Individualised Risk Assessments for Recurrent Venous Thromboembolism: New Frontiers in the Era of Direct Oral Anticoagulants
Abstract
:1. Introduction
2. Risk Factors and Clinical Risk Prediction Models
3. Biomarkers
3.1. D-Dimer
3.2. Factor VIII
3.3. P-Selectin
3.4. C-Reactive Protein (CRP)
3.5. Microparticles
4. Future Directions and the Role of Global Coagulation Assays
4.1. Thrombin Generation and VTE Recurrence
4.2. Viscoelastic Tests and VTE Recurrence
4.3. Fibrin Generation, Fibrinolysis and VTE Recurrence
4.4. Limitations of Global Coagulation Assays
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heit, J.A. Epidemiology of Venous Thromboembolism. Nat. Rev. Cardiol. 2015, 12, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Spencer, F.A.; Emery, C.; Joffe, S.W.; Pacifico, L.; Lessard, D.; Reed, G.; Gore, J.M.; Goldberg, R.J. Incidence Rates, Clinical Profile, and Outcomes of Patients with Venous Thromboembolism. The Worcester VTE Study. J. Thromb. Thrombolys. 2009, 28, 401–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gary, E.R. Thrombosis: A Major Contributor to the Global Disease Burden. J. Thromb. Haemost. 2014, 12, 1580–1590. [Google Scholar] [CrossRef]
- Lim, H.Y.; Chua, C.C.; Tacey, M.; Sleeman, M.; Donnan, G.; Nandurkar, H.; Ho, P. Venous Thromboembolism Management in Northeast Melbourne: How Does It Compare to International Guidelines and Data? Intern. Med. J. 2017, 47, 1034–1042. [Google Scholar] [CrossRef]
- Christiansen, S.C.; Cannegieter, S.C.; Koster, T.; Vandenbroucke, J.P.; Rosendaal, F.R. Thrombophilia, Clinical Factors, and Recurrent Venous Thrombotic Events. JAMA 2005, 293, 2352–2361. [Google Scholar] [CrossRef]
- Douketis, J.; Tosetto, A.; Marcucci, M.; Baglin, T.; Cosmi, B.; Cushman, M.; Kyrle, P.; Poli, D.; Tait, R.C.; Iorio, A. Risk of Recurrence after Venous Thromboembolism in Men and Women: Patient Level Meta-Analysis. BMJ 2011, 342, d813. [Google Scholar] [CrossRef] [Green Version]
- Eichinger, S.; Hron, G.; Bialonczyk, C.; Hirschl, M.; Minar, E.; Wagner, O.; Heinze, G.; Kyrle, P.A. Overweight, Obesity, and the Risk of Recurrent Venous Thromboembolism. Arch. Intern. Med. 2008, 168, 1678–1683. [Google Scholar] [CrossRef] [Green Version]
- Chee, C.E.; Ashrani, A.A.; Marks, R.S.; Petterson, T.M.; Bailey, K.R.; Melton, L.J.; Heit, J.A. Predictors of Venous Thromboembolism Recurrence and Bleeding among Active Cancer Patients: A Population-Based Cohort Study. Blood 2014, 123, 3972–3978. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.; Rahman, A.; Carrier, M.; Kearon, C.; Weitz, J.I.; Schulman, S.; Couturaud, F.; Eichinger, S.; Kyrle, P.A.; Becattini, C.; et al. Long Term Risk of Symptomatic Recurrent Venous Thromboembolism after Discontinuation of Anticoagulant Treatment for First Unprovoked Venous Thromboembolism Event: Systematic Review and Meta-Analysis. BMJ 2019, 366, l4363. [Google Scholar] [CrossRef] [Green Version]
- Kearon, C. Natural History of Venous Thromboembolism. Circulation 2003, 107, I-22–I-30. [Google Scholar] [CrossRef] [Green Version]
- Iorio, A.; Kearon, C.; Filippucci, E.; Marcucci, M.; Macura, A.; Pengo, V.; Siragusa, S.; Palareti, G. Risk of Recurrence After a First Episode of Symptomatic Venous Thromboembolism Provoked by a Transient Risk Factor: A Systematic ReviewRecurrence After VTE Provoked by Transient Risk Factor. JAMA Intern. Med. 2010, 170, 1710–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chua, C.C.; Lim, H.Y.; Tacey, M.; Nandurkar, H.; Ho, P. Retrospective Evaluation of Venous Thromboembolism: Are All Transient Provoking Events the Same? Eur. J. Haematol. 2017, 99, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Kearon, C.; Kahn, S.R. Long-Term Treatment of Venous Thromboembolism. Blood 2020, 135, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Prandoni, P.; Falanga, A.; Piccioli, A. Cancer and Venous Thromboembolism. Lancet Oncol. 2005, 6, 401–410. [Google Scholar] [CrossRef]
- Yang, G.; Staercke, C.D.; Hooper, W.C. The Effects of Obesity on Venous Thromboembolism: A Review. Open J. Prev. Med. 2012, 2012, 499–509. [Google Scholar] [CrossRef] [Green Version]
- Kearon, C.; Akl, E.A. Duration of Anticoagulant Therapy for Deep Vein Thrombosis and Pulmonary Embolism. Blood 2014, 123, 1794–1801. [Google Scholar] [CrossRef] [Green Version]
- Douketis, J.; Tosetto, A.; Marcucci, M.; Baglin, T.; Cushman, M.; Eichinger, S.; Palareti, G.; Poli, D.; Tait, R.C.; Iorio, A. Patient-Level Meta-Analysis: Effect of Measurement Timing, Threshold, and Patient Age on Ability of D-Dimer Testing to Assess Recurrence Risk after Unprovoked Venous Thromboembolism. Ann. Intern. Med. 2010, 153, 523–531. [Google Scholar] [CrossRef]
