SARS-CoV-2 and Autoimmune Cytopenia
Abstract
:1. Introduction
2. COVID-19 and Activation of the Immune System
3. SARS-CoV-2 Infection in Patients with History of Autoimmune Disease
4. SARS-CoV-2 as a Trigger for Development of Autoimmune Cytopenia
4.1. SARS-CoV-2 and AIHA
4.2. SARS-CoV-2 and ITP
4.3. COVID-19 Vaccination and Autoimmune Cytopenia
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- COVID-19 Map. Johns Hopkins Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/map.html (accessed on 31 May 2021).
- Nishiura, H.; Kobayashi, T.; Miyama, T.; Suzuki, A.; Jung, S.-M.; Hayashi, K.; Kinoshita, R.; Yang, Y.; Yuan, B.; Akhmetzhanov, A.R.; et al. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int. J. Infect. Dis. 2020, 94, 154–155. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Esmaeilzadeh, A.; Elahi, R. Immunobiology and immunotherapy of COVID-19: A clinically updated overview. J. Cell. Physiol. 2021, 236, 2519–2543. [Google Scholar] [CrossRef] [PubMed]
- Smatti, M.K.; Cyprian, F.S.; Nasrallah, G.K.; Al Thani, A.A.; Almishal, R.O.; Yassine, H.M. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses 2019, 11, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cines, D.B.; Liebman, H.; Stasi, R. Pathobiology of Secondary Immune Thrombocytopenia. Semin. Hematol. 2009, 46, S2–S14. [Google Scholar] [CrossRef] [PubMed]
- Smalisz-Skrzypczyk, K.; Romiszewski, M.; Matysiak, M.; Demkow, U.; Pawelec, K. The Influence of Primary Cytomegalovirus or Epstein-Barr Virus Infection on the Course of Idiopathic Thrombocytopenic Purpura. In Advances in Clinical Science; Springer: Cham, Switzerland, 2015; pp. 83–88. [Google Scholar] [CrossRef]
- Talotta, R.; Robertson, E. Autoimmunity as the comet tail of COVID-19 pandemic. World J. Clin. Cases 2020, 8, 3621–3644. [Google Scholar] [CrossRef]
- Tang, K.-T.; Hsu, B.-C.; Chen, D.-Y. Autoimmune and Rheumatic Manifestations Associated With COVID-19 in Adults: An Updated Systematic Review. Front. Immunol. 2021, 12, 645013. [Google Scholar] [CrossRef] [PubMed]
- Taherifard, E.; Taherifard, E.; Movahed, H.; Mousavi, M.R. Hematologic autoimmune disorders in the course of COVID-19: A systematic review of reported cases. Hematology 2021, 26, 225–239. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, M.; Chen, X.; Montaner, L.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol. 2020, 108, 17–41. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, C.; Huang, F.; Yang, Y.; Wang, F.; Yuan, J.; Zhang, Z.; Qin, Y.; Li, X.; Zhao, D.; et al. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury. Natl. Sci. Rev. 2020, 7, 1003–1011. [Google Scholar] [CrossRef] [Green Version]
- Barcellini, W.; Clerici, G.; Montesano, R.; Taioli, E.; Morelati, F.; Rebulla, P.; Zanella, A. In vitro quantification of anti-red blood cell antibody production in idiopathic autoimmune haemolytic anaemia: Effect of mitogen and cytokine stimulation. Br. J. Haematol. 2000, 111, 452–460. [Google Scholar] [CrossRef]
- Noack, M.; Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev. 2014, 13, 668–677. [Google Scholar] [CrossRef]
