Epidemiology of Amyloidosis and Genetic Pathways to Diagnosis and Typing
Abstract
:1. Introduction
2. Epidemiology of Amyloidosis and Related Cancers
2.1. Non-Hereditary Amyloidosis
2.2. Hereditary Amyloidosis
3. Germline Genetics of AL
3.1. Clinical Phenotypes of AL
3.2. Combined Analysis of AL, MM and MGUS
4. Mendelian Randomization (MR)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kyle, R.A.; Linos, A.; Beard, C.M.; Linke, R.P.; Gertz, M.A.; O’Fallon, W.M.; Kurland, L.T. Incidence and Natural History of Primary Systemic Amyloidosis in Olmsted County, Minnesota, 1950 through 1989. Blood 1992, 79, 1817–1822. [Google Scholar] [CrossRef] [Green Version]
- Merlini, G.; Dispenzieri, A.; Sanchorawala, V.; Schönland, S.O.; Palladini, G.; Hawkins, P.N.; Gertz, M.A. Systemic Immunoglobulin Light Chain Amyloidosis. Nat. Rev. Dis. Primers 2018, 4, 38. [Google Scholar] [CrossRef] [PubMed]
- Merlini, G.; Seldin, D.C.; Gertz, M.A. Amyloidosis: Pathogenesis and New Therapeutic Options. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 1924–1933. [Google Scholar] [CrossRef] [Green Version]
- Muchtar, E.; Dispenzieri, A.; Magen, H.; Grogan, M.; Mauermann, M.; McPhail, E.D.; Leung, N.; Buadi, F.K.; Dingli, D.; Kumar, S.K.; et al. Systemic amyloidosis from A (AA) to T (ATTR): A Review. J. Intern. Med. 2021, 289, 268–292. [Google Scholar] [CrossRef]
- Obici, L.; Raimondi, S.; Lavatelli, F.; Bellotti, V.; Merlini, G. Susceptibility to AA Amyloidosis in Rheumatic Diseases: A Critical Overview. Arthritis Rheum. 2009, 61, 1435–1440. [Google Scholar] [CrossRef]
- Ravichandran, S.; Lachmann, H.J.; Wechalekar, A.D. Epidemiologic and Survival Trends in Amyloidosis, 1987–2019. N. Engl. J. Med. 2020, 382, 1567–1568. [Google Scholar] [CrossRef]
- Hemminki, K.; Li, X.; Forsti, A.; Sundquist, J.; Sundquist, K. Incidence and Survival in Non-Hereditary Amyloidosis in Sweden. BMC Public Health 2012, 12, 974. [Google Scholar] [CrossRef] [Green Version]
- Pinney, J.H.; Smith, C.J.; Taube, J.B.; Lachmann, H.J.; Venner, C.P.; Gibbs, S.D.; Dungu, J.; Banypersad, S.M.; Wechalekar, A.D.; Whelan, C.J.; et al. Systemic Amyloidosis in England: An Epidemiological Atudy. Br. J. Haematol. 2013, 161, 525–532. [Google Scholar] [CrossRef]
- Kyle, R.A.; Larson, D.R.; Kurtin, P.J.; Kumar, S.; Cerhan, J.R.; Therneau, T.M.; Rajkumar, S.V.; Vachon, C.M.; Dispenzieri, A. Incidence of AL Amyloidosis in Olmsted County, Minnesota, 1990 through 2015. Mayo Clin. Proc. 2019, 94, 465–471. [Google Scholar] [CrossRef]
- Quock, T.P.; Yan, T.; Chang, E.; Guthrie, S.; Broder, M.S. Epidemiology of AL Amyloidosis: A real-World Study Using US Claims Data. Blood Adv. 2018, 2, 1046–1053. [Google Scholar] [CrossRef] [Green Version]
- Hemminki, K.; Li, X.; Forsti, A.; Sundquist, J.; Sundquist, K. Cancer Risk in Amyloidosis Patients in Sweden with Novel Findings on Non-Hodgkin Lymphoma and Skin Cancer. Ann. Oncol. 2014, 25, 511–518. [Google Scholar] [CrossRef]
- Hemminki, K.; Försti, A.; Tuuminen, R.; Hemminki, O.; Goldschmidt, H.; Sundquist, K.; Sundquist, J.; Li, X. The Incidence of Senile Cataract and Glaucoma is Increased in Patients with Plasma Cell Dyscrasias: Etiologic Implications. Sci. Rep. 2016, 6, 28500. [Google Scholar]
- Petrash, J.M. Aging and age-related diseases of the ocular lens and vitreous body. Invest. Ophthalmol. Vis. Sci. 2013, 54, Orsf54–Orsf59. [Google Scholar]
