A Systematic Review of Neurobiological Mechanisms of Passiflora: Beyond GABA Modulation
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Study Selection
3.2. Study Characteristics and Main Features
3.3. Preclinical in Vivo Studies Investigating Non-GABA Neurobiological Mechanisms of Passiflora incarnata
3.4. Studies Investigating Non-GABA Neurobiological Mechanisms of Other Passiflora Species
3.5. Structure, Distribution, and Biological Activity of Bioactive Compounds in Passiflora
4. Discussion
4.1. Modulation of the Glutamatergic System and Neuroprotection
4.2. Modulation of Monoaminergic Pathways (Serotonin, Dopamine, Norepinephrine)
4.3. Engagement of Opioidergic and Cholinergic Systems in Analgesia
4.4. Anti-Inflammatory and Antioxidant Mechanisms
4.5. Neuroprotection, Anti-Inflammation, Antioxidation, and HPA Axis Control
4.6. Emerging Mechanisms: Gut–Brain Axis and Metabolic Effects
4.7. Translational Outlook
4.8. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fonseca, L.R.D.; Rodrigues, R.D.A.; Ramos, A.D.S.; Da Cruz, J.D.; Ferreira, J.L.P.; Silva, J.R.D.A.; Amaral, A.C.F. Herbal Medicinal Products from Passiflora for Anxiety: An Unexploited Potential. Sci. World J. 2020, 2020, 6598434. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, T.G.; Lopes, A.D.S.; Welter, J.F.; Yotoko, K.S.C.; Otoni, W.C.; Vieira, L.D.N.; Guerra, M.P.; Nodari, R.O.; Balsanelli, E.; Pedrosa, F.D.O.; et al. Plastome Sequences of the Subgenus Passiflora Reveal Highly Divergent Genes and Specific Evolutionary Features. Plant Mol. Biol. 2020, 104, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Marder, M. Flavonoids as GABAA Receptor Ligands: The Whole Story? J. Exp. Pharmacol. 2012, 4, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Jafarpoor, N.; Abbasi-Maleki, S.; Asadi-Samani, M.; Khayatnouri, M.H. Evaluation of antidepressant- like effect of hydroalcoholic extract of Passiflora incarnata in animal models of depression in male mice. J. HerbMed Pharmacol. 2014, 3, 41–45. [Google Scholar]
- Aman, U.; Subhan, F.; Shahid, M.; Akbar, S.; Ahmad, N.; Ali, G.; Fawad, K.; Sewell, R.D.E. Passiflora incarnata Attenuation of Neuropathic Allodynia and Vulvodynia apropos GABA-Ergic and Opioidergic Antinociceptive and Behavioural Mechanisms. BMC Complement. Altern. Med. 2016, 16, 77. [Google Scholar] [CrossRef] [PubMed]
- Harit, M.K.; Mundhe, N.; Tamoli, S.; Pawar, V.; Bhapkar, V.; Kolhe, G.; Mahadik, S.; Kulkarni, A.; Agarwal, A. Randomized, Double-Blind, Placebo-Controlled, Clinical Study of Passiflora incarnata in Participants With Stress and Sleep Problems. Cureus 2024, 16, e56530. [Google Scholar] [CrossRef] [PubMed]
- Appel, K.; Rose, T.; Fiebich, B.; Kammler, T.; Hoffmann, C.; Weiss, G. Modulation of the γ-aminobutyric Acid (GABA) System by Passiflora incarnata L. Phytother. Res. 2011, 25, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.-W.; Shi, Y.; Boscardin, W.J.; Steinman, M.A. Cognitive Trajectories in Older Adults Diagnosed With Hematologic Malignant Neoplasms. JAMA Netw. Open 2024, 7, e2431057. [Google Scholar] [CrossRef] [PubMed]
- Dekermendjian, K.; Kahnberg, P.; Witt, M.-R.; Sterner, O.; Nielsen, M.; Liljefors, T. Structure−Activity Relationships and Molecular Modeling Analysis of Flavonoids Binding to the Benzodiazepine Site of the Rat Brain GABAA Receptor Complex. J. Med. Chem. 1999, 42, 4343–4350. [Google Scholar] [CrossRef] [PubMed]
- Tupan Christoffoli, M.; Bolognesi Bachesk, A.; Jacobucci Farah, G.; Zanna Ferreira, G. Assessment of Passiflora incarnata L. for Conscious Sedation of Patients during the Extraction of Mandibular Third Molars: A Randomized, Split-Mouth, Double-Blind, Crossover Study. Quintessence Int. 2021, 52, 868–878. [Google Scholar] [CrossRef]
