Impaired Hematopoiesis after Allogeneic Hematopoietic Stem Cell Transplantation: Its Pathogenesis and Potential Treatments
Abstract
:1. Introduction
2. Importance of Chimerism Analysis for Determination of Graft Failure and Poor Graft Function
3. Factors Mediating Graft Failure and Poor Graft Function
3.1. Involvement of T Cells and NK Cells
3.2. Involvement of Regulatory T Cells
3.3. Involvement of Mesenchymal Stem Cells
3.4. Donor-Specific Anti-HLA Antibody
4. Involvement of Pro-Inflammatory Cytokines in Graft Failure and Poor Graft Function
4.1. Interferon-γ
4.2. Tumor Necrosis Factor-α
5. Damage of Hematopoietic Stem/Progenitor Cells and Bone Marrow Microenvironment in Graft Failure and Poor Graft Function
6. Other Therapeutic Interventions for Graft Failure and Poor Graft Function
6.1. CD34+-Selected Stem Cell Boost
6.2. Eltrombopag
7. Future Directions
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Olsson, R.; Remberger, M.; Schaffer, M.; Berggren, D.M.; Svahn, B.M.; Mattsson, J.; Ringdén, O. Graft failure in the modern era of allogeneic hematopoietic SCT. Bone Marrow Transpl. 2013, 48, 537–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsson, R.F.; Logan, B.R.; Chaudhury, S.; Zhu, X.; Akpek, G.; Bolwell, B.J.; Bredeson, C.N.; Dvorak, C.C.; Gupta, V.; Ho, V.T.; et al. Primary graft failure after myeloablative allogeneic hematopoietic cell transplantation for hematologic malignancies. Leukemia 2015, 29, 1754–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Gao, F.; Shi, J.; Luo, Y.; Tan, Y.; Lai, X.; Yu, J.; Huang, H. Incidence, risk factors, and outcomes of primary poor graft function after allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transpl. 2019, 25, 1898–1907. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Lee, J.H.; Chi, S.J. Failure of trilineage blood cell reconstitution after initial neutrophil engraftment in patients undergoing allogeneic hematopoietic cell transplantation–frequency and outcomes. Bone Marrow Transpl. 2004, 33, 729–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamae, H.; Storer, B.; Sandmaier, B.M.; Maloney, D.G.; Davis, C.; Corey, L.; Storb, R.; Boeckh, M. Cytopenias after day 28 in allogeneic hematopoietic cell transplantation: Impact of recipient/donor factors, transplant conditions and myelotoxic drugs. Haematologica 2011, 96, 1838–1845. [Google Scholar] [CrossRef] [Green Version]
- Peralvo, J.; Bacigalupo, A.; Pittaluga, P.A.; Occhini, D.; van Lint, M.T.; Frassoni, F.; Nardelli, E.; Transino, A.; Pantarotto, M.; Marmout, A.M. Poor graft function associated with graft-versus-host disease after allogeneic marrow transplantation. Bone Marrow Transpl. 1987, 2, 279–285. [Google Scholar]
- Tsutsumi, Y.; Tanaka, J.; Sugita, J.; Kato, N.; Zhang, L.; Yonezumi, M.; Chiba, K.; Toyoshima, N.; Kondo, T.; Ohta, S.; et al. Analysis of T cell repertoire and mixed chimerism in a patient with aplastic anemia after allogeneic bone marrow transplantation. Br. J. Haematol. 2002, 118, 136–139. [Google Scholar] [CrossRef]
- Pérez-Simón, J.A.; Caballero, D.; Diez-Campelo, M.; Lopez-Pérez, R.; Mateos, G.; Cañizo, C.; Vazquez, L.; Vidriales, B.; Mateos, M.; Gonzalez, M.; et al. Chimerism and minimal residual disease monitoring after reduced intensity conditioning (RIC) allogeneic transplantation. Leukemia 2002, 16, 1423–1431. [Google Scholar]
- Bader, P.; Beck, J.; Frey, A.; Schlegel, P.G.; Hebarth, H.; Handgretinger, R.; Einsele, H.; Niemeyer, C.; Benda, N.; Faul, C.; et al. Serial and quantitative analysis of mixed hematopoietic chimerism by PCR in patients with acute leukemias allows the prediction of relapse after allogeneic BMT. Bone Marrow Transpl. 1998, 21, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Bader, P.; Niethammer, D.; Willasch, A.; Kreyenberg, H.; Klingebiel, T. How and when should we monitor chimerism after allogeneic stem cell transplantation. Bone Marrow Transpl. 2005, 35, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Antin, J.H.; Childs, R.; Filipovich, A.H.; Giralt, S.; Mackinnon, S.; Spitzer, T.; Weisdorf, D. Establishment of complete and mixed donor chimerism after allogeneic lymphohematopoietic transplantation: Recommendations from a workshop at the 2001 Tandem Meetings of the International Bone Marrow Transplant Registry and the American Society of Blood and Marrow Transplantation. Biol. Blood Marrow Transpl. 2001, 7, 473–485. [Google Scholar]
- Keil, F.; Prinz, E.; Moser, K.; Mannhalter, C.; Kalhs, P.; Worel, N.; Rabitsch, W.; Schulenburg, A.; Mitterbauer, M.; Greinix, H. Rapid establishment of long-term culture-initiating cells of donor origin after nonmyeloablative allogeneic hematopoietic stem-cell transplantation, and significant prognostic impact of donor T-cell chimerism on stable engraftment and progression-free survival. Transplantation 2003, 76, 230–236. [Google Scholar] [PubMed]
