Molecular Complexity of MDS and AML with Aberrations of Chromosome 7
Abstract
1. Introduction
2. Techniques for Detecting Abnormalities of Chromosome 7 in MDS and AML
3. Chromosome 7 Abnormalities in MDS
3.1. Germline Genetic Factors Predisposing Individuals to Pediatric MDS with Monosomy 7 or del(7q)
3.2. Germline GATA-2 Deficiency
3.3. SAMD9 and SAMD9L Syndromes
3.4. Monosomy 7 and del(7q) in Pediatric Myelodysplastic Syndromes
3.5. Monosomy 7 and del(7q) in Adult MDS Patients
4. Monosomy 7 and del(7q) in AML Patients
4.1. Monosomy 7 and del(7q) in Adult AML Patients
4.2. Monosomy 7 and del(7q) in Pediatric AML Patients
4.3. Chromosome 7 Abnormalities in Therapy-Related Myeloid Neoplasms
5. Pathogenesis of Myeloid Neoplasia with Chromosome 7 Abnormalities
6. Therapy of Myeloid Neoplasms with Chromosome 7 Abnormalities
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haase, D. Cytogenetic features in myelodysplastic syndromes. Ann. Hematol. 2008, 87, 515–526. [Google Scholar] [CrossRef]
- Schiffer, C.A.; Lee, E.J.; Tomiyasu, T.; Wiernik, P.H.; Testa, J.R. Prognostic impact of cytogernetic abnormalities in patients with de novo acute nonlymphocytic leukemia. Blood 1989, 73, 263–270. [Google Scholar] [CrossRef]
- Ogawa, S. Genetics of MDS. Blood 2019, 133, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Freireich, E.J.; Whang, J.; Tjio, J.H.; Levin, R.H.; Brittin, G.M.; Frei, I.E. Refractory anemia, granulocytic hyperplasia of bone marrow, and a missing chromosome in marrow cells. A new clinical syndrome? Clin. Res. 1964, 12, 284. [Google Scholar]
- Gyger, M.; Bonny, Y.Y. Monosomy 7 syndrome. N. Engl. J. Med. 1981, 305, 1155–1156. [Google Scholar]
- Scherer, S.W.; Cheung, J.; MacDonald, J.R.; Osborne, L.R.; Nababayashi, K.; Herbrick, J.A.; Carson, A.R.; Parker-Katiraee, L.; Skang, J.; Khaja, R.; et al. Human chromosome 7: DNA sequence and biology. Science 2003, 300, 767–772. [Google Scholar] [CrossRef]
- Kendrick, T.S.; Buic, D.; Fuller, K.A.; Erber, W.N. Abnormalities in chromosomes 5 and 7 in myelodysplastic syndrome and acute myeloid leukemia. Ann. Lab. Med. 2025, 45, 133–145. [Google Scholar] [CrossRef]
- Hosono, N.; Makishima, H.; Jerez, A.; Yoshida, K.; Przychodzen, B.; McMahon, S.; Shiraishi, Y.; Chiba, K.; Tanaka, H.; Miyano, S.; et al. Recurrent genetic defects on chromosome 7q in myeloid neoplasms. Leukemia 2014, 28, 1348–1351. [Google Scholar] [CrossRef]
- Okada, R.; Ochi, Y.; Saiki, R.; Yamanaka, T.; Terao, C.; Yoshizato, T.; Nakagawa, T.; Zhao, L.; Ohyashiki, K.; Hiramoto, N.; et al. Genetic analysis of myeloid neoplasms with der(1;7)(q10;p10). Leukemia 2025, 39, 760–764. [Google Scholar] [CrossRef] [PubMed]
- Haferlach, C.; Fasan, A.; Meggendorfer, M.; Zenger, M.; Schnittger, S.; Kern, W.; Haferlach, T. Myeloid malignancies with isolated 7q deletion can be further characterized by their accompanying molecular mutations. Blood 2015, 126 (Suppl. 1), 3811. [Google Scholar] [CrossRef]
- Kotmayer, L.; Kennedy, A.L.; Wlodarrski, M.W. Germline and somatic genetic landscape of pediatric myelodysplatic syndromes. Haematologica 2025, 110, 1974–1986. [Google Scholar]
- Wlodarski, M.W.; Hirabayashi, S.; Pator, V.; Stary, J.; Hasle, H.; Moretti, R.; Dworzak, M.; Schmugge, M.; Heuven-Eibrink, M.; Ussawicz, M.; et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood 2016, 127, 1387–1397. [Google Scholar] [CrossRef]
- Kozyra, E.J.; Gohring, G.; Hickstein, D.D.; Calvo, K.R.; DiNardo, C.D.; Dworzak, M.; de Haas, V.; Satry, J.; Hasle, H.; Shimamura, A.; et al. Association of unbalanced translocation der(1;7) with germline GATA2 mutations. Blood 2021, 138, 2441–2445. [Google Scholar] [CrossRef]
- Largeaud, L.; Collin, M.; Monselet, N.; Vergez, F.; Fregona, V.; Larcher, L.; Hirsch, P.; Duployez, N.; Bidet, A.; Luquey, I.; et al. Somatic genetic alterations predict hematological progression in GATA2 deficiency. Haematologica 2023, 108, 1515–1529. [Google Scholar] [CrossRef]
