Epidemiology, Prevalence, and Predictors of Intracranial Hemorrhage with Sickle Cell Anemia †
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source and Population
2.2. Baseline Variables and Comparison Groups
2.3. Statistical Analysis
3. Results
3.1. Baseline Demographics
3.2. Univariate Analysis
3.3. Subgroup Analysis
3.4. Outcomes
3.5. Multivariate Analysis to Derive Predictors of ICH in SCA
3.6. Multivariate Analysis to Derive Predictors of In-Hospital Mortality
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ohene-Frempong, K.; Weiner, S.J.; Sleeper, L.A.; Miller, S.T.; Embury, S.; Moohr, J.W.; Wethers, D.L.; Pegelow, C.H.; Gill, F.M. Cerebrovascular accidents in sickle cell disease: Rates and risk factors. Blood J. Am. Soc. Hematol. 1998, 91, 288–294. [Google Scholar]
- Ataga, K.I.; Orringer, E.P. Hypercoagulability in sickle cell disease: A curious paradox. Am. J. Med. 2003, 115, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Zedde, M.; Quaresima, M.; Capodanno, I.; Grisendi, I.; Assenza, F.; Napoli, M.; Moratti, C.; Pavone, C.; Bonacini, L.; Di Cecco, G.; et al. Neurovascular Manifestations of Sickle Cell Disease. Hemato 2024, 5, 277–320. [Google Scholar] [CrossRef]
- Oyesiku, N.M.; Barrow, D.L.; Eckman, J.R.; Tindall, S.C.; Colohan, A.R. Intracranial aneurysms in sickle-cell anemia: Clinical features and pathogenesis. J. Neurosurg. 1991, 75, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.O.; Goldberg, H.I.; Hodson, A.; Kim, H.C.; Halus, J.; Reivich, M.; Schwartz, E. Effect of transfusion therapy on arteriographic abnormalities and on recurrence of stroke in sickle cell disease. Blood 1984, 63, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Nath, K.A.; Hebbel, R.P. Sickle cell disease: Renal manifestations and mechanisms. Nat. Rev. Nephrol. 2015, 11, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Allali, S.; Taylor, M.; Brice, J.; de Montalembert, M. Chronic organ injuries in children with sickle cell disease. Haematologica 2021, 106, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Birkeland, P.; Gardner, K.; Kesse-Adu, R.; Davies, J.; Lauritsen, J.; Rom Poulsen, F.; Tolias, C.M.; Thein, S.L. Intracranial Aneurysms in Sickle-Cell Disease Are Associated with the Hemoglobin SS Genotype But Not with Moyamoya Syndrome. Stroke 2016, 47, 1710–1713. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Garland, J.S.; Fellah, S.; Reis, M.N.; Parsons, M.S.; Guilliams, K.P.; Fields, M.E.; Mirro, A.E.; Lewis, J.B.; Ying, C.; et al. Intracranial aneurysms in sickle cell disease are associated with hemodynamic stress and anemia. Blood Adv. 2024, 8, 4823–4831. [Google Scholar] [CrossRef] [PubMed]
- Strouse, J.J.; Lanzkron, S.; Urrutia, V. The epidemiology, evaluation and treatment of stroke in adults with sickle cell disease. Expert. Rev. Hematol. 2011, 4, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Dahiya, A.; Alavi, A.; Woldie, I.; Sharma, A.; Karson, J.; Singh, V. Patterns of Blood Transfusion in Sickle Cell Disease Hospitalizations. Hemato 2024, 5, 26–34. [Google Scholar] [CrossRef]