- Viola, H.; Wasowski, C.; Levi De Stein, M.; Wolfman, C.; Silveira, R.; Dajas, F.; Medina, J.; Paladini, A. Apigenin, a Component of Matricaria Recutita Flowers, Is a Central Benzodiazepine Receptors-Ligand with Anxiolytic Effects. Planta. Med. 1995, 61, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Feliú-Hemmelmann, K.; Monsalve, F.; Rivera, C. Melissa officinalis and Passiflora caerulea Infusion as Physiological Stress Decreaser. Int. J. Clin. Exp. Med. 2013, 6, 444–451. [Google Scholar] [PubMed]
- Ingale, S.; Kasture, S. Evaluation of Analgesic Activity of the Leaves of Passiflora incarnata Linn. Int. J. Green Pharm. 2012, 6, 36. [Google Scholar] [CrossRef]
- Blecharz-Klin, K.; Pyrzanowska, J.; Piechal, A.; Joniec-Maciejak, I.; Wawer, A.; Jawna-Zboińska, K.; Mirowska-Guzel, D.; Widy-Tyszkiewicz, E. Effect of Passiflora incarnata L. Extract on Exploratory Behaviour and Neurotransmitters Level in Structures Involved in Motor Functions in Rats. J. Pre-Clin. Clin. Res. 2024, 1, 1–10. [Google Scholar] [CrossRef]
- Alves, J.S.F.; Marques, J.I.; Demarque, D.P.; Costa, L.R.F.; Amaral, J.G.; Lopes, N.P.; Da Silva-Júnior, A.A.; Soares, L.A.L.; Gavioli, E.C.; Ferreira, L.D.S.; et al. Involvement of Isoorientin in the Antidepressant Bioactivity of a Flavonoid-Rich Extract from Passiflora edulis f. flavicarpa Leaves. Rev. Bras. Farmacogn. 2020, 30, 240–250. [Google Scholar] [CrossRef]
- Dos Santos, K.C.; Borges, T.V.; Olescowicz, G.; Ludka, F.K.; Santos, C.A.D.M.; Molz, S. Passiflora actinia Hydroalcoholic Extract and Its Major Constituent, Isovitexin, Are Neuroprotective against Glutamate-Induced Cell Damage in Mice Hippocampal Slices. J. Pharm. Pharmacol. 2016, 68, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yang, Z.; Zhang, N.; Tian, Z.; Liu, S.; Zhao, M. Neuroprotective Effects of Vitexin by Inhibition of NMDA Receptors in Primary Cultures of Mouse Cerebral Cortical Neurons. Mol. Cell. Biochem. 2014, 386, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Urrego, N.; Sepúlveda, P.; Aragón, M.; Ramos, F.A.; Costa, G.M.; Ospina, L.F.; Castellanos, L. Flavonoids and Saponins from Passiflora edulis f. edulis Leaves (Purple Passion Fruit) and Its Potential Anti-Inflammatory Activity. J. Pharm. Pharmacol. 2021, 73, 1530–1538. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Song, Y.; Huang, R.; Zhu, M.; Li, M.; Requena, T.; Wang, H. Anti-Inflammatory and Gut Microbiota Modulation Potentials of Flavonoids Extracted from Passiflora foetida Fruits. Foods 2023, 12, 2889. [Google Scholar] [CrossRef] [PubMed]
- Sukketsiri, W.; Daodee, S.; Parhira, S.; Malakul, W.; Tunsophon, S.; Sutthiwong, N.; Tanasawet, S.; Chonpathompikunlert, P. Chemical Characterization of Passiflora edulis Extracts and Their in Vitro Antioxidant, Anti-Inflammatory, Anti-Lipid Activities, and Ex-Vivo Vasodilation Effect. J. King Saud Univ.—Sci. 2023, 35, 102431. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, S.; Arunachalam, K.; Parimelazhagan, T. Antioxidant, Analgesic, Anti-Inflammatory and Antipyretic Effects of Polyphenols from Passiflora subpeltata Leaves—A Promising Species of Passiflora. Ind. Crops Prod. 2014, 54, 272–280. [Google Scholar] [CrossRef]
- Viera, W.; Shinohara, T.; Samaniego, I.; Sanada, A.; Terada, N.; Ron, L.; Suárez-Tapia, A.; Koshio, K. Phytochemical Composition and Antioxidant Activity of Passiflora Spp. Germplasm Grown in Ecuador. Plants 2022, 11, 328. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Luan, F.; Yang, Y.; Wang, Z.; Zhao, Z.; Fang, J.; Wang, M.; Zuo, M.; Li, Y. Passiflora edulis: An Insight Into Current Researches on Phytochemistry and Pharmacology. Front. Pharmacol. 2020, 11, 617. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Júnior, R.G.; Reis, S.A.G.B.; De Oliveira, A.P.; Ferraz, C.A.A.; Rolim, L.A.; Lopes, N.P.; Rocha, J.M.; El Aouad, N.; Kritsanida, M.; Almeida, J.R.G.D.S. Photoprotective Potential of Passiflora cincinnata Mast. (Passifloraceae) Hydro-Alcoholic Extracts. Chem. Biodivers. 2024, 21, e202401271. [Google Scholar] [CrossRef] [PubMed]