- Barcellini, W.; Zaninoni, A.; Giannotta, J.A.; Fattizzo, B. New Insights in Autoimmune Hemolytic Anemia: From Pathogenesis to Therapy Stage 1. J. Clin. Med. 2020, 9, 3859. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, J.; Ni, H. Crosstalk Between Platelets and Microbial Pathogens. Front. Immunol. 2020, 11, 1962. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Banerjee, M. Immune Thrombocytopenia Secondary to COVID-19: A Systematic Review. SN Compr. Clin. Med. 2020, 2, 2048–2058. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.R.; Barouqa, M.; Szymanski, J.; Gonzalez-Lugo, J.D.; Rahman, S.; Billett, H.H. Assessment of Lupus Anticoagulant Positivity in Patients with Coronavirus Disease 2019 (COVID-19). JAMA Netw. Open 2020, 3, e2017539. [Google Scholar] [CrossRef]
- Pascolini, S.; Vannini, A.; Deleonardi, G.; Ciordinik, M.; Sensoli, A.; Carletti, I.; Veronesi, L.; Ricci, C.; Pronesti, A.; Mazzanti, L.; et al. COVID-19 and Immunological Dysregulation: Can Autoantibodies be Useful? Clin. Transl. Sci. 2021, 14, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Patell, R.; Khan, A.M.; Bogue, T.; Merrill, M.; Koshy, A.; Bindal, P.; Joyce, R.; Aird, W.C.; Neuberg, D.; Bauer, K.A.; et al. Heparin induced thrombocytopenia antibodies in Covid-19. Am. J. Hematol. 2020, 95. [Google Scholar] [CrossRef]
- Riker, R.R.; May, T.L.; Fraser, G.L.; Gagnon, D.J.; Bandara, M.; Zemrak, W.R.; Seder, D.B. Heparin-induced thrombocytopenia with thrombosis in COVID-19 adult respiratory distress syndrome. Res. Pr. Thromb. Haemost. 2020, 4, 936–941. [Google Scholar] [CrossRef]
- Hindilerden, F.; Yonal-Hindilerden, I.; Akar, E.; Kart-Yasar, K. Covid-19 associated autoimmune thrombotic thrombocytopenic purpura: Report of a case. Thromb. Res. 2020, 195, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Albiol, N.; Awol, R.; Martino, R. Autoimmune thrombotic thrombocytopenic purpura (TTP) associated with COVID-19. Ann. Hematol. 2020, 99, 1673–1674. [Google Scholar] [CrossRef]
- Vojdani, A.; Kharrazian, D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin. Immunol. 2020, 217, 108480. [Google Scholar] [CrossRef] [PubMed]
- Kanduc, D.; Shoenfeld, Y. Molecular mimicry between SARS-CoV-2 spike glycoprotein and mammalian proteomes: Implications for the vaccine. Immunol. Res. 2020, 68, 310–313. [Google Scholar] [CrossRef]
- Liu, Y.; Sawalha, A.H.; Lu, Q. COVID-19 and autoimmune diseases. Curr. Opin. Rheumatol. 2021, 33, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Angileri, F.; Légaré, S.; Gammazza, A.M.; De Macario, E.C.; Macario, A.J.L.; Cappello, F. Is molecular mimicry the culprit in the autoimmune haemolytic anaemia affecting patients with COVID-19? Br. J. Haematol. 2020, 190. [Google Scholar] [CrossRef]
- AlGassim, A.A.; Elghazaly, A.A.; Alnahdi, A.S.; Mohammed-Rahim, O.M.; Alanazi, A.G.; Aldhuwayhi, N.A.; Alanazi, M.M.; Almutairi, M.F.; Aldeailej, I.M.; Kamli, N.A.; et al. Prognostic significance of hemoglobin level and autoimmune hemolytic anemia in SARS-CoV-2 infection. Ann. Hematol. 2021, 100, 37–43. [Google Scholar] [CrossRef]
- Berzuini, A.; Bianco, C.; Paccapelo, C.; Bertolini, F.; Gregato, G.; Cattaneo, A.; Erba, E.; Bandera, A.; Gori, A.; Lamorte, G.; et al. Red cell–bound antibodies and transfusion requirements in hospitalized patients with COVID-19. Blood 2020, 136, 766–768. [Google Scholar] [CrossRef]
- Lyons-Weiler, J. Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity. J. Transl. Autoimmun. 2020, 3, 100051. [Google Scholar] [CrossRef]
- Zen, M.; Fuzzi, E.; Astorri, D.; Saccon, F.; Padoan, R.; Ienna, L.; Cozzi, G.; Depascale, R.; Zanatta, E.; Gasparotto, M.; et al. SARS-CoV-2 infection in patients with autoimmune rheumatic diseases in northeast Italy: A cross-sectional study on 916 patients. J. Autoimmun. 2020, 112, 102502. [Google Scholar] [CrossRef]