- Higgins, G.T.; Olujohungbe, A.; Kyle, G. Recurrent subconjunctival and periorbital haemorrhage as the first presentation of systemic AL amyloidosis secondary to myeloma. Eye 2006, 20, 512–515. [Google Scholar]
- Omoti, A.E.; Omoti, C.E. Ophthalmic manifestations of multiple myeloma. West Afr. J. Med. 2007, 26, 265–268. [Google Scholar]
- Hemminki, K.; Li, X.; Forsti, A.; Sundquist, J.; Sundquist, K. Incidence of Hereditary Amyloidosis and Autoinflammatory Diseases in Sweden: Endemic and Imported Diseases. BMC Med. Genet. 2013, 14, 88. [Google Scholar] [CrossRef] [Green Version]
- Suhr, O.B.; Svendsen, I.H.; Andersson, R.; Danielsson, A.; Holmgren, G.; Ranlov, P.J. Hereditary Transthyretin Amyloidosis from a Scandinavian Perspective. J. Intern. Med. 2003, 254, 225–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemminki, K.; Li, X.; Forsti, A.; Sundquist, J.; Sundquist, K. Non-Hodgkin Lymphoma in Familial Amyloid Polyneuropathy Pateints in Sweden. Blood 2013, 122, 458–459. [Google Scholar] [CrossRef] [Green Version]
- Koike, H.; Katsuno, M. Transthyretin Amyloidosis: Update on the Clinical Spectrum, Pathogenesis, and Disease-Modifying Therapies. Neurol. Ther. 2020, 9, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, H.; Cascella, M. Familial Mediterranean Fever; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Skendros, P.; Papagoras, C.; Mitroulis, I.; Ritis, K. Autoinflammation: Lessons from the Study of Familial Mediterranean Fever. J. Autoimmun. 2019, 104, 102305. [Google Scholar] [CrossRef] [PubMed]
- Ben-Chetrit, E.; Yazici, H. Familial Mediterranean Fever: Different Faces around the World. Clin. Exp. Rheumatol. 2019, 37 (Suppl. S121), 18–22. [Google Scholar]
- Ben-Chetrit, E.; Touitou, I. Familial mediterranean Fever in the world. Arthritis Rheum. 2009, 61, 1447–1453. [Google Scholar] [CrossRef]
- Weinhold, N.; Forsti, A.; da Silva Filho, M.I.; Nickel, J.; Campo, C.; Hoffmann, P.; Nöthen, M.M.; Hose, D.; Goldschmidt, H.; Jauch, A.; et al. Immunoglobulin Light-Chain Amyloidosis Shares Genetic Susceptibility with Multiple Myeloma. Leukemia 2014, 28, 2254–2256. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, N.; Johnson, D.C.; Chubb, D.; Chen, B.; Försti, A.; Hosking, F.J.; Broderick, P.; Ma, Y.P.; Dobbins, S.E.; Hose, D.; et al. The CCND1 G870A Polymorphism Is a Risk Factor for T(11;14)(Q13;Q32) Multiple Myeloma. Nat. Genet. 2013, 45, 522–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva Filho, M.I.; Försti, A.; Weinhold, N.; Meziane, I.; Campo, C.; Huhn, S.; Nickel, J.; Hoffmann, P.; Nöthen, M.M.; Jöckel, K.-H.; et al. Genome-Wide Association Study of Immunoglobulin Light Chain Amyloidosis in Three Patient Cohorts: Comparison to Myeloma. Leukemia 2017, 31, 1735–1742. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Johnson, D.C.; Weinhold, N.; Studd, J.B.; Orlando, G.; Mirabella, F.; Mitchell, J.S.; Meissner, T.; Kaiser, T.; Goldschmidt, H.; et al. Multiple Myeloma Risk Variant at 7p15.3 Creates An IRF4-Binding Site and Interferes qith CDCA7L Expression. Nat. Commun. 2016, 7, 13656. [Google Scholar] [CrossRef]
- Weinhold, N.; Meissner, T.; Johnson, D.C.; Seckinger, A.; Moreaux, J.; Forsti, A.; Chen, B.; Nickel, J.; Chubb, D.; Rawstron, A.C.; et al. The 7p15.3 (rs4487645) Association for Multiple Myeloma Shows Strong Allele-Specific Regulation of the MYC-Interacting Gene CDCA7L in Malignant Plasma Cells. Haematologica 2015, 100, e110-3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dostert, C.; Grusdat, M.; Letellier, E.; Brenner, D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol Rev. 2019, 99, 115–160. [Google Scholar] [CrossRef] [PubMed]