- Guimond, M.; Busque, L.; Baron, C.; Bonny, Y.; Bélanger, R.; Mattioli, J.; Roy, D.C. Relapse after bone marrow transplantation: Evidence for distinct immunological mechanisms between adult and paediatric populations. Br. J. Haematol. 2000, 109, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Matthes-Martin, S.; Lion, T.; Haas, O.A.; Frommlet, F.; Daxberger, H.; Konig, M.; Printz, D.; Scharner, D.; Eichstill, C.; Peters, C.; et al. Lineage-specific chimaerism after stem cell transplantation in children following reduced intensity conditioning: Potential predictive value of NK cell chimaerism for late graft rejection. Leukemia 2003, 17, 1934–1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bornhäuser, M.; Thiede, C.; Platzbecker, U.; Jenke, A.; Helwig, A.; Plettig, R.; Freiberg-Richter, J.; Rölling, C.; Geissler, G.; Lutterbeck, K.; et al. Dose-reduced conditioning and allogeneic hematopoietic stem cell transplantation from unrelated donors in 42 patients. Clin. Cancer Res. 2001, 7, 2254–2262. [Google Scholar]
- Baron, F.; Baker, J.E.; Storb, R.; Gooley, T.A.; Sandmaier, B.M.; Maris, M.B.; Maloney, D.G.; Heimfeld, S.; Oparin, D.; Zellmer, E.; et al. Kinetics of engraftment in patients with hematological malignancies given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Blood 2004, 104, 2254–2262. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Tanaka, J.; Toubai, T.; Tsutsumi, Y.; Kato, N.; Hirate, D.; Kaji, M.; Sugit, J.; Shigematsu, A.; Iwao, N.; et al. Analysis of donor-type chimerism in lineage-specific cell populations after allogeneic myeloablative and non-myeloablative stem cell transplantation. Bone Marrow Transpl. 2006, 37, 837–843. [Google Scholar] [CrossRef] [Green Version]
- Pedini, P.; Cherout, N.; Basire, A.; Simon, S.; Budon, L.; Pourtein, M.; Grondin, S.; Moskovtchenko, P.; Chiaroni, J.; Michel, G.; et al. Evaluation of next-generation sequencing and crystal digital PCR for chimerism monitoring of post-allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transpl. 2020. [Google Scholar] [CrossRef]
- Nakamura, H.; Gress, R.E. Graft rejection by cytolytic T cells. Transplantation 1990, 49, 453–458. [Google Scholar]
- Kernan, N.A.; Flomenberg, N.; Dupont, B.; O’Reilly, R.J. Graft rejection in recipients of T-cell-depleted HLA-nonidentical marrow transplants for leukemia: Identification of host-derived antidonor allocytotoxic T lymphocytes. Transplantation 1987, 53, 842–847. [Google Scholar] [CrossRef]
- Voogt, P.; Fibbe, W.; Mariit, W.; Veenhof, W.; Hamilton, M.; Zwaan, F.; Willemze, R.; van Rood, J.J. Rejection of bone-marrow graft by recipient-derived cytotoxic T lymphocytes against minor histocompatibility antigens. Lancet 1990, 335, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Murphy, W.J.; Kumar, V.; Bennett, M. Acute rejection of murine bone marrow allografts by natural killer cells and T cells. Differences in kinetics and target antigens recognized. J. Exp. Med. 1987, 166, 1499–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, W.; Kumar, V.; Bennett, M. Rejection of bone marrow allografts by mice with severe combined immune deficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. J. Exp. Med. 1987, 165, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Tiberghein, P.; Longo, D.I.; Wine, J.W.; Alvord, W.G.; Reynolds, C.W. Anti-asialo GM1 antiserum treatment of lethally irradiated recipients before bone marrow transplantation: Evidence that recipient natural killer depletion enhances survival, engraftment, and hematopoietic recovery. Blood 1990, 76, 1419–1430. [Google Scholar] [CrossRef]
- Bix, M.; Liao, N.S.; Zijlstra, M.; Loring, J.; Jaenisch, R.; Raulet, D. Rejection of class I MHC-deficient haematopoietic cells by irradiated MHC-matched mice. Nature 1991, 349, 329–331. [Google Scholar] [CrossRef]
- Ruggeri, L.; Capanni, M.; Urbani, E.; Perruccio, K.; Shlomchik, W.D.; Tosti, A.; Posati, S.; Rogaia, D.; Frassoni, F.; Aversa, F.; et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002, 295, 2097–2100. [Google Scholar] [CrossRef] [Green Version]
- Westerhuis, G.; Maas, W.G.E.; Willemze, R.; Toes, R.E.M.; Fibbe, W.E. Long-term mixed chimerism after immunologic conditioning and MHC-mismatched stem-cell transplantation is dependent on NK-cell tolerance. Blood 2005, 106, 2215–2220. [Google Scholar] [CrossRef] [Green Version]
- Kean, L.S.; Hamby, K.; Koehn, B.; Lee, E.; Coley, S.; Stempora, L.; Adams, A.B.; Heiss, E.; Pearson, T.C.; Larsen, C.P. NK cells mediate costimulation blockade-resistant rejection of allogeneic stem cells during nonmyeloablative transplantation. Am. J. Transpl. 2006, 6, 292–304. [Google Scholar] [CrossRef]