- Smilin Bell Aseervatham, G.; Abbirami, E.; Sivasudha, T.; Ruckmani, K. Passiflora caerulea L. Fruit Extract and Its Metabolites Ameliorate Epileptic Seizure, Cognitive Deficit and Oxidative Stress in Pilocarpine-Induced Epileptic Mice. Metab. Brain. Dis. 2020, 35, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Janda, K.; Wojtkowska, K.; Jakubczyk, K.; Antoniewicz, J.; Skonieczna-Żydecka, K. Passiflora incarnata in Neuropsychiatric Disorders—A Systematic Review. Nutrients 2020, 12, 3894. [Google Scholar] [CrossRef] [PubMed]
- Weyya, G.; Belay, A.; Tadesse, E. Passion Fruit (Passiflora edulis Sims) by-Products as a Source of Bioactive Compounds for Non-Communicable Disease Prevention: Extraction Methods and Mechanisms of Action: A Systematic Review. Front. Nutr. 2024, 11, 1340511. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.A.V.; Marques, M.O.M.; Meletti, L.M.M.; Kampen, M.H.V.; Polozzi, S.C. Floral Scent of Brazilian Passiflora: Five Species Analised by Dynamic Headspace. An. Acad. Bras. Ciênc. 2016, 88, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Holanda, D.K.R.; Wurlitzer, N.J.; Dionisio, A.P.; Campos, A.R.; Moreira, R.A.; Sousa, P.H.M.D.; Brito, E.S.D.; Ribeiro, P.R.V.; Iunes, M.F.; Costa, A.M. Garlic Passion Fruit (Passiflora tenuifila Killip): Assessment of Eventual Acute Toxicity, Anxiolytic, Sedative, and Anticonvulsant Effects Using in Vivo Assays. Food Res. Int. 2020, 128, 108813. [Google Scholar] [CrossRef] [PubMed]
- Jawna-Zboińska, K.; Blecharz-Klin, K.; Joniec-Maciejak, I.; Wawer, A.; Pyrzanowska, J.; Piechal, A.; Mirowska-Guzel, D.; Widy-Tyszkiewicz, E. Passiflora incarnata L. Improves Spatial Memory, Reduces Stress, and Affects Neurotransmission in Rats. Phytother. Res. 2016, 30, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Cristina Lopes Do Carmo, M.; Mateus Martins, I.; Elisa Ramos Magalhães, A.; Roberto Maróstica Júnior, M.; Alves Macedo, J. Passion Fruit (Passiflora edulis) Leaf Aqueous Extract Ameliorates Intestinal Epithelial Barrier Dysfunction and Reverts Inflammatory Parameters in Caco-2 Cells Monolayer. Food Res. Int. 2020, 133, 109162. [Google Scholar] [CrossRef] [PubMed]
- Oliva, I.O.; Xavier, A.C.S.; Chaves, H.F.C.; Moreira, L.F.V.; de Oliveira, M.V.M.; Oliva, H.N.P. Epidemiological and Financial Aspects of Hospitalizations for Bacterial Meningitis in Brazil. J. Glob. Infect. Dis. 2024, 16, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Soumya, R.S.; Raj, K.B.; Abraham, A. Passiflora edulis (Var. Flavicarpa) Juice Supplementation Mitigates Isoproterenol-induced Myocardial Infarction in Rats. Plant Foods Hum. Nutr. 2021, 76, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, A.C.A.; Tsuji, M.; Dos Santos Cordeiro, L.; Petinati, M.F.P.; Rebellato, N.L.B.; Sebastiani, A.M.; Da Costa, D.J.; Scariot, R. Effects of Passiflora incarnata and Valeriana officinalis in the Control of Anxiety Due to Tooth Extraction: A Randomized Controlled Clinical Trial. Oral Maxillofac. Surg. 2024, 28, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, Y.; Jeon, J.; Kim, D. Effect of Fermented Red Ginseng on Cytochrome P450 and P-glycoprotein Activity in Healthy Subjects, as Evaluated Using the Cocktail Approach. Br. J. Clin. Pharmacol. 2016, 82, 1580–1590. [Google Scholar] [CrossRef] [PubMed]
- Santos, K.C.; Santos, C.A.M.; De Oliveira, R.M.W. Passiflora actinia Hooker Extracts and Fractions Induce Catalepsy in Mice. J. Ethnopharmacol. 2005, 100, 306–309. [Google Scholar] [CrossRef] [PubMed]