- Gianfrancesco, M.; Hyrich, K.L.; Al-Adely, S.; Carmona, L.; Danila, M.I.; Gossec, L.; Izadi, Z.; Jacobsohn, L.; Katz, P.; Lawson-Tovey, S.; et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: Data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann. Rheum. Dis. 2020, 79, 859–866. [Google Scholar] [CrossRef]
- Haberman, R.; Axelrad, J.; Chen, A.; Castillo, R.; Yan, D.; Izmirly, P.; Neimann, A.; Adhikari, S.; Hudesman, D.; Scher, J.U. Covid-19 in Immune-Mediated Inflammatory Diseases—Case Series from New York. N. Engl. J. Med. 2020, 383, 85–88. [Google Scholar] [CrossRef]
- Barcellini, W.; Giannotta, J.A.; Fattizzo, B. Are Patients with Autoimmune Cytopenias at Higher Risk of COVID-19 Pneumonia? The Experience of a Reference Center in Northern Italy and Review of the Literature. Front. Immunol. 2021, 11, 609198. [Google Scholar] [CrossRef]
- Woldie, I.L.; Brown, I.G.; Nwadiaro, N.F.; Patel, A.; Jarrar, M.; Quint, E.; Khokhotva, V.; Hugel, N.; Winger, M.; Briskin, A. Autoimmune Hemolytic Anemia in a 24-Year-Old Patient With COVID-19 Complicated by Secondary Cryptococcemia and Acute Necrotizing Encephalitis: A Case Report and Review of Literature. J. Med. Cases 2020, 11, 362–365. [Google Scholar] [CrossRef]
- Mingot-Castellano, M.E.; Alcalde-Mellado, P.; Pascual-Izquierdo, C.; Perez Rus, G.; Calo Perez, A.; Martinez, M.P.; López-Jaime, F.J.; Perez, L.A.; Gonzalez-Porras, J.R.; Fernández, F.L.; et al. Incidence, characteristics and clinical profile of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in patients with pre-existing primary immune thrombocytopenia (ITP) in Spain. Br. J. Haematol. 2021. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz-Benito, B.; Rivas-Pollmar, M.I.; Álvarez Román, M.T.; Trelles-Martínez, R.; Martín-Salces, M.; Lázaro-del Campo, P.; Ramírez-López, A.; García-Barcenilla, S.; Cebanu, T.; Acuña-Butta, P.; et al. Paradoxical effect of SARS-CoV-2 infection in patients with immune thrombocytopenia. Br. J. Haematol. 2021, 192, 973–977. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, J.D.; McThenia, S.S.; Kaicker, S. SARS-CoV-2 infection in two pediatric patients with immune cytopenias: A single institution experience during the pandemic. Pediatr. Blood Cancer 2020, 67, e28503. [Google Scholar] [CrossRef] [PubMed]
- Hernández, P.V.; Rivas, Y.B.; Sánchez, E.O.; Cabrero, A.M.; Mateo, L.R.; Roig, P.S.; Quintanar, A.I.; Peñas, R.D.-D.; Escudero, V.S.; García-García, M.L. Autoimmune Hemolytic Anemia in a Pediatric Patient with Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Pediatr. Infect. Dis. J. 2020, 39, e288. [Google Scholar] [CrossRef]
- Wahlster, L.; Weichert-Leahey, N.; Trissal, M.; Grace, R.F.; Sankaran, V.G. COVID-19 presenting with autoimmune hemolytic anemia in the setting of underlying immune dysregulation. Pediatr. Blood Cancer 2020, 67, e28382. [Google Scholar] [CrossRef]
- Mausoleo, A.; Henriquez, S.; Goujard, C.; Roque-Afonso, A.-M.; Noel, N.; Lambotte, O. Severe IgA-mediated autoimmune hemolytic anemia triggered by SARS-CoV-2 infection. Leuk. Lymphoma 2021, 2021, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; Kim, J.; Pandey, A.; Huang, T.; Deloughery, T.G. Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia. Br. J. Haematol. 2020, 190, 31–32. [Google Scholar] [CrossRef] [PubMed]