- Segal, J.B.; Brotman, D.J.; Necochea, A.J.; Emadi, A.; Samal, L.; Wilson, L.M.; Crim, M.T.; Bass, E.B. Predictive Value of Factor V Leiden and Prothrombin G20210A in Adults With Venous Thromboembolism and in Family Members of Those With a Mutation: A Systematic Review. JAMA 2009, 301, 2472–2485. [Google Scholar] [CrossRef] [Green Version]
- Weitz, J.I.; Lensing, A.W.A.; Prins, M.H.; Bauersachs, R.; Beyer-Westendorf, J.; Bounameaux, H.; Brighton, T.A.; Cohen, A.T.; Davidson, B.L.; Decousus, H.; et al. Rivaroxaban or Aspirin for Extended Treatment of Venous Thromboembolism. N. Engl. J. Med. 2017, 376, 1211–1222. [Google Scholar] [CrossRef]
- Agnelli, G.; Buller, H.R.; Cohen, A.; Curto, M.; Gallus, A.S.; Johnson, M.; Porcari, A.; Raskob, G.E.; Weitz, J.I.; Investigators, P.-E. Apixaban for Extended Treatment of Venous Thromboembolism. N. Engl. J. Med. 2013, 368, 699–708. [Google Scholar] [CrossRef]
- Mai, V.; Guay, C.-A.; Perreault, L.; Bonnet, S.; Bertoletti, L.; Lacasse, Y.; Jardel, S.; Lega, J.-C.; Provencher, S. Extended Anticoagulation for VTE A Systematic Review and Meta-Analysis. Chest 2019, 155, 1199–1216. [Google Scholar] [CrossRef] [PubMed]
- Ortel, T.L.; Neumann, I.; Ageno, W.; Beyth, R.; Clark, N.P.; Cuker, A.; Hutten, B.A.; Jaff, M.R.; Manja, V.; Schulman, S.; et al. American Society of Hematology 2020 Guidelines for Management of Venous Thromboembolism: Treatment of Deep Vein Thrombosis and Pulmonary Embolism. Blood Adv. 2020, 4, 4693–4738. [Google Scholar] [CrossRef] [PubMed]
- Kearon, C.; Akl, E.A.; Ornelas, J.; Blaivas, A.; Jimenez, D.; Bounameaux, H.; Huisman, M.; King, C.S.; Morris, T.A.; Sood, N.; et al. Antithrombotic Therapy for VTE Disease: CHEST Guideline and Expert Panel Report. Chest 2016, 149, 315–352. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.A.; Gibbs, H.; Merriman, E.; Curnow, J.L.; Young, L.; Bennett, A.; Tan, C.W.; Chunilal, S.D.; Ward, C.M.; Baker, R.; et al. New Guidelines from the Thrombosis and Haemostasis Society of Australia and New Zealand for the Diagnosis and Management of Venous Thromboembolism. Med. J. Aust. 2019, 210, 227–235. [Google Scholar] [CrossRef]
- Schuh, T.; Reichardt, B.; Finsterer, J.; Stöllberger, C. Age-Dependency of Prescribing Patterns of Oral Anticoagulant Drugs in Austria during 2011–2014. J. Thromb. Thrombolys. 2016, 42, 447–451. [Google Scholar] [CrossRef]
- Loo, S.Y.; Dell’Aniello, S.; Huiart, L.; Renoux, C. Trends in the Prescription of Novel Oral Anticoagulants in UK Primary Care. Br. J. Clin. Pharmacol. 2017, 83, 2096–2106. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.H.; van Hove, M.; Leng, G. Trends in Anticoagulant Prescribing: A Review of Local Policies in English Primary Care. BMC Health Ser. Res. 2020, 20, 279. [Google Scholar] [CrossRef] [Green Version]
- Pratt, N.L.; Ramsay, E.N.; Caughey, G.E.; Shakib, S.; Roughead, E.E. Uptake of Novel Oral Anticoagulants in Australia. Med. J. Aust. 2016, 204, 104–105. [Google Scholar] [CrossRef]
- Lip, G.Y.H.; Pan, X.; Kamble, S.; Kawabata, H.; Mardekian, J.; Masseria, C.; Bruno, A.; Phatak, H. Major Bleeding Risk among Non-Valvular Atrial Fibrillation Patients Initiated on Apixaban, Dabigatran, Rivaroxaban or Warfarin: A “Real-World” Observational Study in the United States. Int. J. Clin. Pract. 2016, 70, 752–763. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Abraham, N.S.; Sangaralingham, L.R.; Bellolio, M.F.; McBane, R.D.; Shah, N.D.; Noseworthy, P.A. Effectiveness and Safety of Dabigatran, Rivaroxaban, and Apixaban Versus Warfarin in Nonvalvular Atrial Fibrillation. J. Am. Heart Assoc. 2016, 5, e003725. [Google Scholar] [CrossRef] [Green Version]
- Chai-Adisaksopha, C.; Hillis, C.; Isayama, T.; Lim, W.; Iorio, A.; Crowther, M. Mortality Outcomes in Patients Receiving Direct Oral Anticoagulants: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Thromb. Haemost. 2015, 13, 2012–2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huiart, L.; Ferdynus, C.; Renoux, C.; Beaugrand, A.; Lafarge, S.; Bruneau, L.; Suissa, S.; Maillard, O.; Ranouil, X. Trends in Initiation of Direct Oral Anticoagulant Therapies for Atrial Fibrillation in a National Population-Based Cross-Sectional Study in the French Health Insurance Databases. BMJ Open 2018, 8, e018180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ageno, W.; Mantovani, L.G.; Haas, S.; Kreutz, R.; Monje, D.; Schneider, J.; van Eickels, M.; Gebel, M.; Zell, E.; Turpie, A.G.G. Safety and Effectiveness of Oral Rivaroxaban versus Standard Anticoagulation for the Treatment of Symptomatic Deep-Vein Thrombosis (XALIA): An International, Prospective, Non-Interventional Study. Lancet Haematol. 2016, 3, e12–e21. [Google Scholar] [CrossRef]