- Araújo Galdino, O.; De Souza Gomes, I.; Ferreira De Almeida Júnior, R.; Conceição Ferreira De Carvalho, M.I.; Abreu, B.J.; Abbott Galvão Ururahy, M.; Cabral, B.; Zucolotto Langassner, S.M.; Costa De Souza, K.S.; Augusto De Rezende, A. The Nephroprotective Action of Passiflora edulis in Streptozotocin-Induced Diabetes. Sci. Rep. 2022, 12, 17546. [Google Scholar] [CrossRef] [PubMed]
- Salles, B.C.C.; Da Silva, M.A.; Taniguthi, L.; Ferreira, J.N.; Da Rocha, C.Q.; Vilegas, W.; Dias, P.H.; Pennacchi, P.C.; Duarte, S.M.D.S.; Rodrigues, M.R.; et al. Passiflora edulis Leaf Extract: Evidence of Antidiabetic and Antiplatelet Effects in Rats. Biol. Pharm. Bull. 2020, 43, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yu, L.; Zhao, Z.; Li, P.; Tan, S. Chitosan Oligosaccharide as a Plant Immune Inducer on the Passiflora Spp. (passion fruit) CMV Disease. Front. Plant Sci. 2023, 14, 1131766. [Google Scholar] [CrossRef] [PubMed]
- Tabatabai, S.M.; Dashti, S.; Doosti, F.; Hosseinzadeh, H. Phytotherapy of Opioid Dependence and Withdrawal Syndrome: A Review. Phytother. Res. 2014, 28, 811–830. [Google Scholar] [CrossRef] [PubMed]
- Sader, M.; Vaio, M.; Cauz-Santos, L.A.; Dornelas, M.C.; Vieira, M.L.C.; Melo, N.; Pedrosa-Harand, A. Large vs Small Genomes in Passiflora: The Influence of the Mobilome and the Satellitome. Planta 2021, 253, 86. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.S.; Yang, C.Y.; Yoon, J.Y.; Kwon, T.R.; Hammond, J.; Lim, H.S. First Report of Passiflora Latent Virus Infecting Persimmon (Diospyros kaki) in Korea. Plant Dis. 2021, 105, 1236. [Google Scholar] [CrossRef]
- Pastoriza, S.; Pérez-Burillo, S.; Delgado-Andrade, C.; Rufián-Henares, J.A. Characterization of Commercial Spanish Non-Citrus Juices: Antioxidant and Physicochemical Aspects. Food Res. Int. 2017, 100, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Lemos, R.C.C.D.; Da Costa Silva, D.; Flavia De Albuquerque Melo-de-Pinna, G. A Structural Review of Foliar Glands in Passiflora L. (Passifloraceae). PLoS ONE 2017, 12, e0187905. [Google Scholar] [CrossRef] [PubMed]
- Richardo, J.; Silvério, A. New Trends in Passiflora L. Pollen Grains: Morphological/Aperture Aspects and Wall Layer Considerations. Protoplasma 2019, 256, 923–939. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.F.; Esposito, M.P.; Da Silva Engela, M.R.G.; Cardoso-Gustavson, P.; Furlan, C.M.; Hoshika, Y.; Carrari, E.; Magni, G.; Domingos, M.; Paoletti, E. The Passion Fruit Liana (Passiflora edulis Sims, Passifloraceae) Is Tolerant to Ozone. Sci. Total Environ. 2019, 656, 1091–1101. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, R.; Pandey, S.; Nandi, S.; Mondal, R.; Samanta, D.; Mandal, S.; Manokari, M.; Mishra, T.; Dhama, K.; Pandey, D.K.; et al. Biotechnology of Passiflora edulis: Role of Agrobacterium and Endophytic Microbes. Appl. Microbiol. Biotechnol. 2023, 107, 5651–5668. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Ma, F.; Zhang, X.; Tan, Y.; Han, T.; Ding, J.; Wu, J.; Xing, W.; Wu, B.; Huang, D.; et al. Research Progress on Viruses of Passiflora edulis. Biology 2024, 13, 839. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, C.; Basch, E.; Boon, H.; Karpa, K.D.; Gianutsos, G.; Nummy, K.; Seamon, E.; Smith, M.; Sollars, D.; Tanguay-Colucci, S.; et al. An Evidence-Based Systematic Review of Passion Flower (Passiflora incarnata L.) by the Natural Standard Research Collaboration. J. Diet. Suppl. 2008, 5, 310–340. [Google Scholar] [CrossRef] [PubMed]
- McCullagh, M.; Goshawk, J.; Eatough, D.; Mortishire-Smith, R.J.; Pereira, C.A.; Yariwake, J.H.; Vissers, J.P. Profiling of the Known-Unknown Passiflora Variant Complement by Liquid Chromatography—Ion Mobility—Mass Spectrometry. Talanta 2021, 221, 121311. [Google Scholar] [CrossRef] [PubMed]
Study (Author, Year) | Study Design and Model | Passiflora Species and Preparation | Focus of Non-GABA Investigation |
---|---|---|---|
