Laser Doppler Flowmetry and Continuous Tissue Oxygenation Monitoring: Best of Vitality Tests?
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Diagnostic Protocol
2.3. Pulpal Blood Flow Registration
2.4. Statistical Analysis
3. Results
3.1. LDF Versus SO2 in Determining Vitality
3.2. Diagnostic Accuracy
3.3. LDF Versus Cold in Determining Vitality
3.4. LDF Versus Electrical Pulp Testing (EPT)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jafarzadeh, H.; Abbott, P.V. Review of pulp sensibility tests. Part I: General information and thermal tests. Int. Endod. J. 2010, 43, 738–762. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, H.; Abbott, P.V. Review of pulp sensibility tests. Part II: Electric pulp tests and test cavities. Int. Endod. J. 2010, 43, 945–958. [Google Scholar] [CrossRef]
- Tenyi, A.; Nemeth, L.; Golez, A.; Cankar, K.; Milutinovic, A. Comparison of the vitality tests used in the dental clinical practice and histological analysis of the dental pulp. Bosn. J. Basic Med. Sci. 2022, 22, 374–381. [Google Scholar] [CrossRef]
- Chen, E.; Abbott, P.V. Dental pulp testing: A review. Int. J. Dent. 2009, 2009, 365785. [Google Scholar] [CrossRef]
- Patro, S.; Meto, A.; Mohanty, A.; Chopra, V.; Miglani, S.; Das, A.; Maniangat Luke, A.; Hadi, D.; Meto, A.; Fiorillo, L.; et al. Diagnostic Accuracy of Pulp Vitality Tests for Assessing Pulpal Health in Permanent Teeth: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 9599. [Google Scholar] [CrossRef]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. J. Physiol. Meas. 2007, 28, R1–R39. [Google Scholar] [CrossRef] [PubMed]
- Hartmann Kasper, R.; Rabelo Coelho, M.; Quevedo Miguens, S.A., Jr.; Grazziotin-Soares, R.; Branco Barletta, F. A Pulse oximetry as a dental pulp test: A scoping review to identify barriers hindering the use of oximeters in clinical practice. Saudi Dent. J. 2024, 36, 262–269. [Google Scholar] [CrossRef]
- Yoon, M.-J.; Kim, E.; Lee, S.-J.; Bae, Y.-M.; Kim, S.; Park, S.-H. Pulpal blood flow measurement with ultrasound doppler imaging. J. Endod. 2010, 36, 419–422. [Google Scholar] [CrossRef]
- Regan, C.; Yang, B.; Mayzel, K.; Ramirez-San-Juan, J.; Wilder-Smith, P.; Choi, B. Fibre-Based Laser Speckle Imaging for the Detection of Pulsatile Flow. Lasers Surg. Med. 2015, 47, 520–525. [Google Scholar] [CrossRef]
- Gazelius, B.; Olgart, L.; Edwall, B.; Edwall, L. Non-invasive recording of blood flow in human dental pulp. Dent. Traumatol. 1986, 2, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, P.E. A new method for the non-invasive measurement of pulpal blood flow. Int. Endod. J. 1988, 21, 307–312. [Google Scholar] [CrossRef]
- Jafarzadeh, H. Laser Doppler flowmetry in endodontics: A review. Int. Endod. J. 2009, 42, 476–490. [Google Scholar] [CrossRef]
- Hartmann, A.; Azérad, J.; Boucher, Y. Environmental effects on laser Doppler pulpal blood-flow measurements in man. Arch. Oral Biol. 1996, 41, 333–339. [Google Scholar] [CrossRef]
- Sasano, T.; Kuriwada, S.; Sanjo, D. Arterial blood pressure regulation of pulpal blood flow as determined by laser Doppler. J. Dent. Res. 1989, 68, 791–795. [Google Scholar] [CrossRef]
- Ajcharanukul, O.; Chunhacheevachaloke, E.; Vorachart, P.; Chidchuangchai, W. The postural autonomic regulation of pulpal blood flow. J. Dent. Res. 2013, 92, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Roeykens, H.; De Coster, P.; Jacquet, W.; De Moor, R.J.G. The Decisive Role of Laser Doppler Flowmetry for Pulp Preservation in Discolored Traumatized Teeth. Photobiomodul. Photomed. Laser Surg. 2024, 42, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.; Shiojiri, T.; Shibasaki, M.; Takano, S.; Kondo, N.; Iwata, A. The effect of diurnal variation on the regional differences in sweating and skin blood flow during exercise. Eur. J. Appl. Physiol. 1995, 71, 276–280. [Google Scholar] [CrossRef]