- Meziane, I.; Huhn, S.; Filho, M.; Weinhold, N.; Campo, C.; Nickel, J.; Hoffmann, P.; Nöthen, M.M.; Jöckel, K.-H.; Landi, S.; et al. Genome-Wide Association Study of Clinical Parameters in Immunoglobulin Light Chain Amyloidosis in Three Patient Cohorts. Haematologica 2017, 102, e411–e414. [Google Scholar] [CrossRef]
- Kumar, S.; Zhang, L.; Dispenzieri, A.; Van Wier, S.; Katzmann, J.A.; Snyder, M.; Blood, E.; DeGoey, R.; Henderson, K.; Kyle, R.A.; et al. Relationship between Elevated Immunoglobulin Free Light Chain and the Presence of Igh Translocations in Multiple Myeloma. Leukemia 2010, 24, 1498–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bochtler, T.; Hegenbart, U.; Cremer, F.W.; Heiss, C.; Benner, A.; Hose, D.; Moos, M.; Bila, J.; Bartram, C.R.; Ho, A.D.; et al. Evaluation of the Cytogenetic Aberration Pattern in Amyloid Light Chain Amyloidosis as Compared with Monoclonal Gammopathy of Undetermined Significance Reveals Common Pathways of Karyotypic Instability. Blood 2008, 111, 4700–4705. [Google Scholar] [CrossRef] [Green Version]
- Muchtar, E.; Dispenzieri, A.; Kumar, S.K.; Ketterling, R.P.; Dingli, D.; Lacy, M.Q.; Buadi, F.K.; Hayman, S.R.; Kapoor, P.; Leung, N.; et al. Interphase Fluorescence In Situ Hybridization in Untreated AL Amyloidosis Has an Independent Prognostic Impact by Abnormality Type and Treatment Category. Leukemia 2016, 31, 1562–1569. [Google Scholar] [CrossRef]
- Magrangeas, F.; Cormier, M.-L.; Descamps, G.; Gouy, N.; Lode, L.; Mellerin, M.-P.; Harousseau, J.-L.; Bataille, R.; Minvielle, S.; Avet-Loiseau, H.; et al. Light-Chain Only Multiple Myeloma Is Due to the Absence of Functional (Productive) Rearrangement of the Igh Gene at the DNA Level. Blood 2004, 103, 3869–3875. [Google Scholar] [CrossRef] [Green Version]
- Gostissa, M.; Alt, F.W.; Chiarle, R. Mechanisms that Promote and Suppress Chromosomal Translocations in Lymphocytes. Annu. Rev. Immunol. 2011, 29, 319–350. [Google Scholar] [CrossRef] [Green Version]
- Pestell, R.G. New Roles of Cyclin D1. Am. J. Pathol. 2013, 183, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Broderick, P.; Chubb, D.; Johnson, D.C.; Weinhold, N.; Forsti, A.; Lloyd, A.; Olver, B.; Ma, Y.P.; Dobbins, S.E.; Walker, B.A.; et al. Common Variation at 3p22.1 and 7p15.3 Influences Multiple Myeloma Risk. Nat Genet. 2012, 44, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Chubb, D.; Weinhold, N.; Broderick, P.; Chen, B.; Johnson, D.C.; Forsti, A.; Vijayakrishnan, J.; Migliorini, G.; Dobbins, S.E.; Holroyd, A.; et al. Common Variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 Influences Multiple Myeloma Risk. Nat. Genet. 2013, 45, 1221–1225. [Google Scholar] [CrossRef]
- Swaminathan, B.; Thorleifsson, G.; Joud, M.; Ali, M.; Johnsson, E.; Ajore, R.; Sulem, P.; Halvarsson, B.M.; Eyjolfsson, G.; Haraldsdotti, V.; et al. Variants in ELL2 Influencing Immunoglobulin Levels Associate with Multiple Myeloma. Nat Commun. 2015, 6, 7213. [Google Scholar] [CrossRef] [Green Version]