Aman et al., 2016 [5] | In vivo; mice (acute nociception/behavior), rats (diabetic neuropathy—STZ induced) | Passiflora incarnata L.; methanolic extract (PI-ME) from aerial parts | Opioidergic system (naloxone reversal), cannabinoid system (speculative via oleamide) |
Feliú-Hemmelmann et al., 2013 [12] | In vivo; male CF-1 mice (chronic stress—movement restriction) | Passiflora caerulea; aqueous infusion (MELIPASS®—combined w/Melissa officinalis) | HPA axis modulation (corticosterone), metabolic effects (glucose), immune modulation (spleen) |
Blecharz-Klin et al., 2024 [14] | In vivo; male Wistar rats (chronic admin, behavioral tests) | Passiflora incarnata L.; standardized dry extract (aerial parts) | Monoaminergic system (5-HT, DA, NA levels/metabolites in CNS), glutamatergic system (GLU, ASP levels) |
dos Santos et al., 2016 [16] | Combined in vivo/ex vivo/in vitro; mice, mouse hippocampal slices (glutamate challenge) | Passiflora actinia (primary), P. incarnata; hydroalcoholic extract (leaves), isovitexin | Glutamatergic system modulation (neuroprotection vs. excitotoxicity), antioxidant (speculative via isovitexin), hormesis (speculative) |
Han et al., 2023 [19] | In vitro; RAW264.7 macrophages (LPS), human gut microbiota simulator (BFBL model) | Passiflora foetida; flavonoid-rich fraction (PFF) from fruit | Neuroinflammatory modulation (cytokines, MAPK, PI3K/Akt, NF-κB pathways), gut microbiota modulation (bacterial shifts, SCFA production) |
Harit et al., 2024 [6] | Clinical trial (RCT); human adults with stress/sleep problems | Passiflora incarnata; standardized extract (capsule) | HPA axis modulation (stress perception, cortisol trend), sleep architecture regulation, cognitive function enhancement (concentration, memory) |
Ingale and Kasture, 2012 [13] | In vivo; Swiss albino mice (analgesic tests—formalin, eye-wiping) | Passiflora incarnata; n-butanol fraction (BEPI) and sub-fraction (BEPI-F1) from leaf ethanolic extract | Opioidergic system (naloxone reversal), nicotinic cholinergic mechanism (mecamylamine reversal) |
Jafarpoor et al., 2014 [4] | In vivo; mice (forced swim test—antidepressant model) | Passiflora incarnata; extract | Monoaminergic system, GABA inverse agonism |
Yang et al., 2014 [17] | In vitro; mouse cortical neurons (NMDA excitotoxicity) | Studied vitexin (flavonoid found in Passiflora) | Glutamatergic system (NMDA/NR2B inhibition, ↓Ca2+ influx), apoptotic pathways |
Saravanan et al., 2014 [22] | Combined in vitro (antioxidant assays: DPPH, ABTS, metal chelating, superoxide radical scavenging) and in vivo (analgesic, anti-inflammatory, antipyretic in mice and rats) study | Passiflora subpeltata (leaves); successive Soxhlet extraction (petroleum ether, chloroform, acetone, methanol); acetone extract used for in vivo tests | Antioxidant pathways, anti-inflammatory mechanisms, prostaglandin inhibition, peripheral and central pain modulation |
Viera et al., 2022 [23] | In vitro chemical analysis | P. edulis f. flavicarpa, P. edulis f. edulis, P. alata, Passiflora sp.; methanol/water/formic acid extraction of lyophilized pulp | Antioxidant mechanisms (ABTS, FRAP); potential neuroprotective effects via polyphenols, flavonoids, carotenoids, vitamin C |
Sukketsiri et al., 2023 [20] | In vitro (antioxidant, anti-lipid, anti-inflammatory); ex vivo (rat aorta vasodilation) | Passiflora edulis; seed ethanolic extract (PSEE), fruit/pulp water extract (PFWE) | Antioxidant, anti-lipid (enzyme inhibition), anti-inflammatory (NO reduction), vasodilation |
Alves et al., 2020 [15] | In vivo; mice (forced swimming test, open-field test) | Passiflora edulis f. flavicarpa; flavonoid-rich extract from leaves (5.21 mg/g isoorientin), purified isoorientin | Monoaminergic system (antidepressant-like effects of isoorientin); potency comparable to nortriptyline; no locomotor effects |