- Svalestad, J.; Hellem, S.; Vaagbø, G.; Irgens, Å.; Thorsen, E. Reproducibility of transcutaneous oximetry and laser Doppler flowmetry in facial skin and gingival tissue. Microvasc. Res. 2010, 79, 29–33. [Google Scholar] [CrossRef]
- Roeykens, H.J.; Deschepper, E.; De Moor, R.J. Laser Doppler flowmetry: Reproducibility, reliability, and diurnal blood flow variations. Lasers Med. Sci. 2016, 31, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, K.E.; Er, K.; Polat, S.; Polat, N.T. Effect of gingiva on laser Doppler pulpal blood flow measurements. J. Endod. 2004, 30, 138–140. [Google Scholar] [CrossRef]
- Soo-ampon, S.; Vongsavan, N.; Soo-ampon, M.; Chuckpaiwong, S.; Matthews, B. The sources of laser Doppler blood-flow signals recorded from human teeth. Arch. Oral Biol. 2003, 48, 353–360. [Google Scholar] [CrossRef]
- Polat, S.; Er, K.; Akpinar, K.; Polat, N. The sources of laser Doppler blood-flow signals recorded from vital and root canal treated teeth. Arch. Oral Biol. 2004, 49, 53–57. [Google Scholar] [CrossRef]
- Miron, M.; Lungeanu, D.; Ciora, E.; Ogodescu, E.; Todea, C. Using Laser Doppler Flowmetry to Evaluate the Therpeutic Response in Dentin Hypersensitivity. Int. J. Environ. Res. Public Health 2020, 17, 8787. [Google Scholar] [CrossRef]
- Setzer, F.C.; Challagulla, P.; Kataoka, S.H.H.; Trope, M. Effect of tooth isolation on laser Doppler readings. Int. Endod. J. 2013, 46, 517–522. [Google Scholar] [CrossRef]
- Ingólfsson, A.R.; Tronstad, L.; Hersh, E.V.; Riva, C.E. Effect of probe design on the suitability of laser Doppler flowmetry in vitality testing of human teeth. Endod. Dent. Traumatol. 1993, 9, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Odor, T.M.; Ford, T.R.; McDonald, F. Effect of probe design and bandwidth on laser Doppler readings from vital and root-filled teeth. Med. Eng. Phys. 1996, 18, 359–364. [Google Scholar] [CrossRef]
- Shimazaki, T.; Shimada, J.; Yamazaki, Y.; Okitsu, M.; Hiranuma, Y.; Eba, M.; Sakamoto, E.; Yamamoto, Y. Measurement of oral and facial blood flow with a laser Doppler flowmeter. 4. Alteration of oral blood flow by position change. Meikai Daigaku Shigaku Zasshi 1989, 18, 302–306. [Google Scholar]
- Roeykens, H.; Van Maele, G.; De Moor, R.; Martens, L. Reliability of laser Doppler flowmetry in a 2-probe assessment of pulpal blood flow. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1999, 87, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Olivi, G.; De Moor, R.; DiVito, E. (Eds.) Lasers in Endodontics: Scientific Background and Clinical Applications, 1st ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 3, pp. 171–190. [Google Scholar]
- Grabliauskienė, Ž.; Zamaliauskienė, R.; Lodienė, G. Pulp Vitality Testing with a Developed Universal Pulse Oximeter Probe Holder. Medicina 2021, 57, 101. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Ye, W.; Yue, J.; Zhao, X.; Zhang, L.; Zhang, L.; Huang, D.; Zheng, Q. Self-repaired Process of a Traumatized Maxillary Central Incisor with Pulp Infarct after Horizontal Root Fracture Monitored by Laser Doppler Flowmetry Combined with Tissue Oxygen Monitor. J. Endod. 2017, 43, 1218–1222. [Google Scholar] [CrossRef]
- Kijsamanmith, K.; Timpawat, S.; Vongsavan, N.; Matthews, B. A comparison between red and infrared light for recording pulpal blood flow from human anterior teeth with a laser Doppler flow meter. Arch. Oral Biol. 2011, 56, 614–618. [Google Scholar] [CrossRef]
- Kane, S.P. Sample Size Calculator. ClinCalc. 2024. Available online: https://clincalc.com/Stats/Samplesize.aspx (accessed on 3 September 2025).