- Bloom, M.L.; Wolk, A.G.; Simon-Stoos, K.L.; Bard, J.S.; Chen, J.; Young, N.S. A mouse model of lymphocyte infusion-induced bone marrow failure. Exp. Hematol. 2004, 32, 1163–1172. [Google Scholar] [CrossRef]
- Chewning, J.H.; Zhang, W.; Randolph, D.A.; Swindle, C.S.; Schoeb, T.R.; Weaver, C.T. Allogeneic Th1 cells home to host bone marrow and spleen and mediate IFN gamma-dependent aplasia. Biol. Blood Marrow Transpl. 2013, 19, 876–887. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, M.; Mammolent, M.; Jones, M.; Jurecic, R.; Sayers, T.J.; Levy, R.B. Antigen-primed CD8+ T cells can mediate resistance, preventing allograft marrow engraftment in the simultaneous absence of perforin-, CD95L-, TNFR1-, and TRAIL-dependent killing. Blood 2003, 101, 3991–3999. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, Z.; Sharty, A.; Deyev, V.; Podack, E.; Mammolenti, M.; Blazar, B.R.; Yagita, H.; Levy, R.B. Effector cells derived from host CD8 memory T cells mediate rapid resistance against minor histocompatibility antigen-mismatched allogeneic marrow grafts without participation of perforin, Fas ligand, and the simultaneous inhibition of 3 tumor necrosis factor family effector pathways. Biol. Blood Marrow Transpl. 2005, 11, 576–586. [Google Scholar]
- Sun, K.; Alvarez, M.; Ames, E.; Barao, I.; Chen, M.; Longo, D.L.; Redelman, D.; Murphy, W.J. Mouse NK cell-mediated rejection of bone marrow allografts exhibits patterns consistent with Ly49 subset licensing. Blood 2012, 119, 1590–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, M.; Taylor, P.A.; Austin, M.; Baker, M.B.; Schook, L.B.; Rutherford, M.; Kumar, V.; Podack, E.R.; Mohler, K.M.; Levy, R.B.; et al. Cytokine and cytotoxic pathways of NK cell rejection of class-deficient bone marrow grafts: Influence of mouse colony environment. Int. Immunol. 1998, 10, 785–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, M.A.; Ward, B.; Schatzle, J.D.; Bennett, M. Perforin- and Fas-dependent mechanisms of natural killer cell-mediated rejection of incompatible bone marrow cell grafts. Eur. J. Immunol. 2002, 32, 793–799. [Google Scholar] [CrossRef]
- Shibuya, A.; Campbell, D.; Hannum, C.; Yssei, H.; Franz-Bacon, K.; McClanahan, T.; Kitamura, T.; Nicholl, J.; Sutherland, G.R.; Lanier, L.L.; et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 1996, 4, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Bottino, C.; Castriconi, R.; Pende, D.; Rivera, P.; Nanni, M.; Carnemolla, B.; Cantoni, C.; Grassi, J.; Marcenaro, S.; Reymond, N.; et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 2003, 198, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Houchins, J.P.; Yabe, T.; McSherry, C.; Bach, F.H. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J. Exp. Med. 1991, 173, 1017–1020. [Google Scholar] [CrossRef] [Green Version]
- Carapito, R.; Bahram, S. Genetics, genomics, and evolutionary biology of NKG2D ligands. Immunol. Rev. 2015, 267, 88–116. [Google Scholar] [CrossRef]
- Müller, A.M.S.; Linderman, J.A.; Florek, M.; Miklos, D.; Shizuru, J.A. Allogeneic T cells impair engraftment and hematopoiesis after stem cell transplantation. Proc. Natl. Acad. Sci. USA 2010, 107, 14721–14726. [Google Scholar]
- Urbiera, M.; Barao, I.; Jones, M.; Jurecic, R.; Panoskaltsis-Mortari, A.; Blazar, B.R.; Murphy, W.J.; Levy, R.B. Hematopoietic progenitor cell regulation by CD4+CD25+ T cells. Blood 2010, 115, 4934–4943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barao, I.; Hanash, A.M.; Hallett, W.; Welniak, L.A.; Sun, K.; Redelman, D.; Blazar, B.R.; Levy, R.B.; Murphy, W.J. Suppression of natural killer cell-mediated bone marrow cell rejection by CD4+CD25+ regulatory T cells. Proc. Natl. Acad. Sci. USA 2006, 103, 5460–5465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joffre, O.; Santolaria, T.; Calise, D.; Saati, T.A.; Hudrisier, D.; Romagnoli, P.; van Meerwijk, J.P.M. Prevention of acute and chronic allograft rejection with CD4+D25+Foxp3+ regulatory T lymphocytes. Nat. Med. 2008, 14, 88–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, A.M.; Poyser, J.; Küpper, N.J.; Burnett, C.; Ko, R.M.; Kohrt, H.E.; Florek, M.; Zhang, P.; Nrgrin, R.S.; Shizuru, J.A. Donor hematopoiesis in mice following total lymphoid irradiation requires host T-regulatory cells for durable engraftment. Blood 2014, 123, 2882–2892. [Google Scholar] [CrossRef] [Green Version]
- Fujisaki, J.; Wu, J.; Carlson, A.L.; Silberstein, L.; Putheti, P.; Larocca, R.; Gao, W.; Saito, T.I.; Celso, C.L.; Tsuyuzaki, H.; et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem cell niche. Nature 2011, 474, 216–219. [Google Scholar] [CrossRef] [Green Version]
- Camacho, V.; Matkins, V.R.; Patel, S.B.; Lever, J.M.; Yang, Z.; Ying, L.; Landuyt, A.E.; Dean, E.C.; George, J.F.; Yang, H.; et al. Bone marrow Tregs mediate stromal function and support hematopoiesis via IL-10. JCI Insight 2020, 5, e135681. [Google Scholar] [CrossRef]