- Pelle, M.C.; Tassone, B.; Ricchio, M.; Mazzitelli, M.; Davoli, C.; Procopio, G.; Cancelliere, A.; La Gamba, V.; Lio, E.; Matera, G.; et al. Late-onset myocardial infarction and autoimmune haemolytic anaemia in a COVID-19 patient without respiratory symptoms, concomitant with a paradoxical increase in inflammatory markers: A case report. J. Med. Case Rep. 2020, 14, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hindilerden, F.; Yonal-Hindilerden, I.; Akar, E.; Yesilbag, Z.; Kart-Yasar, K. Severe autoimmune hemolytic anemia in Covid-19 infection. Mediterr. J. Hematol. Infect. Dis. 2020, 12, e2020053. [Google Scholar] [CrossRef] [PubMed]
- Lazarian, G.; Quinquenel, A.; Bellal, M.; Siavellis, J.; Jacquy, C.; Re, D.; Merabet, F.; Mekinian, A.; Braun, T.; Damaj, G.; et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br. J. Haematol. 2020, 190, 29–31. [Google Scholar] [CrossRef]
- Liput, J.R.; Jordan, K.; Patadia, R.; Kander, E. Warm Autoimmune Hemolytic Anemia Associated with Asymptomatic SARS-CoV-2 Infection. Cureus 2021, 13. [Google Scholar] [CrossRef]
- Hsieh, T.-C.; Sostin, O. Severe warm autoimmune hemolytic anemia in COVID-19 managed with least incompatible RBC product and glucocorticoids. Ann. Hematol. 2021, 18, 1–2. [Google Scholar] [CrossRef]
- Jacobs, J.; Eichbaum, Q. COVID -19 associated with severe autoimmune hemolytic anemia. Transfusion 2021, 61, 635–640. [Google Scholar] [CrossRef]
- Ramos-Ruperto, L.; García-Pérez, E.; Hernández-Maraver, D.; Kerguelén-Fuentes, A.; Viejo-Llorente, A.; Robles-Marhuenda, Á.; Busca-Arenzana, C. A 3-Case Series of Autoimmune Haemolytic Anaemia and COVID-19: Is Plasma Exchange an Alternative? SN Compr. Clin. Med. 2021, 3, 1420–1423. [Google Scholar] [CrossRef]
- Aldaghlawi, F.; Shammah, A.; Kio, E. SARS-CoV-2 infection complicated with cold agglutinin disease and myositis. Clin. Case Rep. 2021, 9, 2196–2199. [Google Scholar] [CrossRef]
- Capes, A.; Bailly, S.; Hantson, P.; Gerard, L.; Laterre, P.-F. COVID-19 infection associated with autoimmune hemolytic anemia. Ann. Hematol. 2020, 99, 1679–1680. [Google Scholar] [CrossRef]
- Moonla, C.; Watanaboonyongcharoen, P.; Suwanpimolkul, G.; Paitoonpong, L.; Jantarabenjakul, W.; Chanswangphuwana, C.; Polprasert, C.; Rojnuckarin, P.; Putcharoen, O. Cold agglutinin disease following SARS-CoV-2 and Mycoplasma pneumoniae co-infections. Clin. Case Rep. 2020, 8, 2402–2405. [Google Scholar] [CrossRef] [PubMed]
- Patil, N.R.; Herc, E.S.; Girgis, M. Cold agglutinin disease and autoimmune hemolytic anemia with pulmonary embolism as a presentation of COVID-19 infection. Hematol. Stem Cell Ther. 2020. [Google Scholar] [CrossRef] [PubMed]
- Maslov, D.V.; Simenson, V.; Jain, S.; Badari, A. COVID-19 and Cold Agglutinin Hemolytic Anemia. TH Open Companion J. Thromb. Haemost. 2020, 4, e175–e177. [Google Scholar] [CrossRef]
- Zagorski, E.; Pawar, T.; Rahimian, S.; Forman, D. Cold agglutinin autoimmune haemolytic anaemia associated with novel coronavirus (COVID-19). Br. J. Haematol. 2020, 190, e183–e184. [Google Scholar] [CrossRef]
- Nesr, G.; Koshy, R.; Foldes, D.; Kagdi, H. Autoimmune haemolytic anaemia and a marked rise in the lymphocyte count associated with COVID-19 in a patient with treatment-naïve chronic lymphocytic leukaemia: A case report. Br. J. Haematol. 2020, 190, e326–e328. [Google Scholar] [CrossRef] [PubMed]
- Raghuwanshi, B. Serological Blood Group Discrepancy and Cold Agglutinin Autoimmune Hemolytic Anemia Associated With Novel Coronavirus. Cureus 2020, 12, e11495. [Google Scholar] [CrossRef]
- Gupta, R.; Singh, S.; Anusim, N.; Gupta, S.; Gupta, S.; Huben, M.; Howard, G.; Jaiyesimi, I. Coronavirus Disease 2019 and Cold Agglutinin Syndrome: An Interesting Case. Eur. J. Case Rep. Intern. Med. 2021, 8, 002387. [Google Scholar] [CrossRef]