- Martin, L. All You Really Need to Know to Interpret Arterial Blood Gases, 2nd ed.; Lippincot Williams & Wilkins: Philadelphia, PA, USA, 1999; Volume 5, pp. 68–83. [Google Scholar]
- Liu, H.; Kohl-Bareis, M.; Huang, X. Design of an oxygenation monitor and verification on human skin tissue. In Proceedings of the European Conferences on Biomedical Optics, Munich, Germany, 22–26 May 2011; Volume 8087 80871Y-1. [Google Scholar]
- Gopi Krishna, V.; Kandaswamy, D.; Gupta, T. Assessment of the efficacy of an indigeniously developed pulse oximeter dental sensor holder for pulp vitality testing. Indian J. Dent. Res. 2006, 17, 111–113. [Google Scholar] [CrossRef]
- Lambert, P.; Quevedo Miguens, S.A., Jr.; Solda, C.; Sganzerla, J.T.; Reichert, L.A.; Estrela, C.; Barletta, F.B. Reference values for pulp oxygen saturation as a diagnostic tool in endodontics: A systematic review and meta-analysis. Restor. Dent. Endod. 2020, 45, e48. [Google Scholar] [CrossRef]
- Roeykens, H.J.; De Coster, P.; Jacquet, W.; De Moor, R.J. How standard deviation contributes to the validity of a LDF signal: A cohort study of 8 years of dental trauma. Lasers Med. Sci. 2019, 34, 1905–1916. [Google Scholar] [CrossRef]
- Karayilmaz, H.; Kirzioğlu, Z. Comparison of the reliability of laser Doppler flowmetry, pulse oximetry and electric pulp tester in assessing the pulp vitality of human teeth. J. Oral Rehabil. 2014, 38, 340–347. [Google Scholar] [CrossRef]
- Simovic, M.; Pavusek, I.; Ivanisevic Malcic, A.; Jukic, S.; Prpic Mehicic, G.; Matijevic, J. Electric pulp test threshold responses in healthy incisors, canines, premolars and molars. Aust. Endod. J. 2018, 44, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Weissman, J.; Johnson, J.D.; Anderson, M.; Hollender, L.; Huson, T.; Paranjpe, A.; Patel, S.; Cohenca, N. Association between the Presence of Apical Periodontitis and Clinical Symptoms in Endodontic Patients Using Cone-beam Computed Tomography and Periapical Radiographs. J. Endod. 2015, 41, 1824–1829. [Google Scholar] [CrossRef] [PubMed]
- Rubin, D. Comment: The Design and Analysis of Gold Standard Randomized Experiments. J. Am. Stat. Assoc. 2008, 103, 1350–1353. [Google Scholar] [CrossRef]
- Nitzan, M.; Nitzan, I.; Arieli, Y. The Various Oximetric Techniques Used for the Evaluation of Blood Oxygenation. Sensors 2020, 20, 4844. [Google Scholar] [CrossRef]
- Scannapieco, F.A.; Cantos, A. Oral inflammation and infection, and chronic medical diseases: Implications for the elderly. Periodontol. 2000 2016, 72, 153–175. [Google Scholar] [CrossRef]
Criterion | RX | Cold | EP | MOB | Perc | Hot | Total |
---|---|---|---|---|---|---|---|
Non-vital | 17 (14.2%) | 13 (10.8%) | 11 (9.2%) | 0 (0.0%) | 5 (4.2%) | 17 (14.2%) | 24 (20.0%) |
Presumed vital | 103 (85.8%) | 107 (89.2%) | 109 (90.8%) | 120 (100.0%) | 115 (95.8%) | 103 (85.8%) | 96 (80.0%) |
Unique feature | 9 | 3 | 2 | 0 | 3 | 2 |
Mean | SD | N | |||
---|---|---|---|---|---|
LDF | 22.1 | +/− | 8.2 | ||
non-vital | 16.1 | +/− | 11.8 | 24 | |
vital | 23.6 | +/− | 6.3 | 96 | |
SO2 | 85.1% | +/− | 22.0% | ||
not vital | 70.8% | +/− | 31.9% | 24 | |
vital | 88.7% | +/− | 17.1% | 96 |
Test Result Variable (s) | Area | Std. Error a | Asymptotic Sig. b | Asymptotic 95% | Confidence Interval |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
LDF | 0.799 | 0.065 | 0.000 | 0.673 | 0.926 |
SO2 | 0.643 | 0.072 | 0.046 | 0.503 | 0.784 |
EP | 0.773 | 0.064 | 0.000 | 0.648 | 0.898 |
LDF | n | % | Mean | SD |
---|---|---|---|---|
Not sensitive | 9 | 7.5% | 11.5 | 11.6 |
Sensitive | 108 | 90.0% | 23.2 | 7.2 |
Undecided | 3 | 2.5% | 17.0 | 8.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roeykens, H.J.J.; D’haese, R.; Jacquet, W.; De Moor, R.J.G.; Vandeweghe, S. Laser Doppler Flowmetry and Continuous Tissue Oxygenation Monitoring: Best of Vitality Tests? Oral 2025, 5, 83. https://doi.org/10.3390/oral5040083
Roeykens HJJ, D’haese R, Jacquet W, De Moor RJG, Vandeweghe S. Laser Doppler Flowmetry and Continuous Tissue Oxygenation Monitoring: Best of Vitality Tests? Oral. 2025; 5(4):83. https://doi.org/10.3390/oral5040083
Chicago/Turabian StyleRoeykens, Herman J. J., Rani D’haese, Wolfgang Jacquet, Roeland J. G. De Moor, and Stefan Vandeweghe. 2025. "Laser Doppler Flowmetry and Continuous Tissue Oxygenation Monitoring: Best of Vitality Tests?" Oral 5, no. 4: 83. https://doi.org/10.3390/oral5040083
APA StyleRoeykens, H. J. J., D’haese, R., Jacquet, W., De Moor, R. J. G., & Vandeweghe, S. (2025). Laser Doppler Flowmetry and Continuous Tissue Oxygenation Monitoring: Best of Vitality Tests? Oral, 5(4), 83. https://doi.org/10.3390/oral5040083