Study (Author, Year) | Non-GABA Mechanism Targeted | Key Finding Summary | Finding Details/Method | Animal Model | Treatment Details |
---|---|---|---|---|---|
Aman et al. (2016) [5] | Opioidergic system; cannabinoid system (potential) | Partial opioid role in analgesia; potential CB1 involvement | High oleamide (known CB1 modulator) identified via GC-MS (CB role inferred). | BALB/c mice (acute pain/anxiety); Sprague Dawley rats (diabetic neuropathy). | Methanolic extract (PI-ME); mice: 100–600 mg/kg p.o.; rats: 200–300 mg/kg p.o.; acute and chronic treatment. |
Blecharz-Klin et al. (2024) [14] | Monoaminergic system (DA, NE, 5-HT) | Altered DA and NE levels in specific CNS regions | ↑ Spinal cord DA; ↓ cerebellar NE; modest changes in 5-HIAA metabolism (e.g., ↑ spinal). Measured via HPLC. | Male Wistar rats; chronic administration model. | Standardized dry extract; 30, 100, 300 mg/kg/day p.o. (in drinking water); 47 days. |
Ingale and Kasture (2012) [13] | Opioidergic system; nicotinic cholinergic system | Opioid and nicotinic receptors involved in analgesia | Naloxone and mecamylamine reversed analgesic effect of n-butanol fraction (BEPI) in formalin and eye-wipe tests. | Swiss albino mice; formalin test and eye-wiping test (acute pain models). | n-Butanol fraction (BEPI) and sub-fraction (BEPI-F1); BEPI: 150, 300 mg/kg i.p.; BEPI-F1: 300 mg/kg i.p.; single dose. |
Saravanan et al. (2014) [22] | Antioxidant system; anti-inflammatory mediators (e.g., prostaglandins, histamine, bradykinin) | Dose-dependent analgesic, anti-inflammatory, antipyretic effects via non-GABA pathways | ↓ Writhing and paw edema; ↓ yeast-induced fever; biphasic effects in formalin test; IC50 for DPPH = 27.9 μg/mL; high phenolic/tannin content measured; HPLC identified quercetin, apigenin, catechin. | Mice and rats (acetic acid-induced writhing, formalin, paw edema, yeast-induced fever models). | Acetone leaf extract; 200 and 400 mg/kg p.o. |
Jafarpoor et al. (2014) [4] | Monoaminergic system (serotonergic; MAO-A inferred) | Serotonergic-like antidepressant effect | ↑ Swimming time in forced swim test (FST), similar to SSRIs; beta-carbolines present suggest MAO-A inhibition (inferred). | Mice (species/strain not specified); FST (depression model). | P. incarnata extract (type not specified); 200, 400, 800 mg/kg (route likely p.o. or i.p.); acute treatment. |
Bioactive Compound | Passiflora Species (Source) | Proposed Non-GABA Target | Supporting Study (Mechanism) |
---|---|---|---|
Flavonoids (general), Oleamide | P. incarnata (Aerial parts) | Opioid receptors | Aman et al. (2016) [5]; Ingale and Kasture (2012) [13] (naloxone antagonism of analgesic effects in mice/rat models). |
Oleamide | P. incarnata (Aerial parts) | Cannabinoid CB1 receptors (potential) | Aman et al. (2016) [5] (high oleamide content identified; link based on prior literature, not directly tested with antagonists in this study). |
General extract constituents (with Melissa officinalis) | P. caerulea (Capsules, combined extract) | HPA Axis | Feliú-Hemmelmann et al. (2013) [12] (reduced plasma corticosterone in stressed mice). |
Chrysin, Apigenin | P. caerulea, P. incarnata, P. subpeltata | Central benzodiazepine receptors (non-sedating anxiolysis) | Feliú-Hemmelmann et al. (2013) [12], Viola et al. (1995) [11] (citing prior research/direct testing showing selective binding and anxiolytic effect without sedation). |
General extract constituents (Flavonoids implicated, e.g., Chrysin) | P. incarnata (Aerial parts, standardized extract) | Monoaminergic system (dopamine ↑ spinal cord, norepinephrine ↓ cerebellum, serotonin turnover altered) | Blecharz-Klin et al. (2024) [14] (HPLC measurement of neurotransmitters/metabolites in rat brain regions after chronic exposure). |