- Beyer-Westendorf, J.; Förster, K.; Pannach, S.; Ebertz, F.; Gelbricht, V.; Thieme, C.; Michalski, F.; Köhler, C.; Werth, S.; Sahin, K.; et al. Rates, Management, and Outcome of Rivaroxaban Bleeding in Daily Care: Results from the Dresden NOAC Registry. Blood 2014, 124, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Investigators, E.; Bauersachs, R.; Berkowitz, S.D.; Brenner, B.; Buller, H.R.; Decousus, H.; Gallus, A.S.; Lensing, A.W.; Misselwitz, F.; Prins, M.H.; et al. Oral Rivaroxaban for Symptomatic Venous Thromboembolism. N. Engl. J. Med. 2010, 363, 2499–2510. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.Y.; O’Malley, C.; Donnan, G.; Nandurkar, H.; Ho, P. A Review of Global Coagulation Assays—Is There a Role in Thrombosis Risk Prediction? Thromb. Res. 2019, 179, 45–55. [Google Scholar] [CrossRef]
- Pisters, R.; Lane, D.A.; Nieuwlaat, R.; de Vos, C.B.; Crijns, H.J.G.M.; Lip, G.Y.H. A Novel User-Friendly Score (HAS-BLED) To Assess 1-Year Risk of Major Bleeding in Patients with Atrial Fibrillation the Euro Heart Survey. Chest 2010, 138, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Rodger, M.A.; Gal, G.L.; Anderson, D.R.; Schmidt, J.; Pernod, G.; Kahn, S.R.; Righini, M.; Mismetti, P.; Kearon, C.; Meyer, G.; et al. Validating the HERDOO2 Rule to Guide Treatment Duration for Women with Unprovoked Venous Thrombosis: Multinational Prospective Cohort Management Study. BMJ 2017, 356, j1065. [Google Scholar] [CrossRef] [Green Version]
- Rodger, M.A.; Kahn, S.R.; Wells, P.S.; Anderson, D.A.; Chagnon, I.; le Gal, G.; Solymoss, S.; Crowther, M.; Perrier, A.; White, R.; et al. Identifying Unprovoked Thromboembolism Patients at Low Risk for Recurrence Who Can Discontinue Anticoagulant Therapy. Can. Med Assoc. J. 2008, 179, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Tosetto, A.; Iorio, A.; Marcucci, M.; Baglin, T.; Cushman, M.; Eichinger, S.; Palareti, G.; Poli, D.; Tait, R.C.; Douketis, J. Predicting Disease Recurrence in Patients with Previous Unprovoked Venous Thromboembolism: A Proposed Prediction Score (DASH). J. Thromb. Haemost. 2012, 10, 1019–1025. [Google Scholar] [CrossRef]
- Eichinger, S.; Hron, G.; Kollars, M.; Kyrle, P.A. Prediction of Recurrent Venous Thromboembolism by Endogenous Thrombin Potential and D-Dimer. Clin. Chem. 2008, 54, 2042–2048. [Google Scholar] [CrossRef] [PubMed]
- Eichinger, S.; Heinze, G.; Kyrle, P.A. D-Dimer Levels Over Time and the Risk of Recurrent Venous Thromboembolism: An Update of the Vienna Prediction Model. J. Am. Heart Assoc. 2014, 3, e000467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosetto, A.; Testa, S.; Martinelli, I.; Poli, D.; Cosmi, B.; Lodigiani, C.; Ageno, W.; Stefano, V.D.; Falanga, A.; Nichele, I.; et al. External Validation of the DASH Prediction Rule: A Retrospective Cohort Study. J. Thromb. Haemost. 2017, 15, 1963–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geersing, G.-J.; Hendriksen, J.M.T.; Zuithoff, N.P.A.; Roes, K.C.; Oudega, R.; Takada, T.; Schutgens, R.E.G.; Moons, K.G.M. Effect of Tailoring Anticoagulant Treatment Duration by Applying a Recurrence Risk Prediction Model in Patients with Venous Thromboembolism Compared to Usual Care: A Randomized Controlled Trial. PLoS Med. 2020, 17, e1003142. [Google Scholar] [CrossRef] [PubMed]
- Tritschler, T.; Méan, M.; Limacher, A.; Rodondi, N.; Aujesky, D. Predicting Recurrence after Unprovoked Venous Thromboembolism: Prospective Validation of the Updated Vienna Prediction Model. Blood 2015, 126, 1949–1951. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, S.; Chengal, R.; Hanxhiu, A.; Symington, E.; Sheares, K.; Besser, M.; Thomas, W. Utility of the DASH Score after Unprovoked Venous Thromboembolism; a Single Centre Study. Br. J. Haematol. 2019, 185, 631–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, S.S.; Key, N.S.; Greenberg, C.S. D-Dimer Antigen: Current Concepts and Future Prospects. Blood 2009, 113, 2878–2887. [Google Scholar] [CrossRef] [Green Version]
- Palareti, G.; Cosmi, B.; Legnani, C.; Tosetto, A.; Brusi, C.; Iorio, A.; Pengo, V.; Ghirarduzzi, A.; Pattacini, C.; Testa, S.; et al. D-Dimer Testing to Determine the Duration of Anticoagulation Therapy. N. Engl. J. Med. 2006, 355, 1780–1789. [Google Scholar] [CrossRef]