- Fox, C.K.; Leykina, L.; Hills, N.K.; Kwiatkowski, J.L.; Kanter, J.; Strouse, J.J.; Voeks, J.H.; Fullerton, H.J.; Adams, R.J. Hemorrhagic Stroke in Children and Adults with Sickle Cell Anemia: The Post-STOP Cohort. Stroke 2022, 53, e463–e466. [Google Scholar] [CrossRef] [PubMed]
- Kato, G.J.; Hebbel, R.P.; Steinberg, M.H.; Gladwin, M.T. Vasculopathy in sickle cell disease: Biology, pathophysiology, genetics, translational medicine, and new research directions. Am. J. Hematol. 2009, 84, 618. [Google Scholar] [CrossRef] [PubMed]
- Darbari, D.S.; Kple-Faget, P.; Kwagyan, J.; Rana, S.; Gordeuk, V.R.; Castro, O. Circumstances of death in adult sickle cell disease patients. Am. J. Hematol. 2006, 81, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Padilha, I.G.; Guilbert, F.; Létourneau-Guillon, L.; Forté, S.; Nelson, K.; Bélair, M.; Raymond, J.; Soulières, D. Should Magnetic Resonance Angiography Be Used for Screening of Intracranial Aneurysm in Adults with Sickle Cell Disease? J. Clin. Med. 2022, 11, 7463. [Google Scholar] [CrossRef] [PubMed]
- DeBaun, M.R.; Jordan, L.C.; King, A.A.; Schatz, J.; Vichinsky, E.; Fox, C.K.; McKinstry, R.C.; Telfer, P.; Kraut, M.A.; Daraz, L.; et al. American Society of Hematology 2020 guidelines for sickle cell disease: Prevention, diagnosis, and treatment of cerebrovascular disease in children and adults. Blood Adv. 2020, 4, 1554–1588. [Google Scholar] [CrossRef]
- Vojjala, N.; Kyasa, S.B.; Sharma, A.; Kotla, N.K.; Prabhu, R.; Singh, V. Intracranial Bleeding in Adults with Sickle Cell Disease: Unveiling the Hidden Dangers. Blood 2024, 144, 5323. [Google Scholar] [CrossRef]
Baseline Variable | SCA with ICH (n = 825) | SCA Without ICH (n = 467,245) | p-Value |
---|---|---|---|
Age, years(mean) | 44.6 | 34.3 | <0.001 |
18–44 years | 53.9% | 80.8% | |
45–64 years | 30.4% | 16.1% | <0.001 |
≥65 years | 15.7% | 3.1% | |
Gender | |||
Male | 49.7% | 43.2% | 0.100 |
Female | 50.3% | 56.7% | |
Race | |||
Whites | 7.2% | 1.7% | |
African American | 82.4% | 90.2% | |
Hispanics | 4.2% | 4.0% | <0.001 |
Others | 6.0% | 4.1% | |
Charlson comorbidity index | |||
0 | 1.0% | 59.0% | |
1 | 44.0% | 25.0% | <0.001 |
2 | 20.0% | 8.0% | |
≥3 | 35.0% | 8.0% | |
Insurance | |||
Medicare | 44.3% | 33.7% | |
Medicaid | 26.8% | 45.1% | |
Private insurance | 25.0% | 16.9% | <0.001 |
Self-pay/uninsured | 3.7% | 4.1% | |
Household income | |||
Quartile 1 | 38.7% | 51.0% | |
Quartile 2 | 26.2% | 22.7% | 0.009 |
Quartile 3 | 23.7% | 16.2% | |
Quartile 4 | 11.2% | 10.3% | |
Hospital Region | |||
Northeast | 15.7% | 19.1% | |
Midwest | 17.5% | 17.9% | 0.006 |
Southeast | 50.5% | 54.0% | |
West | 16.3% | 8.8% | |
Bed size of a hospital | |||
Small | 10.9% | 17.5% | |
Medium | 23.0% | 26.6% | 0.202 |
Large | 55.8% | 5.5% | |
Type of hospital | |||
Not teaching | 13.3% | 19.0% | 0.080 |
Teaching | 86.7% | 81.0% | |
Location | |||
Rural | 0% | 3.9% | |
Urban | 100% | 97.1% | 0.017 |
Comorbidities | |||