- West, R.R.; Calvo, K.R.; Embree, L.J.; Wang, W.; Tuschong, L.M.; Bauer, T.R.; Tillo, D.; Lack, J.; Droll, S.; Hsu, A.-P.; et al. ASXL1 and STAG2 are common mutations in GATA2 deficiency patients with bone marrow disease and myelodysplastic syndrome. Blood Adv. 2022, 6, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Kotmayer, L.; Kozyra, E.J.; Kong, G.; Strahm, B.; Yoshimi, A.; Sahoo, S.S.; Pastor, V.B.; Attardi, E.; Voss, R.; Vinci, L.; et al. Age-dependent phenotypic and molecular evolution of pediatric MDS arising from GATA2 deficiency. Blood Cancer J. 2025, 15, 121. [Google Scholar] [CrossRef] [PubMed]
- Menendez-Gonzalez, J.B.; Vukovic, M.; Abdelfattah, A. GATA2 is a critical regulator of stem cells in adult hemeatopoiesis and acute myeloid leukemia. Stem Cell Rep. 2019, 13, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Hahn, C.N.; Chang, C.E.; Carmichael, C.L.; Wilkins, E.J.; Brautigan, P.J.; Li, X.C.; Bubic, M.; Lin, M.; Carmignac, A.; Lee, Y.K.; et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat. Genet. 2012, 43, 1012–1017. [Google Scholar] [CrossRef]
- Al Serahi, A.F.; Rio-Machin, A.; Tawana, K.; Bodor, C.; Wang, J.; Nagano, A.; Heward, J.A.; Iqbal, S.; Best, S.; Lea, N.; et al. GATA2 monoallelic expression underlies reduced penetrance in inherited GATA2-mutated MDS/AML. Leukemia 2018, 32, 2502–2507. [Google Scholar] [CrossRef]
- Ellingford, J.M.; Telford, N.; Uzqubart, J.; Will, A.M.; Bonney, D.; Adams, B.; Dixon, R.; Kerr, B.; Block, G.C.; Wynn, R.F.; et al. High penetrance of myeloid neoplasia with diverse clinical and cytogenetic features in three siblings with a familial GATA2 deficiency. Cancer Genet. 2021, 257, 77–80. [Google Scholar] [CrossRef]
- Fernandze-Orth, J.; Kotylar, C.; Weiss, J.M.; Gioacchino, E.; de Looper, H.; Endrieux, G.; Ter Borg, M.; Zink, J.; Gonzalez-Menendez, I.; Hoogenboezem, R.; et al. Hematological phenotypes in GATA2 deficiency syndrome arise from secondary injuries and maladaptation to proliferation. Blood Adv. 2025, 9, 2794–2807. [Google Scholar] [CrossRef]
- Katsumura, K.R.; Liu, P.; Kim, J.; Mehta, C.; Bresnick, E.H. Pathogenic GATA2 genetic variants utilize an obligate enhancer mechanism to distort a multilineage differentiation program. Proc. Natl. Acad. Sci. USA 2024, 121, e2317147121. [Google Scholar] [CrossRef]
- Johnson, K.D.; Soukup, A.A.; Bresnick, E.H. GATA2 deficiency elevates interferon regulatory factor-8 to subvert a progenitor cell differentiation program. Blood Adv. 2022, 6, 1464–1473. [Google Scholar] [CrossRef]
- Sahoo, S.S.; Erlacher, M.; Wlosarski, M.W. Genetic and clinical spectrum of SAMD9 and SAMD9L syndromes: From variant interpretation to patients’ management. Blood 2025, 145, 475–485. [Google Scholar] [CrossRef]
- Schwartz, J.R.; Wang, S.; Ma, J.; Lamprecht, T.; Song, G.; Raimondi, S.C.; Wu, G.; Walsh, M.F.; McGee, R.B.; Kesserwan, C.; et al. Germline SAMD9 mutation is sibling with monosomy 7 and myelodysplastic syndrome. Leukemia 2017, 31, 1827–1830. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.R.; Ma, J.; Lamprecht, T.; Walsh, M.; Wang, S.; Brisnt, V.; Sarg, G.; Wu, G.; Eastan, J.; Kesserwan, C.; et al. The genomic landscape of pediatric myelodysplastic syndromes. Nat. Commun. 2017, 8, 1557. [Google Scholar] [CrossRef] [PubMed]
- Pastor, V.B.; Sahoo, S.S.; Boklan, J.; Schwabe, J.C.; Saibryoglu, E.; Strahm, B.; Labrecht, D.; Voss, M.; Bryceson, Y.T.; Erlacher, M.; et al. Constitutional mutations cause familial myelodysplastic syndrome and transient monosomy 7. Haematologica 2018, 103, 427–437. [Google Scholar] [CrossRef]
- Sahoo, S.S.; Pastor, V.B.; Goodings, C.; Voss, R.K.; Kozyra, E.J.; Szvetinik, A.; Noellke, P.; Dworzak, M.; Stary, J.; Locatelli, F.; et al. Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. Nat. Med. 2021, 27, 1806–1817. [Google Scholar] [CrossRef]