Isovitexin | P. actinia (Leaves) | Glutamatergic system (neuroprotection against excitotoxicity) | dos Santos et al. (2016) [16] (protected mouse hippocampal slices from glutamate damage; effect linked to isovitexin). |
Vitexin | Found in various Passiflora spp. (e.g., P. incarnata) | Glutamatergic system (NMDA receptor NR2B subunit downregulation, Ca2+ influx reduction) | Yang et al. (2014) [17] (neuroprotection against NMDA toxicity in cultured neurons via NR2B modulation). |
Flavonoid-rich fraction (Orientin, Apigenin, Vitexin derivatives) | P. foetida (fruits) | Inflammatory pathways (MAPK, PI3K/Akt, NF-κB) | Han et al. (2023) [19] (reduced inflammatory markers in LPS-stimulated RAW264.7 cells). |
Flavonoid-rich fraction (Orientin, Apigenin, Vitexin derivatives) | P. foetida (fruits) | Gut microbiota (modulation, increased SCFAs) | Han et al. (2023) [19] (altered microbial populations and increased SCFAs in BFBL dynamic gut simulator, relevant via gut-brain axis). |
n-Butanol fraction components (Flavonoids, Alkaloids implicated) | P. incarnata (leaves) | Nicotinic acetylcholine receptors | Ingale and Kasture (2012) [13] (mecamylamine antagonism of analgesic effects in mice). |
Beta-carboline alkaloids (Harmaline, Harmine, Harmalol) | P. incarnata | Serotonergic system (behavioral), MAO-A enzyme | Jafarpoor et al. (2014) [4] (antidepressant-like behavioral effects similar to SSRIs; known MAO-A inhibition by beta-carbolines). |
Harmine | P. incarnata | Serotonin 5-HT2A receptors | Jafarpoor et al. (2014) [4] (citing prior research on direct binding). |
Isoorientin | P. edulis f. flavicarpa (Leaves) | Pathways mediating antidepressant effects (likely monoaminergic) | Alves et al. (2020) [15] (antidepressant-like effect in forced swimming test in mice). |
Acetone extract components (Quercetin, Apigenin, phenolics) | P. subpeltata (Leaves) | Inflammatory mediators (histamine, serotonin, prostaglandins, kinins), nociceptive pathways, prostaglandin synthesis | Saravanan et al. (2014) [22] (anti-inflammatory, analgesic, and antipyretic effects in vivo; antioxidant in vitro). |
Polyphenols, Flavonoids, Carotenoids, Vitamin C | P. edulis (flavicarpa, edulis), P. alata, P. sp. (Fruit pulp) | Oxidative stress pathways (antioxidant activity) | Viera et al. (2022) [23]; Saravanan et al. (2014) [22] (correlation between polyphenol content and in vitro antioxidant assays; direct antioxidant assays). |
Piceatannol (seed extract), β-carotene, γ-tocopherol (fruit extract) | P. edulis (seeds, fruit/pulp) | Lipid enzymes (lipase, esterase), inflammatory pathways (NO), vascular endothelium (eNOS/NO for vasodilation) | Sukketsiri et al. (2023) [20] (in vitro enzyme inhibition, reduced NO in macrophages, ex vivo vasodilation of aortic rings—cardiovascular/metabolic focus). |
Standardized Extract | P. incarnata | HPA axis (clinical stress reduction), sleep regulation, cognitive function | Harit et al. (2024) [6] (clinical relevance: RCT showing improved stress scores, sleep metrics, and cognitive measures in humans). |
Metabolite/Class | Key Structural Motif/Distinguishing Feature | Species with Highest Reported Levels (Examples) | Plant Part Richest to Lower |
---|---|---|---|
Vitexin [16,17] | C-8 β-D-glucosyl-apigenin (C-glycosyl flavone); sugar is C-linked ⇒ hydrolysis-resistant yet polar | P. incarnata, P. actinia, P. foetida | Leaves ≫ tendrils > stems ≫ fruit rind |
Isovitexin [16,24,25] | C-6 β-D-glucosyl-apigenin; sugar at C-6 twists B-ring dihedral angle vs. vitexin | P. actinia (very high), P. edulis, P. cincinnata | Leaves ≈ young shoots > flowers |
Orientin/Isoorientin [15,18,24] | Luteolin C-glycosides (C-8 vs. C-6); extra 3′-OH (catechol) adds antioxidant power | P. edulis f. flavicarpa, P. alata | Leaves > peel > pulp |