- Steiner, D.; Brunicki, N.; Blazar, B.R.; Bachar-Lustig, E.; Reisner, Y. Tolerance induction by third-party “off-the-shelf” CD4+CD25+ Treg cells. Exp. Hematol. 2006, 34, 66–71. [Google Scholar] [CrossRef]
- Koreth, J.; Matsuoka, K.; Kim, H.T.; McDonough, S.M.; Bindra, B.; Alyea, E.P., III; Armand, P.; Cutler, C.; Ho, V.T.; Treister, N.S.; et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 2011, 365, 2055–2066. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, K.; Koreth, J.; Kim, H.T.; Bascug, G.; McDonough, S.; Kawano, Y.; Murase, K.; Cutler, C.; Ho, V.T.; Alyea, E.P.; et al. Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease. Sci. Transl. Med. 2013, 5, 179ra43. [Google Scholar] [CrossRef] [Green Version]
- Xhao, X.Y.; Zhao, X.S.; Wang, Y.T.; Chen, Y.H.; Xu, L.P.; Zhang, X.H.; Han, W.; Chen, H.; Wang, Y.; Yan, C.H.; et al. Prophylactic use of low-dose interleukin-2 and the clinical outcomes of hematopoietic stem cell transplantation: A randomized study. Oncoimmunology 2016, 5, e1250992. [Google Scholar]
- Betts, B.C.; Pidala, J.; Kim, J.; Mishra, A.; Nishihori, T.; Perez, L.; Ochoa-Bayona, J.L.; Khimani, F.; Walton, K.; Bookout, R.; et al. IL-2 promotes early Treg reconstitution after allogeneic hematopoietic cell transplantation. Haematologica 2017, 102, 948–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shatry, A.; Levy, R.B. In situ activation and expansion of host Tregs: A new approach to enhance donor chimerism and stable engraftment in major histocompatibility complex-matched allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transpl. 2009, 15, 785–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruinsma, M.; van Soest, P.L.; Leenen, P.J.M.; Lowenberg, B.; Cornelissen, J.J.; Braakman, E. Keratinocyte growth factor imprives allogeneic bone marrow engraftment through a CD4+Foxp3+ regulatory T cell-dependent mechanism. J. Immunol. 2009, 182, 7364–7369. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, S.; Ono, M.; Setoguchi, R.; Yagi, H.; Hori, S.; Fehervari, Z.; Shimizu, J.; Takahashi, T.; Nomura, T. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev. 2006, 212, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Ringden, O.; Gustafsson, B.; Sadeghi, B. Msenchymal stromal cells in pediatric hematopoietic cell transplantation a review and a pilot study in children treated with decidua stromal cells for acute graft-versus-host disease. Front. Immunol. 2020, 11, 567210. [Google Scholar] [CrossRef] [PubMed]
- Le Blanc, K.; Mougiakakos, D. Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunol. 2012, 12, 383–396. [Google Scholar] [CrossRef]
- Le Blanc, K.; Tammik, C.; Rosendahl, K.; Zetterberg, E.; Ringdén, O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 2003, 31, 890–896. [Google Scholar] [CrossRef]
- Aggrawal, S.; Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell response. Blood 2005, 105, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- Di Nicola, M.; Carlo-Stella, C.; Magni, M.; Milanesi, M.; Longoni, P.D.; Matteucci, P.; Grisanti, S.; Gianni, A.M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002, 99, 3838–3843. [Google Scholar] [CrossRef]
- Meisel, R.; Zibert, A.; Laryea, M.; Göbel, U.; Däubener, W.; Dilloo, D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase mediated tryptophan degradation. Blood 2004, 103, 4619–4621. [Google Scholar] [CrossRef] [Green Version]
- Francois, M.; Romieu-Mourez, R.; Li, M.; Galpeau, J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3—dioxygenase and bystander M2 macrophage differentiation. Mol. Ther. 2011, 20, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.X.; Zhag, Y.Z.; Liu, B.; Zhang, S.X.; Wu, Y.; Yu, X.D.; Mao, N. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005, 10, 4120–4126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corcione, A.; Benvenuto, F.; Ferretti, E.; Giunti, D.; Cappiello, V.; Cazzanti, F.; Risso, M.; Gualandi, F.; Mancardi, G.L.; Pistoia, V.; et al. Human mesenchymal stem cell modulate HLB-cell functions. Blood 2006, 107, 367–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selmani, Z.; Naji, A.; Zidi, I.; Favier, B.; Gaiffe, E.; Obert, L.; Borg, C.; Saas, P.; Tiberghien, P.; Rouas-Freiss, N.; et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2008, 26, 212–222. [Google Scholar] [CrossRef]
- Duffy, M.M.; Pindajakova, J.; Hanley, S.A.; McCarthy, C.; Weidhofer, G.A.; Sweeney, E.M.; Englsih, K.; Shaw, G.; Murphy, J.M.; Barry, F.R.; et al. Mesenchymal stem cell inhibition of T-helper 17 cell-differentiation is triggered by cell-cell contact and mediated by prostaglandin E2 via the EP4 receptor. Eur. J. Immunol. 2011, 41, 2840–2851. [Google Scholar] [CrossRef]
- Friedenstein, A.J.; Latzinik, N.W.; Grosheva, A.G.; Gorskaya, U.F. Exp. Hematol. 1982, 10, 217–227.