- Bluteau, O.; Sebert, M.; Leblanc, T.; Peffault de la Tour, R.; Quentin, S.; Luney, E.; Hernandez, L.; Dalle, J.H.; Sicre de Fantbrune, F.; Itkynson, R.; et al. A landscape of germline mutations in a cohort of inherited bone marrow failure patients. Blood 2018, 131, 717–732. [Google Scholar] [CrossRef] [PubMed]
- Tesi, B.; Davidson, J.; Voss, M.; Rahikkala, E.; Holmes, T.D.; Chiang, S.; Komulainen-Ebrahim, K.; Gorcenco, S.; Rundberg Nilsson, A.; Ripperberger, T.; et al. Gain-of-function SAMD9L mutations cause a syndrome of cytopenia, immudeficiency, MDS, and neurological symptoms. Blood 2017, 129, 2266–2279. [Google Scholar] [CrossRef]
- Wong, J.C.; Bryant, V.; Lamporecht, T.; Ma, J.; Waish, M.; Schwartz, J.; Alzamora, M.; Mullighan, C.G.; Ribeiro, R.; Downing, J.R.; et al. Germline SAMD9 and SAMD9L mutations are associated with extensive genetic evolution and diverse hematologic outcomes. JCI Insight 2018, 3, e121086. [Google Scholar] [CrossRef]
- Erlacher, M.; Andresan, F.; Sukova, M.; Stary, J.; de Morelose, B.; van der Werff Ten Bosch, J.; Dworzak, M.; Seidel, M.G.; Polychronopoulou, G.; Beier, R.; et al. Spontaneous remission and loss of monosomy 7: A window of opportunity for young children with SAMD9L syndrome. Haematologica 2024, 109, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y.; Nanumi, S.; Guan, Y.; Przychodzen, B.P.; Hirsch, C.M.; Makishiuma, H.; Shima, H.; Aly, M.; Pastor, V.; Kuzmanovic, T.; et al. Germline loss-of-function SAMD9 and SAMD9L alterations in adult myelodysplastic syndromes. Blood 2018, 132, 2309–2313. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.E.; Abdelhamed, S.; Hiltebrand, R.; Schwartz, J.R.; Sakurada, S.M.; Walsh, M.; Song, G.; Ma, J.; Pruett, M.; Klco, J.M. Pedaitric MDS and bone marrow failure-associated germline mutations in SAMD9 and SAMD9L impair multiple pathways in primary hemartopoietic cells. Leukemia 2021, 35, 3232–3244. [Google Scholar] [CrossRef]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.; Bejar, R.; Berti, E.; Busquet, L.; Chau, J.; et al. The 5th edition of the World Health Organization Classification og hematolymphoid tumors: Myeloid and histiocytic/dendritic neoplasms. Leuekemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of myeloid neoplasms and acute leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Rudelius, M.; Weinberg, O.K.; Niemeyer, C.M.; Shimamura, A.; Calvo, K.R. The International Consensus Classification (ICC) of hematologic neoplasms with germline predisposition, pediatric myelodysplastic syndrome and juvenile myelomonocytic leukemia. Virchows Arch. 2023, 482, 113–130. [Google Scholar] [CrossRef]
- Pastor, V.; Hirabayashi, S.; Karow, A.; Wehrle, J.; Kozyra, E.J.; Nienhold, R.; Ruzaike, G.; Labrecht, D.; Yoshimi, A.; Nievisch, M.; et al. Mutational landscape in children with myelodysplastic syndromes is distinct from adults: Specific somatic drivers and novel germline variants. Leukemia 2017, 31, 759–762. [Google Scholar] [CrossRef]
- Hasle, H.; Maseth, R.; Pastor Loyola, V.B.; Karow, A.; Catala, A.; DeMoerloose, B.; Dworbak, M.; Hasle, H.; Mosetti, R.; Schmugge, M.; et al. Clonal mutational landscape of childhood myelodysplastic syndromes. Blood 2015, 126 (Suppl. 1), 1162. [Google Scholar] [CrossRef]
- Kardos, G.; Baumann, I.; Panmore, S.J.; Locatelli, F.; Hasle, H.; Schultz, K.R.; Starý, J.; Schmitt-Graeff, A.; Fischer, A.; Harbott, J.; et al. Refractory anemias in childhood: A retrospective analysis of 67 patients with particular reference to monosomy 7. Blood 2003, 102, 1997–2003. [Google Scholar] [CrossRef]
- Haase, D.; Stevenson, K.E.; Neuberg, D.; Maciejewski, J.P.; Nazha, A.; Sekeres, M.A.; Ebert, B.L.; Garcia-Manero, G.; Haferlach, C.; Haferlach, T.; et al. TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia 2019, 33, 1747–1758. [Google Scholar] [CrossRef]