Diabetes mellitus | 8.4% | 6.6% | 0.341 |
HTN | 53.3% | 25.7% | <0.001 |
Active smoking | 29.7% | 27.2% | 0.476 |
CHF | 18.7% | 9.6% | 0.0001 |
Obesity | 5.4% | 7.0% | 0.419 |
CKD | 23.0% | 10.8% | <0.001 |
Dyslipidemia | 12.1% | 4.4% | <0.001 |
CAD | 5.4% | 4.1% | 0.3837 |
Sequelae of CVA | 13.3% | 2.6% | <0.001 |
PAD | 2.4% | 0.08% | 0.028 |
Aortic disease | 1.2% | 0.01% | <0.001 |
Carotid artery dx | 3.6% | 0.2% | <0.001 |
COPD | 5.4% | 3.8% | 0.2997 |
Cirrhosis of the Liver | 2.4% | 1.5% | 0.338 |
Alcohol use disorder | 2.4% | 1.1% | 0.139 |
Hypothyroidism | 4.8% | 2.4% | 0.045 |
Prior stroke | 15.1% | 10.1% | 0.037 |
Pulmonary HTN | 1.2% | 0.6% | 0.384 |
Past DVT/PE | 14.5% | 19.1% | 0.133 |
Atrial fibrillation | 9.01% | 2.01% | <0.001 |
Active cancer | 1.1% | 0.9% | 0.685 |
Baseline Feature | Mean Age (±SE) with HTN or CKD | Mean Age (±SE) Without HTN or CKD | p-Value |
---|---|---|---|
Hypertension | 50.0 (±2.6) | 38.8 (±1.7) | 0.005 |
CKD | 55.5 (±7.8) | 41.2 (±1.5) | 0.07 |
Parameter | SCA ICH Group (n = 825) | SCA-Non-ICH Group (n = 467,245) | p-Value |
---|---|---|---|
Mortality rates | 25.4% | 0.6% | <0.001 |
Mean LOS | 14.9 days | 5.29 days | <0.001 |
Mean total charges | 263,440.5 $ | 43,599.1 $ | <0.001 |
Parameter | Odds Ratio | 95% Confidence Interval |
---|---|---|
Age | 1.0 | 0.9–1.02 |
Female sex | 1.1 | 0.7–1.6 |
Hypertension | 2.08 | 1.2–3.3 |
Prior ischemic stroke | 17.0 | 7.5–38.5 |
Chronic kidney disease | 0.75 | 0.2–2.1 |
Chronic liver disease | 0.97 | 0.42–2.2 |
Type 2 DM | 0.43 | 0.2–1.4 |
Hyperlipidemia | 1.0 | 0.5–2.0 |
Obesity | 0.4 | 0.1–1.1 |
Peripheral arterial disease | 0.5 | 0.1–2.3 |
Coronary artery disease | 0.6 | 0.2–1.5 |
Congestive heart failure | 0.4 | 0.2–1.2 |
Atrial fibrillation | 1.8 | 0.8–3.9 |
Pulmonary hypertension | 0.5 | 0.2–1.1 |
History of DVT | 2.9 | 0.8–10.1 |
History of PE | 1.1 | 0.1–9.7 |
Alcohol use disorder | 1.1 | 0.2–5.0 |
Smoking | 0.9 | 0.6–1.5 |
Charlson comorbidity index | 2.9 | 2.4–3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vojjala, N.; Shah, R.N.; Kattamuri, L.; Moka, N.; Krishnamoorthy, G.; Singh, V. Epidemiology, Prevalence, and Predictors of Intracranial Hemorrhage with Sickle Cell Anemia. Hemato 2025, 6, 37. https://doi.org/10.3390/hemato6040037
Vojjala N, Shah RN, Kattamuri L, Moka N, Krishnamoorthy G, Singh V. Epidemiology, Prevalence, and Predictors of Intracranial Hemorrhage with Sickle Cell Anemia. Hemato. 2025; 6(4):37. https://doi.org/10.3390/hemato6040037
Chicago/Turabian StyleVojjala, Nikhil, Raj N. Shah, Lakshmi Kattamuri, Nagaishwarya Moka, Geetha Krishnamoorthy, and Vijendra Singh. 2025. "Epidemiology, Prevalence, and Predictors of Intracranial Hemorrhage with Sickle Cell Anemia" Hemato 6, no. 4: 37. https://doi.org/10.3390/hemato6040037
APA StyleVojjala, N., Shah, R. N., Kattamuri, L., Moka, N., Krishnamoorthy, G., & Singh, V. (2025). Epidemiology, Prevalence, and Predictors of Intracranial Hemorrhage with Sickle Cell Anemia. Hemato, 6(4), 37. https://doi.org/10.3390/hemato6040037