- Muguruma, Y.; Yahata, T.; Miyatake, H.; Sato, T.; Uno, T.; Itoh, J.; Kato, S.; Ito, M.; Hotta, T.; Ando, K. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood 2006, 107, 1878–1887. [Google Scholar] [CrossRef]
- Mendes, S.C.; Robin, C.; Dzierzak, E. Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development 2005, 132, 1127–1136. [Google Scholar] [CrossRef] [Green Version]
- Almeida-Porada, G.; Porada, C.D.; Tran, N.; Zanjani, E.D. Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood 2000, 95, 3620–3627. [Google Scholar] [CrossRef]
- Lazarus, H.M.; Koc, O.N.; Devine, S.M.; Curtin, P.; Maziarz, R.T.; Holland, H.K.; Shpall, E.J.; McCarthy, P.; Atkinson, K.; Cooper, B.W.; et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol. Blood Marrow Transpl. 2005, 11, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Ball, L.M.; Bernardo, M.E.; Roelos, H.; Lankester, A.; Cometa, A.; Egeler, R.M.; Locatelli, F.; Fibbe, W.E. Cotransplantation of ex vivo expand mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood 2007, 110, 2764–2767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macmillan, M.L.; Blazar, B.R.; DeFor, T.E.; Wagner, J.E. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: Results of a phase I-II clinical trial. Bone Marrow Transpl. 2009, 43, 447–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meuleman, N.; Tondreau, T.; Ahmad, I.; Kwan, J.; Crokaert, F.; Delforge, A.; Dorval, C.; Martiat, P.; Lewalle, P.; Lagneaux, L.; et al. Infusion of mesenchymal stromal cells can aid hematopoietic recovery following allogeneic hematopoietic stem cell myeloablative transplant: A pilot study. Stem Cells Dev. 2009, 18, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Ringdén, O. Mesenchymal stromal cells as first-line treatment of graft failure after hematopoietic stem cell transplantation. Stem Cells Dev. 2009, 18, 1243–1246. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Chen, Y.; Zeng, Y.; Liu, D.; Chen, H.; Zhang, X.; Han, W.; Wang, Y.; Xhao, T.; Wang, J.; et al. Coinfusion of mesenchymal stromal cells facilitates platelet recovery without increasing leukemia recurrence in haploidentical hematopoietic stem cell transplantation: A randomized, controlled clinical study. Stem Cells Dev. 2011, 20, 1679–1685. [Google Scholar] [CrossRef] [PubMed]
- Cillioni, D.; Carlo-Stella, C.; Sammarelli, G.; Regazzi, E.; Colla, S.; Rizzoli, V.; Aversa, F.; Martelli, M.F.; Tabilio, A. Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood 2000, 96, 3637–3643. [Google Scholar] [CrossRef]
- Ning, H.; Yang, F.; Jiang, M.; Hu, L.; Feng, K.; Zhang, J.; Yu, Z.; Li, B.; Xu, C.; Li, Y.; et al. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: Outcome of a pilot clinical study. Leukemia 2008, 22, 593–599. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, M.E.; Ball, L.M.; Cometa, A.M.; Roelofs, H.; Zecca, M.; Avanzini, M.A.; Bertaina, A.; Vinti, L.; Lankester, A.; Maccario, R.; et al. Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow Transpl. 2011, 46, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Ortin, M.; Sierra, J. Use of mesenchymal stem cells as treatment for graft-versus-host disease: Current knowledge and controversies. Immunotherapy 2011, 3, 701–704. [Google Scholar] [CrossRef]
- Kallekleiv, M.; Lauren, L.; Bruserud, Ø.; Hatfield, K.J. Co-transplantation of multipotent mesenchymal stromal cells in allogeneic hematopoietic stem cell transplantation: A systemic review and meta-analysis. Cytotherapy 2016, 18, 172–185. [Google Scholar] [CrossRef]
- Le Blanc, K.; Frassoni, F.; Ball, L.; Locatelli, F.; Roelofs, H.; Lewis, I.; Lanino, E.; Sundberg, B.; Bernardo, M.E.; Remberger, M.; et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: A phase II study. Lancet 2008, 371, 1579–1586. [Google Scholar] [CrossRef]
- Muroi, K.; Miyamura, K.; Okada, M.; Yamashita, T.; Murata, M.; Ishikawa, T.; Uike, N.; Hidaka, M.; Kobayashi, R.; Imamura, M.; et al. Bone marrow-derived mesenchymal stem cells (JR-031) for steroid-refractory grade III or IV acute graft-versus-host disease: A phase II/III study. Int. J. Hematol. 2016, 103, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Kurzberg, J.; Abdel-Azim, H.; Carpenter, P.; Chaudhury, S.; Horn, B.; Mahadeo, K.; Nemecek, E.; Neudorf, S.; Prasad, V.; Prockop, S.; et al. MSB-GVH001/002 Study Group. A phase 3, single-arm, prospective study of remestemcel-L, ex vivo culture-expanded adult human mesenchymal stromal cells for the treatment of pediatric patients who failed to respond to steroid treatment for acute graft-versus-host disease. Biol. Blood Marrow 2020, 26, 845–854. [Google Scholar]
- Ringden, O.; Baygan, A.; Remberger, M.; Gustafsson, B.; Winiarski, J.; Khoein, B.; Moll, G.; Klingspor, L.; Westgren, M.; Sadeghi, B. Placenta-derived decidua stromal cells for treatment of severe acute graft-versus-host disease. Stem Cells Transl Med. 2018, 7, 325–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciurea, S.O.; De Lima, M.; Cano, P.; Körbling, M.; Giralt, S.; Shpall, E.J.; Wang, X.; Thall, P.F.; Chhamplin, R.E.; Fernandez-Vina, M. High risk of graft failure in patients with anti-HLA antibodies undergoing haploidentical stem-cell transplantation. Transplantation 2009, 88, 1019–1024. [Google Scholar] [CrossRef] [Green Version]