- Crisà, E.; Kulasekararaj, A.G.; Adema, V.; Such, E.; Shanz, J.; Haase, D.; Shirenshan, K.; Best, S.; Milan, S.A.; Kizilors, A.; et al. Impact of somatic mutations in myelodysplastic patients with isolated partial ot total loss of chromosome 7. Leukemia 2020, 34, 2441–2450. [Google Scholar] [CrossRef]
- Bernard, E.; Hasserjian, R.P.; Greenberg, P.L.; ArangoOssa, J.E.; Creigns, M.; Tuechler, H.; Gutierez-Abril, J.; Domenico, D.; Medina-Martinez, J.S.; Levine, M.; et al. Molecular taxonomy of myelodysplastic syndromes and its clinical implications. Blood 2024, 144, 1617–1632. [Google Scholar] [CrossRef]
- Cazzola, M. Myelodysplastic syndromes. N. Engl. J. Med. 2020, 383, 1358–1374. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Mahapatra, M.; Saxena, R. Cytogenetics’ impact on the prognosis of acute myeloid leukemia. J. Lab. Physicians 2019, 11, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.M.; Kubota, Y.; Durmaz, A.; Goosdings, C.; Adema, V.; Ponwuilawars, B.; Bahaj, W.S.; Kawan, T.; La Framboise, T.; Meggendorfer, M.; et al. Genomics of deletion 7 and 7q in myeloid neoplasm: From pathogenic culprits to potential synthetic lethal therapeutic targets. Leukemia 2023, 37, 2082–2093. [Google Scholar] [CrossRef] [PubMed]
- Hasle, H.; Alonzo, T.A.; Auivrignon, A.; Behar, C.; Chang, M.; Creutzig, U.; Fischer, A.; Forestier, E.; Fynn, A.; Haas, O.A.; et al. Monosomy 7 and deletion 7q in children and adolescents with acute myeloid leukemia: An international retrospective study. Blood 2007, 109, 4641–4647. [Google Scholar] [CrossRef]
- McNerney, N.E.; Brown, C.D.; Peterson, A.L.; Banejee, M.; Lçrson, R.A.; Anastasi, J. The spectrum of somatic mutations in high-risk acute myeloid leukemia with -7/del(7q). Br. J. Haematol. 2014, 166, 550–556. [Google Scholar] [CrossRef]
- Grob, T.; AlHinai, A.S.A.; Sanders, M.A.; Kavelaars, F.G.; Rijken, M.; Gradowska, P.L. Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood 2022, 139, 2347–2354. [Google Scholar] [CrossRef]
- Eisfeld, A.K.; Kolschdmioth, J.; Mrózek, K.; Volinia, S.; Blachly, J.S.; Nicolet, D.; Oakes, C.; Krill, K.; Orwick, S.; Carrol, A.J.; et al. Mutational landscape and gene expression patterns in acute myeloid leukemias with monosomy 7 as a sole abnormality. Clin. Cancer Res. 2017, 77, 207–218. [Google Scholar] [CrossRef]
- Halik, A.; Tilgner, M.; Silva, P.; Estrada, N.; Attwasser, R.; Jahn, E.; Heuser, M.; Hou, H.A.; Protcorona, M.; Hills, R.K.; et al. Genomic characterization of AML with aberrations of chromosome 7: A multinational cohort of 519 patients. J. Hematol. Oncol. 2024, 17, 70. [Google Scholar] [CrossRef]
- Mrozek, K.; Eisfeld, A.K.; Kohlschmidt, J.; Carroll, A.J.; Walker, C.J.; Nicolet, D.; Blachly, J.S.; Bill, M.; Papaioannu, D.; Wang, E.S.; et al. Complex karyotype in de novo acute myeloid leukemia: Typical and atypical subtypes differ molecularly and clinically. Leukemia 2019, 33, 1620–1634. [Google Scholar] [CrossRef]
- Kugler, E.; Enes, D.; Bataller, A.; Wang, B.; DiNardo, C.; Daver, N.; Yilmaz, M.; Short, N.J.; Borthakur, G.; Kadia, T.M.; et al. Mutation dynamics from diagnosis to relapse in acute myeloid leukemia with chromosomal 7 deletions. Leuk. Lymphoma 2025, 66, 1221–1233. [Google Scholar] [CrossRef] [PubMed]
- Rucker, F.G.; Schlenk, R.F.; Bullinger, L.; Kayser, S.; Teleanu, V.; Kett, H.; Habdank, M.; Kugler, C.M.; Holzmann, K.; Gaidzik, V.I.; et al. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood 2012, 119, 2114–2121. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.A.; Ayoub, E.; Sun, H.; Kasnagal-Shamanna, R.; Short, N.J.; Issa, G.; Yilmaz, M.; Pierce, S.; Rivera, D.; Chan, B.; et al. Clinical and molecular profiling of AML patients with chromosome 7 or 7q deletions in the context of TP53 alterations and venetoclax treatment. Leuk. Lymphoma 2022, 63, 3105–3116. [Google Scholar] [CrossRef]