- Kaur, J.; Mogulla, S.; Khan, R.; Krishnamoorthy, G.; Garg, S. Transient Cold Agglutinins in a Patient with COVID-19. Cureus 2021, 13, e12751. [Google Scholar] [CrossRef]
- Jensen, C.; Wilson, S.; Thombare, A.; Weiss, S.; Ma, A. Cold agglutinin syndrome as a complication of Covid-19 in two cases. Clin. Infect. Pr. 2020, 7, 100041. [Google Scholar] [CrossRef]
- Huscenot, T.; Galland, J.; Ouvrat, M.; Rossignol, M.; Mouly, S.; Sène, D.; on behalf of the APHP Lariboisière COVID Group. SARS-CoV-2-associated cold agglutinin disease: A report of two cases. Ann. Hematol. 2020, 99, 1943–1944. [Google Scholar] [CrossRef] [PubMed]
- Kewan, T.; Gunaratne, T.N.; Mushtaq, K.; Alayan, D.; Daw, H.; Haddad, A. Outcomes and management of immune thrombocytopenia secondary to COVID-19: Cleveland clinic experience. Transfusion 2021. [Google Scholar] [CrossRef]
- Bomhof, G.; Mutsaers, P.G.; Leebeek, F.; te Boekhorst, P.; Hofland, J.; Croles, F.N.; Jansen, G. COVID-19-associated immune thrombocytopenia. Br. J. Haematol. 2020, 190, e61–e64. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, A.-A.; Lorenzo-Villalba, N.; Hassler, P.; Andrès, E. Immune Thrombocytopenic Purpura in a Patient with Covid-19. N. Engl. J. Med. 2020, 382, e43. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, V.; Millaire, É.; Corsilli, D.; Rioux-Massé, B.; Carrier, F.-M. Severe immune thrombocytopenic purpura in critical COVID-19. Int. J. Hematol. 2020, 112, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Mahévas, M.; Moulis, G.; Andres, E.; Riviere, E.; Garzaro, M.; Crickx, E.; Guillotin, V.; Malphettes, M.; Galicier, L.; Noel, N.; et al. Clinical characteristics, management and outcome of COVID-19-associated immune thrombocytopenia: A French multicentre series. Br. J. Haematol. 2020, 190, e224–e229. [Google Scholar] [CrossRef] [PubMed]
- Kok, E.Y.; Srivaths, L.; Grimes, A.B.; Vogel, T.P.; Tejtel, S.K.S.; Muscal, E. Immune thrombocytopenia following multisystem inflammatory syndrome in children (MIS-C)—A case series. Pediatr. Hematol. Oncol. 2021, 1–8. [Google Scholar] [CrossRef]
- Tang, M.; Nur, E.; Biemond, B. Immune thrombocytopenia due to COVID-19 during pregnancy. Am. J. Hematol. 2020, 95, 191. [Google Scholar] [CrossRef] [PubMed]
- Dr, T.; Beebe, L.A.; Neas, B.R.; Vesely, S.K.; Segal, J.B.; George, J.N. Prevalence of primary immune thrombocytopenia in Oklahoma. Am. J. Hematol. 2012, 87, 848–852. [Google Scholar]
- Frederiksen, H.; Schmidt, K. The Incidence of Idiopathic Thrombocytopenic Purpura in Adults Increases with Age. Blood 1999, 94, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Assinger, A. Platelets and Infection—An Emerging Role of Platelets in Viral Infection. Front. Immunol. 2014, 5, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, J.C.; Murthy, S.; Diaz, J.; Adhikari, N.K.; Angus, D.C.; Arabi, Y.M.; Baillie, K.; Bauer, M.; Berry, S.; Blackwood, B.; et al. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect. Dis. 2020, 20, e192–e197. [Google Scholar] [CrossRef]
- Moulis, G.; Palmaro, A.; Montastruc, J.-L.; Godeau, B.; Lapeyre-Mestre, M.; Sailler, L. Epidemiology of incident immune thrombocytopenia: A nationwide population-based study in France. Blood 2014, 124, 3308–3315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Mithoowani, S.; Gregory-Miller, K.; Goy, J.; Miller, M.C.; Wang, G.; Noroozi, N.; Kelton, J.G.; Arnold, D.M. High-dose dexamethasone compared with prednisone for previously untreated primary immune thrombocytopenia: A systematic review and meta-analysis. Lancet Haematol. 2016, 3, e489–e496. [Google Scholar] [CrossRef]