- Yoshihara, S.; Maruya, E.; Taniguchi, K.; Kaida, K.; Kato, R.; Inoue, T.; Fujioka, T.; Tamaki, H.; Ikegame, K.; Okada, M.; et al. Risk and prevention of graft failure in patients with preexisting donor-specific HLA antibodies undergoing unmanipulated haploidentical SCT. Bone Marrow Transpl. 2012, 47, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.J.; Zhao, X.Y.; Xu, L.P.; Zhang, X.H.; Wang, Y.; Han, W.; Chen, H.; Wang, F.R.; Mo, X.D.; Zhang, Y.Y.; et al. Donor-specific anti-human leukocyte antigen antibodies were associated with primary graft failure after unmanipulated haploidentical blood and marrow transplantation: A prospective study with randomly assigned training and validation sets. J. Hematol. Oncol. 2015, 8, 84. [Google Scholar] [CrossRef] [Green Version]
- Gladstone, D.E.; Zachary, A.A.; Fuchs, E.P.; Luznik, L.; Kasamon, Y.L.; King, K.E.; Brodsky, R.A.; Jones, R.J.; Leffell, M.S. Partially mismatched transplantation and human leukocyte antigen donor-specific antibodies. Biol. Blood Marrow Transpl. 2013, 19, 647–652. [Google Scholar] [CrossRef] [Green Version]
- Leffell, M.S.; Jones, R.J.; Gladstone, D.E. Donor HLA-specific Abs: To BMT or not to BMT? Bone Marrow Transpl. 2015, 50, 751–758. [Google Scholar] [CrossRef]
- Ciurea, S.O.; Cao, K.; Fernandez-Vina, M.; Kongtim, P.; Malki, M.A.; Fuchs, E.; Luznik, L.; Huang, X.J.; Ciceri, F.; Locatelli, F.; et al. The European Society for Blood and Marrow Transplantation (EBMT) concensus guidelines for the detection and treatment of donor-specific anti-HLA antibodies (DSA) in haploidentical hematopoietic cell transplantation. Bone Marrow Transpl. 2018, 53, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Hanajiri, R.; Murata, M.; Sugimoto, K.; Murase, M.; Sakemura, R.; Goto, T.; Watanabe, K.; Imahashi, N.; Terakura, S.; Ohashi, H.; et al. Integration of humoral and cellular HLA-specific immune responses in cord blood allograft rejection. Bone Marrow Transpl. 2015, 50, 1187–1194. [Google Scholar] [CrossRef]
- Nordlander, A.; Mattsson, J.; Sundberg, B.; Sumitran-Holgersson, S. Novel anti-bodies to the donor stem cell population CD34+/VEGFR-2+ are associated with rejection after hematopoietic stem cell transplantation. Transplantation 2008, 86, 686–696. [Google Scholar] [CrossRef]
- Mori, T.; Nishimura, T.; Ikeda, Y.; Hotta, T.; Yagita, H.; Ando, K. Involvement of Fas-mediated apoptosis in the hematopoietic progenitor cells of graft-versus-host reaction-associated myelosuppression. Blood 1998, 92, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Delisle, J.S.; Gaboury, L.; Bélanger, M.P.; Tassé, E.; Yagita, H.; Perreault, C. Graft-versus-host disease causes failure of donor hematopoiesis and lymphopoiesis in interferon-gamma receptor-deficient hosts. Blood 2008, 112, 2111–2119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welniak, L.A.; Blazar, B.R.; Anver, M.R.; Wiltrout, R.H.; Murphy, W.J. Opposing roles of interferon-gamma on CD4+ T cell-mediated graft-versus-host disease: Effects of conditioning. Biol. Blood Marrow Transpl. 2000, 6, 604–612. [Google Scholar] [CrossRef] [Green Version]
- Rottman, M.; Soudais, C.; Vogt, G.; Renia, L.; Emile, J.F.; Decaluwe, H.; Gaillard, J.L.; Casanova, J.L. IFN-gamma mediates the rejection of hematopoietic stem cells in IFN-gamma R1-deficient hosts. PLoS Med. 2008, 5, e26. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, X.; Cheng, H.; Pang, Y.; Wang, L.; Zou, L.; Xu, S.; Zhuang, X.; Jiang, C.; Yuan, W.; et al. Graft-versus-host disease causes broad suppression of hematopoietic primitive cells and blocks megakaryocyte differentiation in a murine model. Biol. Blood Marrow Transpl. 2014, 20, 1290–1300. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Feng, X.; Desierto, M.; Keyvanfar, K.; Young, N.S. IFN-g-mediated hematopoietis cell destruction in murine models of immune-mediated bone marrow failure. Blood 2015, 126, 2621–2631. [Google Scholar] [CrossRef] [Green Version]
- Merli, P.; Caruana, I.; De Vito, R.; Strocchio, L.; Weber, G.; Del Bufalo, F.; Buatois, V.; Montanari, P.; Cefalo, M.G.; Pitiscim, A.; et al. Role of interferon-γ in immune-mediated graft failure after allogeneic hematopoietic stem cell transplantation. Haematologica 2019, 104, 2314–2323. [Google Scholar] [CrossRef]
- Wang, Y.T.; Kong, Y.; Song, Y.; Han, W.; Zhang, Y.Y.; Zhang, X.H.; Chang, Y.J.; Jiang, Z.F.; Huang, X.J. Increased type 1 immune response in the bone marrow immune microenvironment of patients with poor graft function after allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transpl. 2016, 22, 1376–1382. [Google Scholar] [CrossRef] [Green Version]
- Tucci, F.; Gallo, V.; Barzaghi, F.; Ferrua, F.; Migliavacca, M.; Calbi, V.; Doglio, M.; Fratini, E.S.; Karakas, Z.; Guner, S.; et al. Treatment with emapalumab in an ADA-SCID patient with refractory hemophagocytic lymphohistiocytosis-related graft failure and disseminated BCGitis. Haematologica 2020. [Google Scholar] [CrossRef] [PubMed]
- Zoumbos, N.; Djeu, J.; Young, N. Interferon is the suppressor of hematopoiesis generated by stimulated lymphocytes in vitro. J. Imunol. 1984, 133, 769–774. [Google Scholar]
- Yu, J.M.; Emmons, R.V.; Hanazono, Y.; Sellers, S.; Young, N.S.; Dunbar, C.E. Expression of interferon-γ by stromal cells inhibits murine long-term repopulating hematopoietic stem cell activity. Exp. Hematol. 1999, 27, 895–903. [Google Scholar] [CrossRef]
