Intention | [50] | IV |
Perceived severity | [32] | III |
Perceived susceptibility | [32] | III |
Performance expectancy | [42] | III |
Social influence | [15] | III |
Variables | Inner VIF |
---|---|
Effort expectancy | 1.075 |
Facilitating condition | 1.297 |
Health benefits | 1.455 |
Health motivation | 1.385 |
Intention | 1.526 |
Perceived severity | 1.329 |
Perceived susceptibility | 1.562 |
Performance expectancy | 1.448 |
Social influence | 1.513 |
Profile | Item | Frequency | Percentage (%) |
---|---|---|---|
Year Born | (1981–1996) | Male (94) Female (126) | 42.8 57.2 |
Academic Qualification | Secondary | 7 | 3.18 |
Intermediate | 19 | 8.70 | |
Diploma | 12 | 5.45 | |
Bachelor/Honors | 114 | 51.8 | |
Masters | 63 | 28.6 | |
PhD | 5 | 2.27 | |
Frequency of Internet usage | Heavy (6+ h per day) | 66 | 30.1 |
Medium (3–6 h per day) | 102 | 45.9 | |
Low (1–3 h per day) | 43 | 19.6 | |
Seldom/No usage (<1 h) | 9 | 4.21 |
Constructs Name | Item | VIF | Loading | CR | rho | AVE |
---|---|---|---|---|---|---|
Performance expectancy | PE1 | 1.861 | 0.861 | 0.901 | 0.835 | 0.752 |
PE2 | 2.058 | 0.877 | ||||
PE3 | 1.936 | 0.863 | ||||
Effort expectancy | EE1 | 2.648 | 0.943 | 0.877 | 0.804 | 0.705 |
EE2 | 2.085 | 0.957 | ||||
EE3 | 2.929 | 0.939 | ||||
Social influence | SE1 | 1.490 | 0.813 | 0.856 | 0.748 | 0.664 |
SE2 | 1.510 | 0.816 | ||||
SE3 | 1.477 | 0.817 | ||||
Facilitating conditions | FC1 | 2.071 | 0.836 | 0.901 | 0.856 | 0.695 |
FC2 | 1.931 | 0.833 | ||||
FC3 | 2.014 | 0.834 | ||||
FC4 | 2.024 | 0.831 | ||||
Perceived susceptibility | PS 1 | 2.500 | 0.910 | 0.924 | 0.888 | 0.802 |
PS2 | 2.836 | 0.915 | ||||
PS3 | 2.125 | 0.862 | ||||
Perceived severity | PSE1 | 3.025 | 0.913 | 0.945 | 0.921 | 0.850 |
PSE2 | 3.470 | 0.939 | ||||
PSE3 | 2.958 | 0.914 | ||||
Health benefits | PB1 | 1.583 | 0.767 | 0.875 | 0.818 | 0.636 |
PB2 | 1.844 | 0.807 | ||||
PB3 | 1.754 | 0.837 | ||||
PB4 | 1.664 | 0.778 | ||||
Health motivation | HM1 | 2.114 | 0.863 | 0.888 | 0.813 | 0.725 |
HM2 | 2.443 | 0.903 | ||||
HM3 | 1.486 | 0.785 | ||||
Intention to adopt | INT1 | 1.481 | 0.737 | 0.839 | 0.750 | 0.567 |
INT2 | 1.679 | 0.823 | ||||
INT3 | 1.440 | 0.759 | ||||
INT4 | 1.326 | 0.785 |
Fornell—Larcker criterion | |||||||||
EE | FC | HB | HM | INT | PSE | PSU | PE | SI | |
EE | 0.840 | ||||||||
FC | 0.393 | 0.833 | |||||||
HB | 0.399 | 0.298 | 0.798 | ||||||
HM | 0.291 | 0.365 | 0.392 | 0.852 | |||||
INT | 0.521 | 0.515 | 0.590 | 0.545 | 0.753 | ||||
PSE | 0.460 | 0.313 | 0.296 | 0.284 | 0.493 | 0.922 | |||
PSU | 0.442 | 0.280 | 0.404 | 0.255 | 0.566 | 0.399 | 0.896 | ||
PE | 0.315 | 0.286 | 0.412 | 0.365 | 0.611 | 0.349 | 0.409 | 0.867 | |
SI | 0.420 | 0.359 | 0.404 | 0.364 | 0.595 | 0.311 | 0.467 | 0.374 | 0.815 |
Heterotrait—Monotrait Ratio (HTMT) | |||||||||
EE | FC | HB | HM | INT | PSE | PSU | PE | SI | |
EE | |||||||||
FC | 0.473 | ||||||||
HB | 0.479 | 0.356 | |||||||
HM | 0.357 | 0.438 | 0.483 | ||||||
INT | 0.674 | 0.641 | 0.753 | 0.704 | |||||
PSE | 0.545 | 0.353 | 0.332 | 0.329 | 0.592 | ||||
PSU | 0.531 | 0.317 | 0.472 | 0.303 | 0.698 | 0.439 | |||
PE | 0.383 | 0.336 | 0.493 | 0.447 | 0.778 | 0.397 | 0.478 | ||
SI | 0.544 | 0.447 | 0.511 | 0.469 | 0.794 | 0.373 | 0.574 | 0.473 |