Chrysin and Apigenin (aglycone flavones) [22,26,27] | 5,7-dihydroxy (chrysin) or 5,7,4′-trihydroxy (apigenin) flavone; no sugars ⇒ lipophilic | P. caerulea, P. incarnata, P. subpeltata | Flowers/aerial parts≫ roots |
β-Carboline alkaloids * (harmine, harmaline, harman) [4,27] | Indolo [3,2-b]pyridine tricycle; N-9 basic centre; planar ⇒ BBB-permeant | P. incarnata, P. alata | Seeds > aerial parts |
Piceatannol (stilbene) [20,28] | 3,4,3′,5′-tetrahydroxystilbene; catechol B-ring boosts redox and enzyme inhibition vs. resveratrol | P. edulis (yellow and purple forms) | Seeds ≫ peel > pulp |
Oleamide * [5,27] | cis-9-octadecenamide; C18:1 amide; very high logP (≈4.9) | P. incarnata (notably rich) | Aerial parts ≫ seeds |
Carotenoids (β-carotene, lutein) [20,23,24] | C40 polyene chain with conjugated double bonds | P. edulis, P. alata, P. quadrangularis | Pulp ≥ peel ≫ leaves |
Triterpene saponins (passiflorosides) [19,22] | Oleanane/ursane aglycone + sugar chains; amphiphilic surfactants | P. subpeltata, P. foetida | Leaves and stems > roots |
Metabolite/Class | Lead Therapeutic/Biological Target | Key Molecular Mechanism |
---|---|---|
Vitexin [16,17] | Anti-excitotoxic/neuroprotective (NMDA/NR2B) | Down-regulates NR2B subunit, cuts glutamate-evoked Ca2+ influx and ROS; shifts Bcl-2: Bax towards survival |
Isovitexin [16,24,25] | Neuroprotection and antioxidant back-up | Boosts γ-glutamyl transferase, preserves GSH, blocks mitochondrial ROS in glutamate-challenged hippocampal slices |
Orientin/Isoorientin [15,18,24] | Anti-inflammatory, antioxidant, antidepressant | Catechol group scavenges ROS; activates Nrf2/HO-1; suppresses TNF-α and IL-6 via MAPK/PI3K/Akt; modulates monoamines in FST |
Chrysin and Apigenin [22,26,27] | Non-sedating anxiolytic/anticonvulsant | Partial agonists at central BZ site of GABA-A; chrysin dampens CRH; apigenin antagonises TRPV1, adds antioxidant tone |
β-Carbolines (harmine, harmaline, harman) [4,27] | Antidepressant and neurogenesis support | Reversible MAO-A inhibition (IC50 ≈ 0.3 µM) → ↑ 5-HT/NE/DA; partial 5-HT2A agonism; activates Wnt/β-catenin |
Piceatannol [20,28] | Cardiometabolic/vascular antioxidant | Phosphorylates eNOS via PI3K/Akt → ↑ NO; inhibits pancreatic lipase and iNOS; potent superoxide scavenger |
Oleamide [5,27] | Analgesic, sedative, sleep aid | Positive CB1 allosteric modulator; potentiates GABA-A currents; synergises with μ-opioid tone; promotes adenosine A2A sleep signaling |
Carotenoids (β-carotene, lutein) [20,23,24] | Antioxidant and ocular/neuroprotection | Quench singlet-oxygen, halt lipid peroxidation; β-carotene → retinoic acid, engages nuclear RARs for neural repair |
Triterpene saponins (passiflorosides) [19,22] | Permeability enhancer, anti-inflammatory | Amphiphilic surfactants improve co-metabolite uptake; block NF-κB translocation, down-regulate COX-2 and PLA2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, V.M.S.; Yabrude, A.T.Z.; Lima, R.D.T.; Wagner, F.; Oliva, H.N.P. A Systematic Review of Neurobiological Mechanisms of Passiflora: Beyond GABA Modulation. BioChem 2025, 5, 21. https://doi.org/10.3390/biochem5030021
Campos VMS, Yabrude ATZ, Lima RDT, Wagner F, Oliva HNP. A Systematic Review of Neurobiological Mechanisms of Passiflora: Beyond GABA Modulation. BioChem. 2025; 5(3):21. https://doi.org/10.3390/biochem5030021
Chicago/Turabian StyleCampos, Vitor Marcelo Soares, Angela Theresa Zuffo Yabrude, Renata Delarue Toniolo Lima, Fernanda Wagner, and Henrique Nunes Pereira Oliva. 2025. "A Systematic Review of Neurobiological Mechanisms of Passiflora: Beyond GABA Modulation" BioChem 5, no. 3: 21. https://doi.org/10.3390/biochem5030021
APA StyleCampos, V. M. S., Yabrude, A. T. Z., Lima, R. D. T., Wagner, F., & Oliva, H. N. P. (2025). A Systematic Review of Neurobiological Mechanisms of Passiflora: Beyond GABA Modulation. BioChem, 5(3), 21. https://doi.org/10.3390/biochem5030021