- Snoeck, H.W.; van Bockstaele, D.; Nys, G.; Leniou, M.; Lardon, F.; Haenen, L.; Rodrigus, I.; Peetermans, M.E.; Berneman, Z.N. Interferon gamma selectively inhibits very primitive CD342+ CD38−-and not more mature CD34+ CD8+ human hematopoietic progenitor cells. J. Exp. Med. 1994, 180, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Dybedal, I.; Bryder, D.; Nilsson, L.; Sitnicka, E.; Sasaki, Y.; Jacobsoen, S.E.W. IFN-gamma negatively modulates self-renewal of repopulating human hematopoietic stem cells. J. Immunol. 2005, 174, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Miyazato, A.; Chen, G.; Kajigaya, S.; Young, N.S.; Maciejewski, J.P. Interferon-γ-induced gene exprression in CD34 cells: Identification of pathologic cytokine-specific signature profiles. Blood 2006, 107, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Maciejewski, J.; Selleri, C.; Anderson, S.; Young, N. Fas antigen expression on CD34+ human marrow cells is induced by inteferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood 1995, 85, 3183–3190. [Google Scholar] [CrossRef]
- de Bruin, A.M.; Demirel, Ö.; Hooibrink, B.; Brandts, C.H.; Nolte, M.A. Interferon-γ impairs proliferation of hematopoietic stem cells in mice. Blood 2013, 121, 3578–3585. [Google Scholar] [CrossRef] [Green Version]
- Broxmeyer, H.E.; Williams, D.E.; Lu, L.; Cooper, S.; Anderson, S.L.; Beyer, G.S.; Hoffman, R.; Rubin, B.Y. The suppressive influences of human tumor necrosis factors on bone marrow hematopoietic progenitor cells from normal donors and patients with leukemia: Synergism of tumor necrosis factor and interferon-gamma. J. Immunl. 1986, 136, 4487–4495. [Google Scholar]
- Backx, B.; Broeders, L.; Bot, F.J.; Lowenberg, B. Positive and negative effects of tumor necrosis factor on colony growth from highly purified normal marrow progenitors. Leukemia 1991, 5, 66–70. [Google Scholar]
- Rusten, L.S.; Jacobsen, F.W.; Lesslauer, W.; Loetscher, H.; Smeland, E.B.; Jacobsen, S.E. Bifunctional effects of tumor necrosis factor alpha (TNF alpha) on the growth of mature and primitive human hematopoietic progenitor cells: Involvement of p55 and p75 TNF receptors. Blood 1994, 83, 3152–3159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Harada, A.; Bluethmann, H.; Wang, J.B.; Nakao, S.; Mukaida, N.; Matsushima, K. Tumor necrosis factor (TNF) is a physiologic regulator of hematopoietic progenitor cells: Increase of early hematopoietic progenitor cells in TNF receptor p55-deficient mice in vivo and potent inhibition of progenitor cell proliferation by TNF alpha in vitro. Blood 1995, 86, 2930–2937. [Google Scholar] [PubMed]
- Dybedal, I.; Bryder, D.; Fossum, A.; Rusten, L.S.; Jacobsen, S.E.W. Tumor necrosis factor (TNF)–mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood 2001, 98, 1782–1791. [Google Scholar] [CrossRef] [PubMed]
- Pronk, C.J.; Veiby, O.P.; Bryder, D.; Jacobsen, S.E. Tumor necrosis factor restricts hematopoietic stem cell activity in mice: Involvement of two distinct receptors. J. Exp. Med. 2011, 208, 1563–1570. [Google Scholar] [CrossRef] [Green Version]
- Senyuk, V.; Patel, P.; Mahmud, N.; Rondelli, D. Blockade of TNFα to improve human CD34+ cell repopulating activity in allogeneic stem cell transplantation. Front. Immunol. 2019, 9, 3186. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Wu, Z.; Lin, Z.; Hollinger, M.; Chen, J.; Feng, X.; Young, N.S. Macrophag TNF-α licenses donor T cells in murine bone marrow failure and can be implicated in human aplastic anemia. Blood 2018, 132, 2730–2743. [Google Scholar] [CrossRef] [Green Version]
- Levine, J.E.; Paczesny, S.; Mineishi, S.; Braun, T.; Choi, S.W.; Hutchinson, R.J.; Jones, D.; Khaled, Y.; Kitko, C.L.; Bickley, D.; et al. Etanercept plus methylprednisolone as initial therapy for acute graft-versus-host disease. Blood 2008, 111, 2470–2475. [Google Scholar] [CrossRef]
- Kennedy, G.A.; Butler, J.; Western, R.; Morton, J.; Durrant, S.; Hill, G.R. Combination antithymocyte globulin and soluble TNFalpha inhibitor (etanercept) +/- mycophenolate mofetil for treatment of steroid refractory acute graft-versus-host disease. Bone Marrow Transpl. 2006, 37, 1143–1147. [Google Scholar] [CrossRef]
- Scadden, D.T. The stem-cell niche as an entity of action. Nature 2006, 441, 1075–1079. [Google Scholar] [CrossRef]
- Wei, Q.; Frenette, P.S. Niches for hematopoietic stem cells and their progeny. Immunity 2018, 48, 632–650. [Google Scholar] [CrossRef] [Green Version]
- Pinho, S.; Frenette, P.S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 2019, 20, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Ménderez-Ferrer, S.; MIchurina, T.V.; Ferraro, F.; Mazloom, A.R.; MacArthur, B.D.; Lira, S.A.; Scadden, D.T.; Ma’ayan, A.; Enikolopov, G.N.; Frenette, P.S. Mesenchymal and haematopoietic stem cells from a unique bone marrow niche. Nature 2010, 466, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Asada, N.; Kunisaki, Y.; Pierce, H.; Wang, Z.; Fernandez, N.F.; Birbrair, A.; Ma’ayan, A.; Frenette, P.S. Diffrential cytokine contributions of perivascular haematopoietic stem cell niches. Nat. Cell Biol. 2017, 19, 214–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiyama, T.; Kohara, H.; Noda, M.; Nagasaw, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006, 25, 977–988. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Saunders, T.L.; Enikolopov, G.; Morrison, S.J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012, 481, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Ménderez-Ferrer, S.; Lucas, D.; Battista, M.; Frenette, P.S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 2008, 452, 442–447. [Google Scholar] [CrossRef]