- Pavord, S.; Thachil, J.; Hunt, B.J.; Murphy, M.; Lowe, G.; Laffan, M.; Makris, M.; Newland, A.C.; Provan, D.; Grainger, J.D.; et al. Practical guidance for the management of adults with immune thrombocytopenia during the COVID-19 pandemic. Br. J. Haematol. 2020, 189, 1038–1043. [Google Scholar] [CrossRef]
- Leidman, E. COVID-19 Trends Among Persons Aged 0–24 Years—United States, March 1–December 12, 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 88. [Google Scholar] [CrossRef]
- Patel, P.; Chandrakasan, S.; Mickells, G.E.; Yildirim, I.; Kao, C.; Bennett, C.M. Severe Pediatric COVID-19 Presenting with Respiratory Failure and Severe Thrombocytopenia. Pediatrics 2020, 146, e20201437. [Google Scholar] [CrossRef]
- Tsao, H.S.; Chason, H.M.; Fearon, D.M. Immune Thrombocytopenia (ITP) in a Pediatric Patient Positive for SARS-CoV-2. Pediatrics 2020, 146, e20201419. [Google Scholar] [CrossRef]
- Soares, A.C.C.V.; Loggetto, S.R.; Manga, F.C.M.; Faustino, L.R.; Braga, J.A.P. Outcome of SARS-CoV-2 and immune thrombocytopenia in a pediatric patient. Hematol. Transfus. Cell Ther. 2021, 43, 101–103. [Google Scholar] [CrossRef]
- Grady, D.; Mazzei, P. Doctor’s Death after Covid Vaccine Is Being Investigated. The New York Times. 12 January 2021. Available online: https://www.nytimes.com/2021/01/12/health/covid-vaccine-death.html (accessed on 20 June 2021).
- Welsh, K.J.; Baumblatt, J.; Chege, W.; Goud, R.; Nair, N. Thrombocytopenia including immune thrombocytopenia after receipt of mRNA COVID-19 vaccines reported to the Vaccine Adverse Event Reporting System (VAERS). Vaccine 2021, 39, 3329–3332. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Cines, D.B.; Gernsheimer, T.; Kessler, C.; Michel, M.; Tarantino, M.D.; Semple, J.W.; Arnold, D.M.; Godeau, B.; Lambert, M.P.; et al. Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. Am. J. Hematol. 2021, 96, 534–537. [Google Scholar] [CrossRef] [PubMed]
- ACIP April 23, 2021 Presentation Slides|Immunization Practices|CDC. Published 3 May 2021. Available online: https://www.cdc.gov/vaccines/acip/meetings/slides-2021-04-23.html (accessed on 20 June 2021).
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef] [PubMed]
- Schultz, N.H.; Sørvoll, I.H.; Michelsen, A.E.; Munthe, L.A.; Lund-Johansen, F.; Ahlen, M.T.; Wiedmann, M.; Aamodt, A.-H.; Skattør, T.H.; Tjønnfjord, G.E.; et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. N. Engl. J. Med. 2021, 384, 2124–2130. [Google Scholar] [CrossRef]
- Arepally, G.M.; Ortel, T.L. Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT): What We Know and Don’t Know. Blood 2021, 1. [Google Scholar] [CrossRef]
- Pérez-Lamas, L.; Moreno-Jiménez, G.; Tenorio-Núñez, M.C.; Velázquez-Kennedy, K.; Jiménez-Chillón, C.; Astibia-Mahillo, B.; Núñez-Torrón, C.; García-Gutiérrez, V.; Jiménez-Martín, A.; Vallés-Carboneras, A.; et al. Hemolytic crisis due to Covid-19 vaccination in a woman with cold agglutinin disease. Am. J. Hematol. 2021, 3. [Google Scholar] [CrossRef]
- Kuter, D.J. Exacerbation of immune thrombocytopenia following COVID-19 vaccination. Br. J. Haematol. 2021, 1. [Google Scholar] [CrossRef]
- COVID-19 and ITP—Hematology.org. Available online: https://www.hematology.org:443/covid-19/covid-19-and-itp (accessed on 20 June 2021).