- Fleming, S.; Tsai, X.C.H.; Morris, R.; Hou, H.A.; Wei, A.H. TP53 status and impact on AML prognosis within the ELN 2022 risk classification. Blood 2023, 142, 2029–2033. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Gao, S.; Wu, Z.K.; Ajigaya, S.; Feng, X.; Liu, C.; Townsley, D.M.; Cooper, J.; Chen, J.; Keyvanfer, K.; et al. Single-cell RNA-seq reveals a distinct transcriptome signature of aneuploid hematopoietic cells. Blood 2017, 130, 2762–2773. [Google Scholar] [CrossRef]
- Kaur, A.; Rajek, A.E.; Syymes, E.; Nawas, M.T.; Patel, A.A.; Patel, J.L.; Sejitra, P.; Aqil, B.; Sukhanova, M.; McNerney, M.E.; et al. Real-wold predictors of response and 24-month survival in high-grade TP53-mutated myeloid neoplasms. Blood Cancer J. 2024, 14, 99. [Google Scholar] [CrossRef]
- Breems, D.A.; van Patten, V.L.; DeGreef, G.E. Monosomal karyotype in acute myeloid leukemia: A better indicator of poor prognostication for a complex karyotype. J. Clin. Oncol. 2008, 26, 4791–4797. [Google Scholar] [CrossRef]
- Kayser, S.; Zucknick, M.; Dohner, K.; Krauter, J.; Kohne, C.H.; Harst, H.A.; Held, G.; von Lillenfeld-Toal, M.; Wihelm, S.; Rummel, Y.; et al. Monosomal karyotype in adult myeloid leukemia: Prognostic impact and outcome after treatment strategies. Blood 2021, 119, 551–558. [Google Scholar] [CrossRef]
- Wangulu, C.; Hezaveh, E.B.; Zarif, M.; Zhou, Q.; Lu, W.; Wei, C.; Sibai, H.; Chang, H. Genomic profile and clinical outcomes in acute myeloid leukemia with monosomal karyotype. Int. J. Mol. Sci. 2025, 29, 5845. [Google Scholar] [CrossRef]
- Jang, J.E.; Min, Y.H.; Kim, I.; Lee, J.H.; Shin, H.J.; Lee, W.S.; Hong, D.S.; Kim, H.J.; Kim, H.J.; Park, S.; et al. Single monosomy as a relatively better survival factor in acute myeloid leukemia patients with monosomal karyotype. Blood Cancer J. 2015, 5, e358. [Google Scholar] [CrossRef]
- Hasle, H.; Aricò, M.; Basso, G.; Biondi, A.; Rajnoldi, A.C.; Creutzing, U.; Fenu, S.; Fonatsch, C.; Haas, O.A.; Harbott, J.; et al. Myelodysplastic syndrome, juvenile myelomonocytic leukemia, and acute myeloid leukemia associated with complete or partial monosomy 7. European Working Group on MDS in Childhood (EWOG-MDS). Leukemia 1999, 13, 376–385. [Google Scholar] [CrossRef]
- Ries, R.E.; Triche, T.J.; Smith, J.L.; Leonti, A.R.; Alonzo, T.A.; Farrar, J.E.; Chen, X.; Liu, Y.; Shaw, T.; Huang, B.J.; et al. Genome and transcriptome profiling of monosomy 7 AML defines novel risk and therapeutic cohorts. Blood 2020, 136 (Suppl. 1), 20. [Google Scholar] [CrossRef]
- Westover, T.; Walsh, M.P.; Abdelhamed, S.; Xiong, E.; Ma, J.; Song, G.; Thomas, M.E., III; Umeda, M.; Maciaszec, J.L.; Wong, J.C.; et al. Genomic landscape and clonal architecture in pediatric myeloid neoplasms with chromosome 7 deletions. Blood Neoplasia 2025, 2, 1–5. [Google Scholar] [CrossRef]
- Sharma, A.; Gallimard, J.E.; Pryce, A.; Bhoopalan, S.V.; Dalissier, A.; Dalle, J.H.; Locatelli, F.; Jubert, C.; Micri-Danicor, O.; Kitra-Roussou, V.; et al. Cytogenetic abnormalities predict survival after allogeneic hematopoiertic stem cell transplantation for pediatric acute myeloid leukemia: A PDWP/EBMT study. Bone Marrow Transplant. 2024, 59, 451–458. [Google Scholar] [CrossRef]
- McNerney, M.E.; Godley, L.A.; Le Beau, M.A. Therapy-related myeloid neoplasms: When genetic and environment collide. Nat. Rev. Cancer 2017, 17, 513–527. [Google Scholar] [CrossRef]