- Palareti, G.; Cosmi, B.; Legnani, C.; Antonucci, E.; Micheli, V.D.; Ghirarduzzi, A.; Poli, D.; Testa, S.; Tosetto, A.; Pengo, V.; et al. D-Dimer to Guide the Duration of Anticoagulation in Patients with Venous Thromboembolism: A Management Study. Blood 2014, 124, 196–203. [Google Scholar] [CrossRef]
- Cosmi, B.; Legnani, C.; Tosetto, A.; Pengo, V.; Ghirarduzzi, A.; Testa, S.; Prisco, D.; Poli, D.; Tripodi, A.; Marongiu, F.; et al. Usefulness of Repeated D-Dimer Testing after Stopping Anticoagulation for a First Episode of Unprovoked Venous Thromboembolism: The PROLONG II Prospective Study. Blood 2010, 115, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Cosmi, B.; Legnani, C.; Cini, M.; Guazzaloca, G.; Palareti, G. D-Dimer and Residual Vein Obstruction as Risk Factors for Recurrence during and after Anticoagulation Withdrawal in Patients with a First Episode of Provoked Deep-Vein Thrombosis. Thromb. Haemost. 2011, 105, 837–845. [Google Scholar] [CrossRef] [PubMed]
- BAGLIN, T.; PALMER, C.R.; LUDDINGTON, R.; BAGLIN, C. Unprovoked Recurrent Venous Thrombosis: Prediction by D-Dimer and Clinical Risk Factors. J. Thromb. Haemost. 2008, 6, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Avnery, O.; Martin, M.; Riviere, A.B.; Barillari, G.; Mazzolai, L.; Mahé, I.; Marchena, P.J.; Verhamme, P.; Monreal, M.; Ellis, M.H.; et al. D-dimer Levels and Risk of Recurrence Following Provoked Venous Thromboembolism: Findings from the RIETEregistry. J. Intern. Med. 2019, 287, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tacey, M.; Ho, P. Retrospective Review of D-Dimer Testing for Venous Thrombosis Recurrence Risk Stratification: Is This a Useful Test in the Real World? J. Thromb. Thrombolys. 2020, 49, 562–571. [Google Scholar] [CrossRef]
- Kearon, C.; Spencer, F.A.; O’Keeffe, D.; Parpia, S.; Schulman, S.; Baglin, T.; Stevens, S.M.; Kaatz, S.; Bauer, K.A.; Douketis, J.D.; et al. D-Dimer Testing to Select Patients With a First Unprovoked Venous Thromboembolism Who Can Stop Anticoagulant Therapy. Ann. Intern. Med. 2015, 162, 27–34. [Google Scholar] [CrossRef]
- Douma, R.A.; le Gal, G.; Sohne, M.; Righini, M.; Kamphuisen, P.W.; Perrier, A.; Kruip, M.J.H.A.; Bounameaux, H.; Buller, H.R.; Roy, P.M. Potential of an Age Adjusted D-Dimer Cut-off Value to Improve the Exclusion of Pulmonary Embolism in Older Patients: A Retrospective Analysis of Three Large Cohorts. BMJ 2010, 340, c1475. [Google Scholar] [CrossRef] [Green Version]
- Mullier, F.; Vanpee, D.; Jamart, J.; Dubuc, E.; Bailly, N.; Douxfils, J.; Chatelain, C.; Dogné, J.-M.; Chatelain, B. Comparison of Five D-Dimer Reagents and Application of an Age-Adjusted Cut-off for the Diagnosis of Venous Thromboembolism in Emergency Department. Blood Coagul. Fibrin. 2014, 25, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Riley, R.S.; Gilbert, A.R.; Dalton, J.B.; Pai, S.; McPherson, R.A. Widely Used Types and Clinical Applications of D-Dimer Assay. Lab Med. 2016, 47, 90–102. [Google Scholar] [CrossRef] [Green Version]
- Legnani, C.; Martinelli, I.; Palareti, G.; Ciavarella, A.; Poli, D.; Ageno, W.; Testa, S.; Mastroiacovo, D.; Ciammaichella, M.; Bucherini, E.; et al. D-Dimer Levels during and after Anticoagulation Withdrawal in Patients with Venous Thromboembolism Treated with Non-Vitamin K Anticoagulants. PLoS ONE 2019, 14, e0219751-9. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, J.; Mumford, A.; Manning, R.; Laffan, M. Elevation of FVIII: C in Venous Thromboembolism Is Persistent and Independent of the Acute Phase Response. Thromb. Haemost. 2000, 83, 10–13. [Google Scholar] [CrossRef]
- Tichelaar, V.; Mulder, A.; Kluin-Nelemans, H.; Meijer, K. The Acute Phase Reaction Explains Only a Part of Initially Elevated Factor VIII:C Levels: A Prospective Cohort Study in Patients with Venous Thrombosis. Thromb. Res. 2012, 129, 183–186. [Google Scholar] [CrossRef] [PubMed]
- LIJFERING, W.M.; CHRISTIANSEN, S.C.; ROSENDAAL, F.R.; CANNEGIETER, S.C. Contribution of High Factor VIII, IX and XI to the Risk of Recurrent Venous Thrombosis in Factor V Leiden Carriers. J. Thromb. Haemost. 2009, 7, 1944–1946. [Google Scholar] [CrossRef] [PubMed]
- Timp, J.F.; Lijfering, W.M.; Flinterman, L.E.; Vlieg, A.H.; Cessie, S.; Rosendaal, F.R.; Cannegieter, S.C. Predictive Value of Factor VIII Levels for Recurrent Venous Thrombosis: Results from the MEGA Follow-up Study. J. Thromb. Haemost. 2015, 13, 1823–1832. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Geng, J.-G. P-Selectin Mediates Adhesion of Leukocytes, Platelets, and Cancer Cells in Inflammation, Thrombosis, and Cancer Growth and Metastasis. Arch. Immunol. Ther. Exp. 2006, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Palabrica, T.; Lobb, R.; Furie, B.C.; Aronovitz, M.; Benjamin, C.; Hsu, Y.-M.; Sajer, S.A.; Furie, B. Leukocyte Accumulation Promoting Fibrin Deposition Is Mediated in Vivo by P-Selectin on Adherent Platelets. Nature 1992, 359, 848–851. [Google Scholar] [CrossRef]