- Maquet, J.; Lafaurie, M.; Sommet, A.; Moulis, G.; Alvarez, M.; Amar, J.; Attal, M.; Balardy, L.; Balen, F.; Beyne-Rauzy, O.; et al. Thrombocytopenia is independently associated with poor outcome in patients hospitalized for COVID-19. Br. J. Haematol. 2020, 190. [Google Scholar] [CrossRef]
- Sokol, R.J.; Hewitt, S.; Stamps, B.K. Autoimmune haemolysis: An 18-year study of 865 cases referred to a regional transfusion centre. BMJ 1981, 282, 2023–2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risitano, A.M.; Mastellos, D.C.; Huber-Lang, M.; Yancopoulou, D.; Garlanda, C.; Ciceri, F.; Lambris, J.D. Complement as a target in COVID-19? Nat. Rev. Immunol. 2020, 20, 343–344, Erratum in: Nat. Rev. Immunol. 2020, 20, 448. [Google Scholar] [CrossRef] [Green Version]
- Barcellini, W.; Zaninoni, A.; Fattizzo, B.; Giannotta, J.A.; Lunghi, M.; Ferrari, A.; Leporace, A.P.; Maschio, N.; Scaramucci, L.; Cantoni, S.; et al. Predictors of refractoriness to therapy and healthcare resource utilization in 378 patients with primary autoimmune hemolytic anemia from eight Italian reference centers. Am. J. Hematol. 2018, 93, E243–E246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greinacher, A.; Selleng, K.; Warkentin, T.E. Autoimmune heparin-induced thrombocytopenia. J. Thromb. Haemost. 2017, 15, 2099–2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazy, I.; Sachs, U.J.; Arnold, D.M.; McKenzie, S.E.; Choi, P.; Althaus, K.; Ahlen, M.T.; Sharma, R.; Grace, R.F.; Bakchoul, T. Recommendations for the clinical and laboratory diagnosis of VITT against COVID-19: Communication from the ISTH SSC Subcommittee on Platelet Immunology. J. Thromb. Haemost. 2021, 19, 1585–1588. [Google Scholar] [CrossRef] [PubMed]
Age/ Gender | Comorbidity | DAT | Symptoms to AIHA Development, Days | AIHA Treatment | AIHA Outcome | COVID-19COVID-19 Outcome | Author |
---|---|---|---|---|---|---|---|
14 Female | None | IgG, C3 CA | 0 | Steroids, Rituximab | Resolved | Recovered | Rosenzweig [40] |
13 Female | None | IgG | 7 | Steroids | Resolved | Recovered | Vega Hernádez [41] |
17 Male | ITP, ALPS | IgG, C3 | 0 | Steroids Transfusion | Resolved | Recovered | Wahlster [42] |
53 Female | Autoimmune thyroiditis | IgA | 60 | Steroids Transfusion Rituximab | Resolved | Recovered | Mausoleo [43] |
46 Female | Congenital thrombocytpenia | IgG, C3 | 3 | IVIG Transfusion Prednisone | Resolved | Recovered | Lopez [44] |
86 Female | HTN, anxiety, depression, MI | IgG | 43 | Steroids | Unknown | Recovered | Pelle [45] |
56 Male | HTN | IgG, C3 | 4 | IVIG Prednisone | Resolved | Recovered | Hindilerden [46] |
61 Male | CLL, CKD, HTN | IgG, C3 | 13 | Steroids | Unknown | Recovered | Lazarian [47] |
89 Female | CKD, HTN, MGUS | IgG, C3 | 7 | Steroids | Unknown | Recovered | Lazarian [47] |
75 Male | CLL | IgG | 6 | Transfusion | Unknown | Recovered | Lazarian [47] |
61 Male | DM | IgG | 9 | Steroids, Rituximab | Unknown | Recovered | Lazarian [47] |
33 Female | Iron deficiency anemia | IgG, C3 | 10 after exposure | Steroids Transfusion | Resolved | Asymptomatic | Liput [48] |
84 Male | Hyperlipidemia | IgG | 13 | Steroids Transfusion | Resolved | Recovered | Hsieh [49] |