- Went, M.; Sud, A.; Forsti, A.; Halvarsson, B.M.; Weinhold, N.; Kimber, S.; van Duin, M.; Thorleifsson, G.; Holroyd, A.; Johnson, D.C.; et al. Identification of Multiple Risk Loci and Regulatory Mechanisms Influencing Susceptibility to Multiple Myeloma. Nat. Commun. 2018, 9, 3707. [Google Scholar] [CrossRef]
- Thomsen, H.; Campo, C.; Weinhold, N.; Filho, M.I.; Pour, L.; Gregora, E.; Gregora, E.; Vodicka, P.; Vodickova, L.; Hoffmann, P.; et al. Genome-Wide Association Study on Monoclonal Gammopathy of Unknown Significance (MGUS). Eur. J. Haematol. 2017, 99, 70–79. [Google Scholar] [CrossRef]
- Thomsen, H.; Chattopadhyay, S.; Weinhold, N.; Vodicka, P.; Vodickova, L.; Hoffmann, P.; Nöthen, M.M.; Jöckel, K.; Langer, C.; Hajek, R.; et al. Genome-Wide Association Study of Monoclonal Gammopathy of Unknown Significance (MGUS): Comparison with Multiple Myeloma. Leukemia 2019, 33, 1817–1821. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Thomsen, H.; Weinhold, N.; Meziane, I.; Huhn, S.; da Silva Filho, M.I.; Vodicka, P.; Vodickova, L.; Hoffmann, P.; Nöthen, M.M.; et al. Eight Novel Loci Implicate Shared Genetic Etiology in Multiple Myeloma, AL Amyloidosis, and Monoclonal Gammopathy of Unknown Significance. Leukemia 2020, 34, 1187–1191. [Google Scholar] [CrossRef]
- Jonsson, S.; Sveinbjornsson, G.; de Lapuente Portilla, A.L.; Swaminathan, B.; Plomp, R.; Dekkers, G.; Ajore, R.; Ali, M.; Bentlage, A.E.H.; Elmér, E.; et al. Identification of Sequence Variants Influencing Immunoglobulin Levels. Nat Genet. 2017, 49, 1182–1191. [Google Scholar] [CrossRef]
- Saunders, C.N.; Chattopadhyay, S.; Huhn, S.; Weinhold, N.; Hoffmann, P.; Nöthen, M.M.; Jöckel, K.H.; Schmidt, B.; Landi, S.; Goldschmidt, H.; et al. Search for AL Amyloidosis Risk Factors Using Mendelian Randomization. Blood Adv. 2021, 5, 2725–2731. [Google Scholar] [CrossRef] [PubMed]
- Blancas-Mejia, L.M.; Misra, P.; Dick, C.J.; Cooper, S.A.; Redhage, K.R.; Bergman, M.R.; Jordan, T.L.; Maar, K.; Ramirez-Alvarado, M. Immunoglobulin Light Chain Amyloid Aggregation. Chem. Commun. 2018, 54, 10664–10674. [Google Scholar] [CrossRef]
- Shalapour, S.; Karin, M. Pas de Deux: Control of Anti-tumor Immunity by Cancer-Associated Inflammation. Immunity 2019, 51, 15–26. [Google Scholar] [CrossRef]
- Petty, A.J.; Yang, Y. Tumor-Associated Macrophages in Hematologic Malignancies: New Insights and Targeted Therapies. Cells 2019, 8, 1526. [Google Scholar] [CrossRef] [Green Version]
- Kawano, Y.; Roccaro, A.M.; Ghobrial, I.M.; Azzi, J. Multiple Myeloma and the Immune Microenvironment. Curr. Cancer Drug Targets 2017, 17, 806–818. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Chari, A.; Scott, E.; Mezzi, K.; Usmani, S.Z. B-Cell Maturation Antigen (BCMA) in Multiple Myeloma: Rationale for Targeting and Current Therapeutic Approaches. Leukemia 2020, 34, 985–1005. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, M.; Urak, R.; Walter, M.; Lim, L.; Sanchez, J.F.; Krishnan, A.; Forman, S.; Wang, X. Preclinical Data Support Leveraging CS1 Chimeric Antigen Receptor T-Cell Therapy for Systemic Light Chain Amyloidosis. Cytotherapy 2017, 19, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, G.P.; Cerchione, C. Beyond Andromeda: Improving Therapy for Light Chain Amyloidosis. Front. Oncol. 2020, 10, 624573. [Google Scholar] [CrossRef]
- De Larrea, C.F.; Staehr, M.; Lopez, A.V.; Ng, K.Y.; Chen, Y.; Godfrey, W.D.; Purdon, T.J.; Ponomarev, V.; Wendel, H.J.; Brentjens, R.J.; et al. Defining an Optimal Dual-Targeted CAR T-cell Therapy Approach Simultaneously Targeting BCMA and GPRC5D to Prevent BCMA Escape-Driven Relapse in Multiple Myeloma. Blood Cancer Discov. 2020, 1, 146–154. [Google Scholar] [CrossRef]