- Blann, A.D.; Noteboom, W.M.P.; Rosendaal, F.R. Increased Soluble P-selectin Levels Following Deep Venous Thrombosis: Cause or Effect? Br. J. Haematol. 2000, 108, 191–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ay, C.; Pabinger, I.; Cohen, A.T. Cancer-Associated Venous Thromboembolism: Burden, Mechanisms, and Management. Thromb. Haemost. 2017, 117, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Kyrle, P.; Hron, G.; Eichinger, S.; Wagner, O. Circulating P-Selectin and the Risk of Recurrent Venous Thromboembolism. Thromb. Haemost. 2007, 97, 880–883. [Google Scholar] [CrossRef] [Green Version]
- Ay, C.; Jungbauer, L.V.; Sailer, T.; Tengler, T.; Koder, S.; Kaider, A.; Panzer, S.; Quehenberger, P.; Pabinger, I.; Mannhalter, C. High Concentrations of Soluble P-Selectin Are Associated with Risk of Venous Thromboembolism and the P-Selectin Thr715 Variant. Clin. Chem. 2007, 53, 1235–1243. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M.; Cushman, M.; Stampfer, M.J.; Tracy, R.P.; Hennekens, C.H. Inflammation, Aspirin, and the Risk of Cardiovascular Disease in Apparently Healthy Men. N. Engl. J. Med. 1997, 336, 973–979. [Google Scholar] [CrossRef]
- Quist-Paulsen, P.; Næss, I.A.; Cannegieter, S.C.; Romundstad, P.R.; Christiansen, S.C.; Rosendaal, F.R.; Hammerstrøm, J. Arterial Cardiovascular Risk Factors and Venous Thrombosis: Results from a Population-Based, Prospective Study (the HUNT 2). Haematologica 2010, 95, 119–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jara-Palomares, L.; Solier-Lopez, A.; Elias-Hernandez, T.; Asensio-Cruz, M.I.; Blasco-Esquivias, I.; Sanchez-Lopez, V.; de la Borbolla, M.R.; Arellano-Orden, E.; Suarez-Valdivia, L.; Marin-Romero, S.; et al. D-Dimer and High-Sensitivity C-Reactive Protein Levels to Predict Venous Thromboembolism Recurrence after Discontinuation of Anticoagulation for Cancer-Associated Thrombosis. Br. J. Cancer 2018, 119, 915–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacroix, R.; Dubois, C.; Leroyer, A.S.; Sabatier, F.; Dignat-George, F. Revisited Role of Microparticles in Arterial and Venous Thrombosis. J. Thromb. Haemost. 2013, 11, 24–35. [Google Scholar] [CrossRef]
- Ye, R.; Ye, C.; Huang, Y.; Liu, L.; Wang, S. Circulating Tissue Factor Positive Microparticles in Patients with Acute Recurrent Deep Venous Thrombosis. Thromb. Res. 2012, 130, 253–258. [Google Scholar] [CrossRef]
- Bal, L.; Ederhy, S.; Angelantonio, E.D.; Toti, F.; Zobairi, F.; Dufaitre, G.; Meuleman, C.; Mallat, Z.; Boccara, F.; Tedgui, A.; et al. Factors Influencing the Level of Circulating Procoagulant Microparticles in Acute Pulmonary Embolism. Arch. Cardiovasc. Dis. 2010, 103, 394–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ay, C.; Freyssinet, J.-M.; Sailer, T.; Vormittag, R.; Pabinger, I. Circulating Procoagulant Microparticles in Patients with Venous Thromboembolism. Thromb. Res. 2009, 123, 724–726. [Google Scholar] [CrossRef] [PubMed]
- Cointe, S.; Judicone, C.; Robert, S.; Mooberry, M.J.; Poncelet, P.; Wauben, M.; Nieuwland, R.; Key, N.S.; Dignat-George, F.; Lacroix, R. Standardization of Microparticle Enumeration across Different Flow Cytometry Platforms: Results of a Multicenter Collaborative Workshop. J. Thromb. Haemost. 2017, 15, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, R.; Judicone, C.; Mooberry, M.; Boucekine, M.; Key, N.S.; Dignat-George, F.; Workshop, T.I.S. Standardization of Pre-analytical Variables in Plasma Microparticle Determination: Results of the International Society on Thrombosis and Haemostasis SSC Collaborative Workshop. J. Thromb. Haemost. 2013, 11, 1190–1193. [Google Scholar] [CrossRef] [PubMed]
- Hemker Thrombin Generation: An Essential Step in Haemostasis and Thrombosis. In Haemostasis and Thrombosis; Forbes, C.D.; Bloom, A.L.; Thomas, D.P. (Eds.) Churchill Livingstone: London, UK, 1994; pp. 477–492. [Google Scholar]
- Hemker, H.C.; Giesen, P.; Dieri, R.A.; Regnault, V.; de Smedt, E.; Wagenvoord, R.; Lecompte, T.; Béguin, S. Calibrated Automated Thrombin Generation Measurement in Clotting Plasma. Pathophysiol. Haemost. Thromb. 2003, 33, 4–15. [Google Scholar] [CrossRef]
- Besser, M.; Baglin, C.; Luddington, R.; Vlieg, A.V.H.; Baglin, T. High Rate of Unprovoked Recurrent Venous Thrombosis Is Associated with High Thrombin-generating Potential in a Prospective Cohort Study. J. Thromb. Haemost. 2008, 6, 1720–1725. [Google Scholar] [CrossRef]