- Voso, M.T.; Falconi, G.; Fabiani, E. What’s new in the pathogenesis and treatment of therapy-related myeloid neoplasms. Blood 2021, 138, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Singhal, D.; Kutyna, M.M.; Hahn, C.N.; Shah, M.V.; Hiwase, D.K. Therapy-related myeloid neoplasms: Complex interactions among cytotoxic therapies, genetic factora, and aberrant microenvironment. Blood Cenecer Discov. 2024, 5, 400–416. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; LeBeau, M.; Huo, D.; Karrison, T.; Sotecks, R.M.; Anastasi, J.; Vardiman, J.W.; Rowly, J.D.; Larson, R.A. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: The University of Chicago series. Blood 2003, 103, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.V.; Tran, E.; Shah, S.; Chhetri, R.; Barankal, A.; Ladon, D.; Shultz, C.; Al-kali, A.; Brown, A.L.; Chen, D.; et al. TP53 mutation variant allele frequency of ≥10% is associated with poor prognosis in therapy-related myeloid neoplasms. Blood Cancer J. 2023, 13, 51. [Google Scholar] [CrossRef]
- Buo, Z.; Li, B.; Qin, T.; Xu, Z.; Qu, S.; Jia, Y.; Li, C.; Pan, L.; Gao, Q.; Jiao, M.; et al. Molecular characetristics and clinical implications of TP53 mutations in therapy-related myelodysplastic syndromes. Blood Cancer J. 2025, 5, 58. [Google Scholar] [CrossRef]
- Davoli, T.; Xu, A.W.; Mengwasser, K.E.; Sack, L.M.; Yean, J.C.; Park, P.J.; Elledge, S.J. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 2013, 155, 948–962. [Google Scholar] [CrossRef] [PubMed]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- McNerney, M.E.; Brown, C.D.; Wang, X.; Barton, E.T.; Karmakar, S.; Bandlamudi, C.; Yu, S.; Ko, J.; Sandall, B.P.; Stricker, T.; et al. CUX1 is a haploinsufficient tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia. Blood 2013, 121, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Aly, M.; Ramdzan, Z.; Nagata, Y.; Balabrusamanina, S.K.; Honono, N.; Makishima, H.; Visconte, V.; Kuzmanovic, T.; Adema, V.; Nuzha, A.; et al. Distinct clinical and biological implications of CUX1 in meyloid neoplasms. Blood Adv. 2019, 3, 2164–2172. [Google Scholar] [CrossRef]
- An, N.; Khan, S.; Imgruet, M.K.; Gurbuxani, S.K.; Konecki, S.N.; Burgess, M.R.; McNerney, M.E. Gene dosage effect of CUX1 in a muirine model disruptrs HSC homeostasis and controls the severity and mortality of MDS. Blood 2018, 131, 2682–26976. [Google Scholar] [CrossRef] [PubMed]
- Supper, E.; Rudat, S.; Ieyr, V.; Droop, A.; Wong, K.; Spinella, J.F.; Thomas, P.M.; Savageau, G.; Aìdams, D.J.; Wong, C.C. Cut-like homeobox 1 (CUX1) tumor suppressor gene haploinsufficiency induces apoptosis evasion to sustain myeloid leukemia. Nat. Commun. 2021, 12, 2482. [Google Scholar] [CrossRef] [PubMed]
- Jotte, M.; Steddart, A.; Martinez, T.C.; Moten, R.; Xue, Y.; Imgruet, M.; Blayylock, H.; Nam, H.; Hu, B.; Austin, J.; et al. Multiplex gene editing models of del(7q) revea combined CUX1 and EZH2 loss drives clonal expansion and drug resistance. Blood Neoplasia 2025, 2, 1–17. [Google Scholar] [CrossRef]
- An, N.; Khan, S.; Imgruet, M.K.; Jueng, L.; Gurbuxani, S.; McNerney, M.E. Oncogenic RAS promotes leukemic transformation of CUX1-deficient cells. Oncogene 2023, 42, 881–893. [Google Scholar] [CrossRef]
- Wong, J.C.; Weinfurtner, K.M.; Alzamore Mdel, P.; Kogan, S.C.; Burgess, M.R.; Zhang, Y.; Nakitandwe, J.; Ma, J.; Cheng, J.; Chen, S.C.; et al. Functional evidence implicating chromosome 7q22 haploinsufficiency in myelodysplastic syndrome pathogenesis. eLife 2015, 4, e07839. [Google Scholar] [CrossRef]
- Wong, J.C.; Weinfurtner, K.M.; Westover, T.; Nim, J.; Lebish, E.J.; Alzamora, M.; Huang, B.J.; Walsh, M.; Abdelòhamed, S.; Ma, J.; et al. 5G3 mice model loss of a commonly deleted segment of chromosome 7q22 in myeloid malignancies. Leukemia 2024, 38, 1182–1186. [Google Scholar] [CrossRef]
- Boulignyy, I.; Murrayy, G.; Ho, T.; Gor, J.; Zacholski, K.; Wages, N.; Grant, S.; Maher, K. CUX1mut acute myeloid leukemia as a distinct biological entity: An analysis of clinical outcomes and implications. Blood 2023, 142 (Suppl. 1), 5978–5979. [Google Scholar] [CrossRef]
- Gao, T.; Ptashkin, R.; Bolton, K.L.; Sirenko, M.; Fong, C.; Spitzer, B.; Megheriani, K.; Arango Ossa, J.E.; Zhou, Y.; Bernard, E.; et al. Interplay between chromosomal alterations and gene mutations shapes the evolutionary trajectory of clonal hematopoiesis. Nat. Commun. 2021, 12, 338. [Google Scholar] [CrossRef]