Hypotheses Relationship | Beta | T Value | p Values | Supported? | Effect Size | R2 | Q2 | |
---|---|---|---|---|---|---|---|---|
H1 | Perceived susceptibility -> Intention | 0.147 | 3.575 | 0.001 *** | Yes | small | 0.71 | 0.38 |
H2 | Perceived severity -> Intention | 0.110 | 2.087 | 0.006 * | Yes | small | ||
H3 | Health benefits -> Intention | 0.184 | 3.254 | 0.001 ** | Yes | medium | ||
H4 | Health motivation -> Intention | 0.173 | 3.849 | 0.001 *** | Yes | medium | ||
H5 | Performance expectancy -> Intention | 0.240 | 4.302 | 0.001 *** | Yes | medium | ||
H6 | Effort expectancy -> Intention | 0.067 | 1.234 | 0.218 ns | No | No effect | ||
H7 | Social influence -> Intention | 0.179 | 3.223 | 0.001 ** | Yes | small | ||
H8 | Facilitating condition -> Intention | 0.162 | 3.117 | 0.002 ** | Yes | small |
Variable | Importance | Performance |
---|---|---|
Effort expectancy | 0.067 | 77.753 |
Facilitating condition | 0.162 | 74.999 |
Health benefits | 0.184 | 80.093 |
Health motivation | 0.173 | 78.722 |
Perceived severity | 0.110 | 69.649 |
Perceived susceptibility | 0.147 | 79.060 |
Performance expectancy | 0.24 | 77.892 |
Social influence | 0.179 | 79.988 |
Mean value | 0.149 | 77.198 |
ANNs | EE | FC | HB | HM | PSE | PSU | PE | SI |
---|---|---|---|---|---|---|---|---|
ANN1 | 0.19 | 0.55 | 0.91 | 0.53 | 0.27 | 0.40 | 1.00 | 0.54 |
ANN2 | 0.24 | 0.70 | 0.94 | 0.55 | 0.41 | 0.77 | 1.00 | 0.37 |
ANN3 | 0.25 | 0.42 | 1.00 | 0.36 | 0.33 | 0.48 | 0.80 | 0.24 |
ANN4 | 0.28 | 1.00 | 0.83 | 0.65 | 0.49 | 0.46 | 0.81 | 0.22 |
ANN5 | 0.11 | 0.79 | 1.00 | 0.63 | 0.16 | 0.47 | 0.81 | 0.40 |
ANN6 | 0.15 | 0.65 | 0.54 | 0.89 | 0.40 | 0.31 | 1.00 | 0.40 |
ANN7 | 0.24 | 0.64 | 0.75 | 1.00 | 0.50 | 0.62 | 1.00 | 0.47 |
ANN8 | 0.28 | 0.81 | 0.75 | 1.00 | 0.56 | 0.96 | 0.87 | 0.30 |
ANN9 | 0.25 | 0.54 | 0.50 | 0.59 | 0.29 | 0.44 | 1.00 | 0.27 |
ANN10 | 0.30 | 0.72 | 0.53 | 0.80 | 0.46 | 0.70 | 1.00 | 0.26 |
Average importance | 0.23 | 0.68 | 0.77 | 0.70 | 0.39 | 0.56 | 0.93 | 0.35 |
Normalized Importance | 25% | 73% | 83% | 75% | 42% | 60% | 100% | 37% |
Constructs | SEM-PLS (Beta) | ANN (Relative Importance) |
---|---|---|
Effort expectancy | 8 | 8 |
Facilitating condition | 5 | 4 |
Health benefits | 2 | 2 |
Health motivation | 4 | 3 |
Perceived severity | 7 | 6 |
Perceived susceptibility | 6 | 5 |
Performance expectancy | 1 | 1 |
Social influence | 3 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, A.; Uddin, J. Revealing Factors Influencing mHealth Adoption Intention Among Generation Y: An Empirical Study Using SEM-ANN-IPMA Analysis. Digital 2025, 5, 9. https://doi.org/10.3390/digital5020009
Rahman A, Uddin J. Revealing Factors Influencing mHealth Adoption Intention Among Generation Y: An Empirical Study Using SEM-ANN-IPMA Analysis. Digital. 2025; 5(2):9. https://doi.org/10.3390/digital5020009
Chicago/Turabian StyleRahman, Ashikur, and Jia Uddin. 2025. "Revealing Factors Influencing mHealth Adoption Intention Among Generation Y: An Empirical Study Using SEM-ANN-IPMA Analysis" Digital 5, no. 2: 9. https://doi.org/10.3390/digital5020009
APA StyleRahman, A., & Uddin, J. (2025). Revealing Factors Influencing mHealth Adoption Intention Among Generation Y: An Empirical Study Using SEM-ANN-IPMA Analysis. Digital, 5(2), 9. https://doi.org/10.3390/digital5020009