- Tripodi, A.; Legnani, C.; Chantarangkul, V.; Cosmi, B.; Palareti, G.; Mannucci, P.M. High Thrombin Generation Measured in the Presence of Thrombomodulin Is Associated with an Increased Risk of Recurrent Venous Thromboembolism. J. Thromb. Haemost. 2008, 6, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Hron, G.; Kollars, M.; Binder, B.R.; Eichinger, S.; Kyrle, P.A. Identification of Patients at Low Risk for Recurrent Venous Thromboembolism by Measuring Thrombin Generation. JAMA 2006, 296, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Dargaud, Y.; Trzeciak, M.; Bordet, J.; Ninet, J.; Negrier, C. Use of Calibrated Automated Thrombinography? Thrombomodulin to Recognise the Prothrombotic Phenotype. Thromb. Haemost. 2006, 96, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Van Hylckama Vlieg, A.; Christiansen, S.C.; Luddington, R.; Cannegieter, S.C.; Rosendaal, F.R.; Baglin, T.P. Elevated Endogenous Thrombin Potential Is Associated with an Increased Risk of a First Deep Venous Thrombosis but Not with the Risk of Recurrence. Br. J. Haematol. 2007, 138, 769–774. [Google Scholar] [CrossRef]
- Tripodi, A.; Primignani, M.; Lemma, L.; Chantarangkul, V.; Dell’Era, A.; Iannuzzi, F.; Aghemo, A.; Mannucci, P.M. Detection of the Imbalance of Procoagulant versus Anticoagulant Factors in Cirrhosis by a Simple Laboratory Method. Hepatology 2010, 52, 249–255. [Google Scholar] [CrossRef]
- Douxfils, J.; Morimont, L.; Delvigne, A.-S.; Devel, P.; Masereel, B.; Haguet, H.; Bouvy, C.; Dogné, J.-M. Validation and Standardization of the ETP-Based Activated Protein C Resistance Test for the Clinical Investigation of Steroid Contraceptives in Women: An Unmet Clinical and Regulatory Need. Clin. Chem. Lab. Med. 2020, 58, 294–305. [Google Scholar] [CrossRef]
- Van Hylckama Vlieg, A.; Baglin, C.A.; LUDDINGTON, R.; MacDonald, S.; Rosendaal, F.R.; Baglin, T.P. The Risk of a First and a Recurrent Venous Thrombosis Associated with an Elevated D-Dimer Level and an Elevated Thrombin Potential: Results of the THE-VTE Study. J. Thromb. Haemost. 2015, 13, 1642–1652. [Google Scholar] [CrossRef]
- McCrath, D.J.; Cerboni, E.; Frumento, R.J.; Hirsh, A.L.; Bennett-Guerrero, E. Thromboelastography Maximum Amplitude Predicts Postoperative Thrombotic Complications Including Myocardial Infarction. Anesth. Analg. 2005, 100, 1576–1583. [Google Scholar] [CrossRef]
- Spiel, A.O.; Mayr, F.B.; Firbas, C.; Quehenberger, P.; Jilma, B. Validation of Rotation Thrombelastography in a Model of Systemic Activation of Fibrinolysis and Coagulation in Humans. J. Thromb. Haemost. 2006, 4, 411–416. [Google Scholar] [CrossRef]
- Venema, L.F.; Post, W.J.; Hendriks, H.G.; Huet, R.C.; de Wolf, J.T.W.; de Vries, A.J. An Assessment of Clinical Interchangeability of TEG® and RoTEM® Thromboelastographic Variables in Cardiac Surgical Patients. Anesth. Analg. 2010, 111, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Zambruni, A.; Thalheimer, U.; Leandro, G.; Perry, D.; Burroughs, A.K. Thromboelastography with Citrated Blood. Blood Coagul. Fibrin. 2004, 15, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, B.; Johansen, P.; Christiansen, K.; Woelke, M.; Ingerslev, J. Whole Blood Coagulation Thrombelastographic Profiles Employing Minimal Tissue Factor Activation. J. Thromb. Haemost. 2003, 1, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Hunt, B.J. A Critical Appraisal of Point-of-care Coagulation Testing in Critically Ill Patients. J. Thromb. Haemost. 2015, 13, 1960–1967. [Google Scholar] [CrossRef]
- Curry, N.S.; Davenport, R. Transfusion Strategies for Major Haemorrhage in Trauma. Br. J. Haematol. 2019, 184, 508–523. [Google Scholar] [CrossRef] [Green Version]
- Schöchl, H.; Maegele, M.; Solomon, C.; Görlinger, K.; Voelckel, W. Early and Individualized Goal-Directed Therapy for Trauma-Induced Coagulopathy. Scand. J. Trauma Resusc. Emerg. Med. 2012, 20, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, M.; Moore, E.E.; Moore, H.; Thomas, S.; Lune, S.V.; Zimmer, D.; Dynako, J.; Hake, D.; Crowell, Z.; McCauley, R.; et al. Use of Viscoelastography in Malignancy-Associated Coagulopathy and Thrombosis: A Review. Semin. Thromb. Hemost. 2019, 45, 354–372. [Google Scholar] [CrossRef] [PubMed]
- Harahsheh, Y.; Ho, K.M. Use of Viscoelastic Tests to Predict Clinical Thromboembolic Events: A Systematic Review and Meta-analysis. Eur. J. Haematol. 2018, 100, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Brown, W.; Lunati, M.; Maceroli, M.; Ernst, A.; Staley, C.; Johnson, R.; Schenker, M. Ability of Thromboelastography to Detect Hypercoagulability: A Systematic Review and Meta-Analysis. J. Orthop. Trauma 2020, 34, 278–286. [Google Scholar] [CrossRef]