- Sanchez, L.; Dardac, A.; Madduri, D.; Richard, S.; Richter, J. B-Cell Maturation Antigen (BCMA) in Multiple Myeloma: The New Frontier of Targeted Therapies. Ther. Adv. Hematol. 2021, 12. [Google Scholar] [CrossRef]
- Kumar, S.; Kaufman, J.L.; Gasparetto, C.; Mikhael, J.; Vij, R.; Pegourie, B.; Benboubker, L.; Facon, T.; Amiot, M.; Moreau, P.; et al. Efficacy of Venetoclax as Targeted Therapy for Relapsed/Refractory T(11;14) Multiple Myeloma. Blood 2017, 130, 2401–2409. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, J.L.; Gasparetto, C.; Schjesvold, F.H.; Moreau, P.; Touzeau, C.; Facon, T.; Boise, L.H.; Jiang, Y.; Yang, X.; Dunbar, F.; et al. Targeting BCL-2 with Venetoclax and Dexamethasone in Patients with Relapsed/Refractory T(11;14) Multiple Myeloma. Am. J. Hematol. 2021, 96, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, V.J.; Lentzsch, S.; Pan, S.; Bhutani, D.; Richter, J.; Jagannath, S.; Liedtke, M.; Jaccard, A. Wechalekar, A.D.; Comenzo, R.; et al. Venetoclax Induces Deep Hematologic Remissions in T(11;14) Relapsed/Refractory AL Amyloidosis. Blood Cancer J. 2021, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef] [PubMed]
Cytogenetic Subtypes | RAF a | OR (95% CI) b | p |
---|---|---|---|
AL amyloidosis | 0.56 | 1.39 (1.22–1.60) | 2.00 × 10−6 |
t11;14 positive | 0.55 | 1.70 (1.38–2.09) | 4.70 × 10−7 |
IgH positive | 0.55 | 1.50 (1.26–1.79) | 6.60 × 10−6 |
t11;14 negative | 0.54 | 1.14 (0.91–1.44) | 0.22 |
IgH negative | 0.54 | 1.15 (0.81–1.62) | 0.38 |
IgH positive and t11;14 negative | 0.54 | 1.14 (0.84–1.54) | 0.41 |
Profiles | Number of Cases | OR | 95% CI a | p-Value b | I2c | Z-Score |
---|---|---|---|---|---|---|
Overall AL | 1129 | 1.35 | 1.23–1.48 | 7.80 × 10−11 | 0.36 | 6.51 |
IgG | 447 | 1.20 | 1.05–1.38 | 9.69 × 10−3 | 0.00 | 2.59 |
λ any | 930 | 1.40 | 1.27–1.55 | 9.28 × 10−11 | 0.00 | 6.48 |
κ any | 265 | 1.33 | 1.11–1.59 | 2.03 × 10−3 | 0.00 | 3.09 |
λ/κ LCO | 535 | 1.62 | 1.42–1.85 | 1.99 × 10−12 | 0.00 | 7.04 |
λ LCO | 404 | 1.70 | 1.46–1.98 | 1.29 × 10−11 | 0.00 | 6.77 |
Kidney | 844 | 1.34 | 1.20–1.48 | 6.89 × 10−8 | 0.20 | 5.40 |
Heart | 835 | 1.39 | 1.24–1.54 | 2.91 × 10−9 | 0.49 | 5.94 |
HK | 426 | 1.31 | 1.14–1.52 | 2.14 × 10−4 | 0.38 | 3.70 |
Liver | 194 | 1.40 | 1.14–1.73 | 1.63 × 10−3 | 0.00 | 3.15 |
Overall MM | 3790 | 1.06 | 1.00–1.12 | 4.00 × 10−2 | 0.61 | 2.09 |
MM LCO κ d | 123 | 1.01 | 0.78–1.30 | 0.95 | ||
MM LCO λ d | 89 | 1.03 | 0.75–1.30 | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemminki, K.; Försti, A. Epidemiology of Amyloidosis and Genetic Pathways to Diagnosis and Typing. Hemato 2021, 2, 429-440. https://doi.org/10.3390/hemato2030027
Hemminki K, Försti A. Epidemiology of Amyloidosis and Genetic Pathways to Diagnosis and Typing. Hemato. 2021; 2(3):429-440. https://doi.org/10.3390/hemato2030027
Chicago/Turabian StyleHemminki, Kari, and Asta Försti. 2021. "Epidemiology of Amyloidosis and Genetic Pathways to Diagnosis and Typing" Hemato 2, no. 3: 429-440. https://doi.org/10.3390/hemato2030027
APA StyleHemminki, K., & Försti, A. (2021). Epidemiology of Amyloidosis and Genetic Pathways to Diagnosis and Typing. Hemato, 2(3), 429-440. https://doi.org/10.3390/hemato2030027