33 Female | Hypothyroid | IgG, C3 CA | 2 | Steroids Transfusion tocilizumab Rituximab | Resolved | Recovered | Jacobs [50] |
72 Female | None | IgG | Unknown | Steroids Transfusion | Resolved | Recovered | Ramos -Ruperto [51] |
76 Female | HTN, CLL, hypothyroid | IgG | Unknown | Steroids Transfusion | Resolved | Recovered | Ramos -Ruperto [51] |
Age/ Gender | Comorbidity | Symptoms to AIHA Development, Days | AIHA Treatment | AIHA Outcome | COVID Outcome | Author |
---|---|---|---|---|---|---|
62 Male | HTN, oropharyngeal squamous cell carcinoma on chemoradiation | 16 | Transfusion | Resolved | recovered | Capes [53] |
24 Female | None | 4 | None | Resolved | recovered | Moonla [54] |
51 Female | breast DCIS post-mastectomy on chemoradiation | 0 | Transfusion Steroids | Resolved | Recovered | Patil [55] |
48 Male | HTN, DM1, obesity ESRD on peritoneal dialysis | 7 | None | Unknown | Deceased concurrent DVT, stroke | Maslov [56] |
46 Female | ITP, asthma, splenectomy | 0 | Transfusion | Unknown | Deceased | Zagorski [57] |
80 Female | Stage A CLL | 12 | None | Resolved | recovered | Nesr [58] |
45 Male | Unknown | 0 | Transfusion | Unknown | Unknown | Raghuwanshi [59] |
77 Male | COPD, G6PD deficiency | 0 | Steroids | Unknown | Deceased | Gupta [60] |
61 Male | DM2, hypercholesterolemia, ESRD, CAD, atrial fibrillation | 5 | Steroids | Minimal hemolysis; Resolved | Recovered | Kaur [61] |
70 Male 67 Male | Unknown Unknown | 5 10 | None None | Minimal Hemolysis Minimal Hemolysis | Unknown Deceased | Jensen [62] |
43 Female 63 Male | untreated MS HTN | 16 20 | Transfusion Unknown | Recovered Recovered | Recovered Recovered | Huscenot [63] |
69 Female | Stage IV CLL on tirabrutinib, discontiniued | 18 | Steroids, Rituximab IVIG | Resolved | Recovered concurrent ITP, myositis | Aldaghlawi [52] |
54 Male | None | 0 | Steroids, Plasma exchange | Resolved | Recovered | Ramos- Ruperto [51] |
Author | Age (Years)/ Gender | Platelet Count Nadir | Bleeding | Severity of COVID Disease | Treatment | ITP Outcome | Days to Platelet Recovery |
---|---|---|---|---|---|---|---|
Patel [80] | 12/ female | <10 | Hematuria | Severe | IVIG Steroids | Recovered | 4 |
Rosenzweig [40] | 16/ male | 4 | Petechiae/ purpura | Asymptomatic | Steroids | Recovered | 7 |
Tsao [81] | 10/female | 5 | Petechiae/ purpura | Asymptomatic | IVIG | Recovered | 14 |
Kok [69] | 17 months/male | 9 | Petechiae/ purpura | Severe | IVIG Steroids | Recovered | 4 |
Kok [69] | 6/male | 45 | None | Severe | Steroids | Recovered | 9 |
Soares [82] | 2/female | 16 | Petechiae/ ecchymosis | Asymptomatic | IVIG | Recovered | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quinn, R.; Murakhovskaya, I. SARS-CoV-2 and Autoimmune Cytopenia. Hemato 2021, 2, 463-476. https://doi.org/10.3390/hemato2030029
Quinn R, Murakhovskaya I. SARS-CoV-2 and Autoimmune Cytopenia. Hemato. 2021; 2(3):463-476. https://doi.org/10.3390/hemato2030029
Chicago/Turabian StyleQuinn, Ryann, and Irina Murakhovskaya. 2021. "SARS-CoV-2 and Autoimmune Cytopenia" Hemato 2, no. 3: 463-476. https://doi.org/10.3390/hemato2030029
APA StyleQuinn, R., & Murakhovskaya, I. (2021). SARS-CoV-2 and Autoimmune Cytopenia. Hemato, 2(3), 463-476. https://doi.org/10.3390/hemato2030029