- Koopman, K.; Uyttenboogaart, M.; Hendriks, H.G.D.; Luijckx, G.-J.; Cramwinckel, I.R.; Vroomen, P.C.; Keyser, J.D.; van der Meer, J. Thromboelastography in Patients with Cerebral Venous Thrombosis. Thromb. Res. 2009, 124, 185–188. [Google Scholar] [CrossRef]
- Rossetto, V.; Spiezia, L.; Senzolo, M.; Rodriguez-Castro, K.I.; Maggiolo, S.; Simioni, P. Whole Blood Rotation Thromboelastometry (ROTEM®) Profiles in Subjects with Non-Neoplastic Portal Vein Thrombosis. Thromb. Res. 2013, 132, e131–e134. [Google Scholar] [CrossRef]
- Undas, A.; Natorska, J. Improving Fibrinolysis in Venous Thromboembolism: Impact of Fibrin Structure. Expert Rev. Hematol. 2019, 12, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Undas, A. How to Assess Fibrinogen Levels and Fibrin Clot Properties in Clinical Practice? Semin. Thromb. Hemost. 2016, 42, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Crowther, M.A.; Roberts, J.; Roberts, R.; Johnston, M.; Stevens, P.; Skingley, P.; Patrassi, G.M.; Sartori, M.T.; Hirsh, J.; Prandoni, P.; et al. Fibrinolytic Variables in Patients with Recurrent Venous Thrombosis: A Prospective Cohort Study. Thromb. Haemost. 2001, 85, 390–394. [Google Scholar] [PubMed]
- Folsom, A.R.; Cushman, M.; Heckbert, S.R.; Rosamond, W.D.; Aleksic, N. Prospective Study of Fibrinolytic Markers and Venous Thromboembolism. J. Clin. Epidemiol. 2003, 56, 598–603. [Google Scholar] [CrossRef]
- Schulman, S.; Wiman, B. The Significance of Hypofibrinolysis for the Risk of Recurrence of Venous Thromboembolism. Duration of Anticoagulation (DURAC) Trial Study Group. Thromb. Haemost. 1996, 75, 607–611. [Google Scholar]
- Eichinger, S.; Schönauer, V.; Weltermann, A.; Minar, E.; Bialonczyk, C.; Hirschl, M.; Schneider, B.; Quehenberger, P.; Kyrle, P.A. Thrombin-Activatable Fibrinolysis Inhibitor and the Risk for Recurrent Venous Thromboembolism. Blood 2004, 103, 3773–3776. [Google Scholar] [CrossRef]
- Meltzer, M.E.; Bol, L.; Rosendaal, F.R.; Lisman, T.; Cannegieter, S.C. Hypofibrinolysis as a Risk Factor for Recurrent Venous Thrombosis; Results of the LETS Follow-up Study. J. Thromb. Haemost. 2010, 8, 605–607. [Google Scholar] [CrossRef]
- Lisman, T. Decreased Plasma Fibrinolytic Potential as a Risk for Venous and Arterial Thrombosis. Semin. Thromb. Hemost. 2016, 43, 178–184. [Google Scholar] [CrossRef]
- Meltzer, M.E.; Lisman, T.; de Groot, P.G.; Meijers, J.C.M.; le Cessie, S.; Doggen, C.J.M.; Rosendaal, F.R. Venous Thrombosis Risk Associated with Plasma Hypofibrinolysis Is Explained by Elevated Plasma Levels of TAFI and PAI-1. Blood 2010, 116, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Lisman, T.; de Groot, P.G.; Meijers, J.C.M.; Rosendaal, F.R. Reduced Plasma Fibrinolytic Potential Is a Risk Factor for Venous Thrombosis. Blood 2005, 105, 1102–1105. [Google Scholar] [CrossRef] [Green Version]
- Karasu, A.; Baglin, T.P.; Luddington, R.; Baglin, C.A.; Vlieg, A.H. Prolonged Clot Lysis Time Increases the Risk of a First but Not Recurrent Venous Thrombosis. Br. J. Haematol. 2016, 172, 947–953. [Google Scholar] [CrossRef] [Green Version]
- Meltzer, M.E.; Lisman, T.; Doggen, C.J.M.; de Groot, P.G.; Rosendaal, F.R. Synergistic Effects of Hypofibrinolysis and Genetic and Acquired Risk Factors on the Risk of a First Venous Thrombosis. PLoS Med. 2008, 5, e97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traby, L.; Kollars, M.; Eischer, L.; Eichinger, S.; Kyrle, P.A. Prediction of Recurrent Venous Thromboembolism by Clot Lysis Time: A Prospective Cohort Study. PLoS ONE 2012, 7, e51447. [Google Scholar] [CrossRef] [Green Version]
- Zabczyk, M.; Plens, K.; Wojtowicz, W.; Undas, A. Prothrombotic Fibrin Clot Phenotype Is Associated With Recurrent Pulmonary Embolism After Discontinuation of Anticoagulant Therapy. Arterioscler. Thromb. Vasc. Biol. 2018, 37, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Cieslik, J.; Mrozinska, S.; Broniatowska, E.; Undas, A. Altered Plasma Clot Properties Increase the Risk of Recurrent Deep Vein Thrombosis: A Cohort Study. Blood 2018, 131, 797–807. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Bremme, K.; Blombäck, M. A Laboratory Method for Determination of Overall Haemostatic Potential in Plasma. I. Method Design and Preliminary Results. Thromb. Res. 1999, 96, 145–156. [Google Scholar] [CrossRef]