- Saiki, R.; Momozawa, Y.; Nannya, Y.; Nakgawa, M.; Ochi, Y.; Ypshizato, T.; Terao, T.; Terao, C.; Kurda, Y.; Shiraishi, T.; et al. Combined landscape of single-nucleotide variants and copy number alterations in clonal hematopoiesis. Nat. Med. 2021, 27, 1239–1249. [Google Scholar] [CrossRef]
- Yoshizato, T.; Dumutriu, B.; Hosokawa, K.; Makishima, H.; Yoshida, K.; Townlers, D.; Sat-Otserbo, A.; Sato, Y.; Liu, D.; Suziki, H.; et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N. Engl. J. Med. 2015, 373, 35–47. [Google Scholar] [CrossRef]
- Zink, F.; Stacey, S.N.; Norddahl, G.L.; Frigge, M.L.; Magnusson, O.T.; Jonsdottir, I.; Thorgeirsson, T.E.; Sigurdsson, A.; Gudjonsson, S.A.; Gudmundsson, J.; et al. Clonal hematopoiesis with and without candidate driver mutations is common on the elderly. Blood 2017, 130, 742–752. [Google Scholar] [CrossRef]
- Robertson, N.A.; Latorre-Crespo, E.; Terradas-Terradas, M.; Lemos-Portela, J.; Purcell, A.C.; Livesey, B.J.; Hillary, R.F.; Murphy, L.; Fawkes, A.; MacGillivray, L.; et al. Longitudinal dynamics of clonal hematopoiesis identifies gene-specific fitness effects. Nat. Med. 2022, 28, 1439–1446. [Google Scholar] [CrossRef]
- Jotte, M.; McNerney, M. The significance of CUX1 and chromosome 7 in myeloid malignancies. Curr. Opin. Hematol. 2022, 29, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Leppa, A.M.; Grimes, K.; Jeong, H.; Huang, F.Y.; Andrades, A.; Waclawiczek, A.; Boch, T.; Janch, A.; Renders, S.; Stelmach, P.; et al. Single-cell multiomics analysis reveals dynamic clonal evolution and targetable phenotypes in acute myeloid leukemia with complex karyotype. Nat. Genet. 2024, 56, 2790–2803. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Hu, S.; Loghavi, S.; Toruner, G.A.; Ravandi-Kashani, F.; Tang, Z.; Li, S.; Xu, J.; Daver, N.; Madeiros, J.; et al. Chromoangiogenesis is frequently associated with highly complex karyotypes, extensive clonal heterogeneity, and treatment refractoriness in acute myeloid leukemia. Am. J. Hematol. 2025, 100, 417–426. [Google Scholar] [CrossRef]
- Lontos, K.; Saliba, R.M.; Kanagal-Shamanna, R.; Ozcan, G.; Ramdial, J.; Chen, G.; Kadia, T.; Short, N.J.; Daver, N.G.; Kantarjian, H.; et al. TP53-mutant allele frequency and cytogenetics determine prognostic groups in MDS/AML for transplantation. Blood Adv. 2025, 9, 2845–2854. [Google Scholar] [CrossRef]
- Sollier, E.; Riedel, A.; Toprak, U.; Wierbinska, J.; Weichenan, O.; Schmid, J.P.; Hakobyan, M.; Touzart, A.; Jahn, E.; Vick, B.; et al. Enhancer hijacking discovery in acute myeloid leukemia by Pyjacker identifies MNX1 activation via deletion 7q. Blood Cancer Discov. 2025, 6, 343–363. [Google Scholar] [CrossRef]
- Boussi, L.; Bewersdorf, P.; Liu, Y.; Shallis, R.M.; Aguirre, L.E.; Zucenka, A.; Garciaz, S.; Bystrom, R.P.; DeAngelo, D.; Stone, R.M.; et al. Outcomes with HMA plus venetoclax vs intensive chemotherapy in AML patients with chromosome 5 and 7 abnormalities. Blood 2024, 144 (Suppl. 1), 4281–4283. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, J.H.; Lee, J.; Park, H.S.; Choi, E.J.; Jo, J.C.; Lee, Y.J.; Lee, Y.S.; Kang, Y.A.; Lee, K.H. Monosomal karyotype affecting outcomes of allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia in first complete remission. EUR J. Hematol. 2020, 108, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Bazarbachi, A.; Galimard, J.E.; Dalle, I.A.; Sociè, G.; Versluis, J.; Wu, D.; Eder, M.; Labussière-Wallet, H.; Yakub-Agha, I.; Maerten, J.; et al. Challenging the adverse label: Diverse outcomes of ELN2022 adverse cytogenetic subgroups in acute myeloid leukemia patients allografted in first remission: From EBMT ALWP. Am. J. Hematol. 2025, 100, 1374–1386. [Google Scholar] [CrossRef]