- He, S.; Antovic, A.; Blombäck, M. A Simple and Rapid Laboratory Method for Determination of Haemostasis Potential in Plasma: II. Modifications for Use in Routine Laboratories and Research Work. Thromb. Res. 2001, 103, 355–361. [Google Scholar] [CrossRef]
- He, S.; Zhu, K.; Skeppholm, M.; Vedin, J.; Svensson, J.; Egberg, N.; Blombäck, M.; Wallen, H. A Global Assay of Haemostasis Which Uses Recombinant Tissue Factor and Tissue-Type Plasminogen Activator to Measure the Rate of Fibrin Formation and Fibrin Degradation in Plasma. Thromb. Haemost. 2007, 98, 871–882. [Google Scholar]
- Chow, V.; Reddel, C.; Pennings, G.; Chung, T.; Ng, A.C.C.; Curnow, J.; Kritharides, L. Persistent Global Hypercoagulability in Long-Term Survivors of Acute Pulmonary Embolism. Blood Coagul. Fibrin. 2015, 26, 537–544. [Google Scholar] [CrossRef]
- Antovic, A.; Blombäck, M.; Bremme, K.; Rooijen, M.V.; He, S. Increased Hemostasis Potential Persists in Women with Previous Thromboembolism with or without APC Resistance. J. Thromb. Haemost. 2003, 1, 2531–2535. [Google Scholar] [CrossRef]
- Dargaud, Y.; Wolberg, A.S.; Gray, E.; Negrier, C.; Hemker, H.C. Proposal for Standardized Preanalytical and Analytical Conditions for Measuring Thrombin Generation in Hemophilia: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2017, 15, 1704–1707. [Google Scholar] [CrossRef] [PubMed]
- Pieters, M.; Philippou, H.; Undas, A.; de Lange, Z.; Rijken, D.C.; Mutch, N.J. Fibrinolysis, for the S. on F.X. and F., and the Subcommittee on An International Study on the Feasibility of a Standardized Combined Plasma Clot Turbidity and Lysis Assay: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2018, 16, 1007–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigano, J.; Ng, C.; Nandurkar, H.; Ho, P. Thrombin Generation Estimates the Anticoagulation Effect of Direct Oral Anticoagulants with Significant Interindividual Variability Observed. Blood Coagul. Fibrin. 2018, 29, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Mueck, W.; Stampfuss, J.; Kubitza, D.; Becka, M. Clinical Pharmacokinetic and Pharmacodynamic Profile of Rivaroxaban. Clin. Pharmacokinet. 2014, 53, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.H.; Seo, Y.; Park, P.; Kim, K.; Seo, J.Y.; Lee, H.T.; Kwoun, W.; Ahn, J. Evaluation of Global Laboratory Methods and Establishing On-therapy Ranges for Monitoring Apixaban and Rivaroxaban: Experience at a Single Institution. J. Clin. Lab. Anal. 2019, 33, e22869. [Google Scholar] [CrossRef] [Green Version]
- Cundiff, D.K. Clinical Evidence for Rebound Hypercoagulability after Discontinuing Oral Anticoagulants for Venous Thromboembolism. Medscape J. Med. 2008, 10, 258. [Google Scholar]
Risk Factors | Risk Ratio |
---|---|
Strong transient risk factor, e.g., surgery and injury vs unprovoked | 0.2 [9,11] |
Minor transient risk factor vs unprovoked | 0.5 [9,11] |
Malignancy vs unprovoked | 1.5–3 [8,14] |
Obesity | 1.5–2.5 [7,15] |
History of recurrent VTE (≥2 episodes) | 1.5 [16] |
Male | 1.75 [6,9] |
Abnormal D-dimer after unprovoked VTE | 1.5–2.5 [17] |
Hereditary thrombophilia | 1.2–2.0 [5,18] |
Malignancy vs unprovoked | 1.5–3 [8,14] |
Model | Inclusion Criteria | Variables | Findings |
---|---|---|---|
HERDOO2 [39] | 1st unprovoked major VTE Included provoked by:
|
| Annualised recurrence risk:
|
DASH [40] | 1st unprovoked major VTE Included provoked by:
|
| Annualised recurrence risk:
|
Vienna [41] | 1st unprovoked VTE Included isolated distal DVT Excluded events provoked by hormonal therapy |
| Nomogram with continuous variables Annualised recurrence risk:
|
Updated Vienna [42] | 1st unprovoked VTE Included isolated distal DVT Excluded events provoked by hormonal therapy |
| Nomograms with continuous variables |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Lim, H.Y.; Ho, P. Individualised Risk Assessments for Recurrent Venous Thromboembolism: New Frontiers in the Era of Direct Oral Anticoagulants. Hemato 2021, 2, 64-78. https://doi.org/10.3390/hemato2010003
Wang J, Lim HY, Ho P. Individualised Risk Assessments for Recurrent Venous Thromboembolism: New Frontiers in the Era of Direct Oral Anticoagulants. Hemato. 2021; 2(1):64-78. https://doi.org/10.3390/hemato2010003
Chicago/Turabian StyleWang, Julie, Hui Yin Lim, and Prahlad Ho. 2021. "Individualised Risk Assessments for Recurrent Venous Thromboembolism: New Frontiers in the Era of Direct Oral Anticoagulants" Hemato 2, no. 1: 64-78. https://doi.org/10.3390/hemato2010003
APA StyleWang, J., Lim, H. Y., & Ho, P. (2021). Individualised Risk Assessments for Recurrent Venous Thromboembolism: New Frontiers in the Era of Direct Oral Anticoagulants. Hemato, 2(1), 64-78. https://doi.org/10.3390/hemato2010003