- Eldfors, S.; Saad, J.; Ikonen, N.; Malani, D.; Vaha-Hoskela, M.; Gjersten, B.T.; Kontro, M.; Porkka, K.; Heekman, C.A. Monosomy 7/del(7q) cause sensitivity to inhibitors of nicotinanimide phosphoribosyltransferase in acute myeloid leukemia. Blood Adv. 2024, 8, 1621–1633. [Google Scholar] [CrossRef] [PubMed]
- Senagolage, M.D.; Blaylock, H.Z.; Khan, S.; Skuli, S.J.; Carroll, M.P.; McNerney, M.E. NAMPT Haploinsufficiency is a Collateral Lethat Therapeutic Vulnerability in High-Risk Myeloid Malignancies with TP53 Inactivation. Blood Neoplasia 2025, 2, 100119. [Google Scholar] [CrossRef] [PubMed]
- Kunimoto, H.; Muira, A.; Sagisaka, M.; Ito, M.; Menosono, R.; Yamauchi, H.; Nishimura, K.; Honma, D.; Tsutsumi, S.; Adachi, A.; et al. PRC2-mediated apoptosis evasion is a therapeutic target of MDS/AML harboring inv(3)/t(3;3) and monosomy 7. Hemasphere 2025, 9, e70149. [Google Scholar] [CrossRef]
- Greenberg, P.L.; Tuechler, H.; Schanz, J.; Sanz, G.; Garcia-Manero, G.; Solé, F.; Bennett, J.M.; Bowen, D.; Fenaux, P.; Dreyfus, F.; et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 2012, 120, 2454–2465. [Google Scholar] [CrossRef]
- Bernard, E.; Tuechler, H.; Greenberg, P.L.; Hasserjian, R.P.; Arongo Ossa, J.E.; Nannya, Y.; Devlin, S.M.; Creignou, M.; Pinel, P.; Monnier, L.; et al. Molecular international prognostic scoring system for myelodysplastic syndromes. NEJM Evid. 2022, 1, EVIDoa22000008. [Google Scholar] [CrossRef]
- Gurnari, C.; Robin, M.; Adès, L.; Aljuf, M.; Almeida, A.; Duarte, F.B.; Bernard, E.; Cutler, C.; Della Porta, M.G.; De Witta, T.; et al. Clinical-genomic profiling of MDS to inform allo-HCT: Recommendations from an international panel on behalf of the EBMT. Blood 2025, 145, 1987–2001. [Google Scholar] [CrossRef]
- Gurnari, C.; Gagelmann, N.; Badbaran, A.; Awada, H.; Dima, D.; Pagliuca, S.; D’Aveni-Piney, M.; Attardi, E.; Voso, M.T.; Cerretti, R.; et al. Outcome prediction in myelodysplastic neoplasm undergoing hematopoietic cell transplant in the molecular era of IPSS-M. Leukemia 2023, 37, 717–719. [Google Scholar] [CrossRef] [PubMed]
- Cutler, C. Revisiting timing and decision modeling for allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes. J. Clin. Oncol. 2024, 42, 2843–2848. [Google Scholar] [CrossRef] [PubMed]
- Van Gelder, M.; de Weede, L.C.; van Biezen, A.; Volin, L.; Maertens, J.; Robin, M.; Petersen, E.; de Witte, T.; Kroger, N.; on behalf of EBMT for Chronic Malignancies Woking Party. Mononomial karyotype predicts poor survival after allogeneic stem cell transplantation in chromosome 7 abnormal myelodysplastic syndrome and secondary acute myeloid leukemia. Leukemia 2013, 27, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Versluis, J.; Saber, W.; Tsai, H.K.; Gibson, C.J.; Dillon, L.W.; Mishra, A.; McGiurk, J.; Maziarz, R.T.; Westervelt, P.; Hedge, P.; et al. Allogeneic hematopoietic cell transplantation improves outcome in myelodysplastic syndrome across high-risk genetic subgroups: Genetic analysis of the blood and bone marrow transplant clinical trials network 1102 study. J. Clin. Oncol. 2023, 41, 4497–4510. [Google Scholar] [CrossRef]
- Kroger, N. Treatment of high-risk myelodysplastic syndromes. Haematologica 2025, 110, 339–350. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Testa, U.; Pelosi, E.; Castelli, G. Molecular Complexity of MDS and AML with Aberrations of Chromosome 7. Hemato 2025, 6, 34. https://doi.org/10.3390/hemato6030034
Testa U, Pelosi E, Castelli G. Molecular Complexity of MDS and AML with Aberrations of Chromosome 7. Hemato. 2025; 6(3):34. https://doi.org/10.3390/hemato6030034
Chicago/Turabian StyleTesta, Ugo, Elvira Pelosi, and Germana Castelli. 2025. "Molecular Complexity of MDS and AML with Aberrations of Chromosome 7" Hemato 6, no. 3: 34. https://doi.org/10.3390/hemato6030034
APA StyleTesta, U., Pelosi, E., & Castelli, G. (2025). Molecular Complexity of MDS and AML with Aberrations of Chromosome 7. Hemato, 6(3), 34. https://doi.org/10.3390/hemato6030034