- Yamazaki, S.; Ema, H.; Karlsson, G.; Yamaguchi, T.; Miyoshi, H.; Shioda, S.; Taketo, M.M.; Karlsson, S.; Iwama, A.; Nakauchi, H. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 2011, 147, 1146–1158. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Morrison, S.J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 2013, 495, 231–235. [Google Scholar] [CrossRef]
- Naveiras, O.; Nardi, V.; Wenzel, P.L.; Hauschka, P.V.; Fahey, F.; Daley, G.Q. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 2009, 460, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Shono, Y.; Ueha, S.; Wang, Y.; Abe, J.; Kurauchi, M.; Natsuno, Y.; Sugiyama, T.; Nagasawa, T.; Imamura, M.; Matsushima, K. Bone marrow graft-versus-host disease: Early destruction of hematopoietic niche after MHC-mismatched hematopoietic stem cell transplantation. Blood 2010, 11, 5401–5411. [Google Scholar] [CrossRef]
- Kunisaki, Y.; Bruns, I.; Scheiermann, C.; Ahmed, J.; Pinho, S.; Zhang, D.; Mizoguchi, T.; Wei, Q.; Lucas, D.; Ito, K.; et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 2013, 502, 637–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nombela-Arrieta, C.; Pivarnik, G.; Winkel, B.; Canty, K.J.; Harley, B.; Mahoney, J.E.; Park, S.Y.; Lu, J.; Protopopov, A.; Silberstein, L.E. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat. Cell Biol. 2013, 15, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Garrett, R.; Jung, Y.; Zhang, Y.; Kim, N.; Wang, J.; Joe, G.J.; Hexner, E.; Choi, Y.; Taichman, R.S.; et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 2007, 109, 3706–3712. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.B.; Riley, R.L.; Podack, E.R.; Levy, R.B. Graft-versus-host disease-associated lymphoid hyperplasia and B cell dysfunction is dependent upon donor T cell-mediated Fas-ligand function, but not perforin function. Proc. Natl. Acad. Sci. USA 1997, 94, 1366–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storek, J.; Wells, D.; Dawson, M.A.; Storer, B.; Maloney, D.G. Factors influencing Blymphopoiesis after allogeneic hematopoietic cell transplantation. Blood 2001, 98, 489–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarantopoulos, S.; Stevenson, K.E.; Kim, H.T.; Washhel, W.S.; Bhuiya, N.S.; Cutler, C.S.; Alyea, E.P.; Ho, V.T.; Soiffer, R.J.; Antin, J.H.; et al. Recovery of B-cell homeostasis after rituximab in chronic graft-versus-host disease. Blood 2011, 117, 2275–2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shono, Y.; Shiratori, S.; Kosugi-Kanaya, M.; Ueha, S.; Sugita, J.; Shigematsu, A.; Kondo, T.; Hashimoto, D.; Fujimoto, K.; Endo, T.; et al. Bone marrow graft-versus-host disease: Evaluation of its clinical impact on disrupted hematopoiesis after allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transpl. 2014, 20, 495–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, Y.; Chang, Y.J.; Wang, Y.Z.; Chen, Y.H.; Han, W.; Wang, Y.; Sun, Y.Q.; Yan, C.H.; Wang, F.R.; Liu, Y.R.; et al. Association of an impaired bone marrow microenvironment with secondary poor graft function after allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transpl. 2013, 19, 1465–1473. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Wang, Y.T.; Hu, Y.; Han, W.; Chang, Y.J.; Zhang, X.H.; Jiang, Z.F.; Huang, X.J. The bone marrow microenvironment is similarly impaired in allogeneic hematopoietic stem cell transplantation patients with early and late poor graft function. Bone Marrow Transpl. 2016, 51, 249–255. [Google Scholar] [CrossRef]
- Yao, Y.; Song, X.; Cheng, H.; Tang, G.; Hu, X.; Zhou, H.; Wang, J. Dysfunction of bone marrow vascular niche in acute graft-versus-host disease after MHC-haploidentical bone marrow transplantation. PLoS ONE 2014, 9, e104607. [Google Scholar] [CrossRef]
- Medinger, M.; Krenger, W.; Jakab, A.; Hakter, J.; Buser, A.; Bucher, C.; Passweg, J.; Tzankov, A. Numerical impairment of nestin (+) bone marrow niches in acute GvHD after allogeneic hematopoietic stem cell transplantation for AML. Bone Marrow Transpl. 2015, 50, 1453–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.N.; Kong, Y.; Song, Y.; Shi, M.M.; Zhao, H.Y.; Wen, Q.; Lyu, Z.S.; Duan, C.W.; Wang, Y.; Xu, L.P.; et al. Impairment of bone marrow endothelial cells in acute graft-versus –host disease patients after allotransplant. Br. J. Haematol. 2018, 182, 870–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Zhao, H.Y.; Lyu, Z.S.; Cao, X.N.; Shi, M.M.; Wen, Q.; Tang, F.F.; Wang, Y.; Xu, L.P.; Zhang, X.H.; et al. Dysfunctional bone marrow mesenchymal stem cells in patients with poor graft function after allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2018, 24, 1981–1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.Y.; Lyu, Z.S.; Duan, C.W.; Song, Y.; Han, T.T.; Mo, X.D.; Wang, Y.; Xu, L.P.; Zhang, X.H.; Huang, X.J.; et al. An unbalanced monocyte macrophage polarization in the bone marrow microenvironment of patients with poor graft function after allogeneic haematopoietic stem cell transplantation. Brit. J. Haematol. 2018, 182, 679–692. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Shi, M.M.; Zhang, Y.Y.; Cao, X.N.; Wang, Y.; Zhang, X.H.; Xu, L.P.; Huang, X.J. N-acetyl-L-cysteine improves bone marrow endothelial progenitor cells in prolonged isolated thrombocytopenia patients post allogeneic hematopoietic stem cell transplantation. Am. J. Hematol. 2018, 93, 931–942. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Wang, Y.; Zhang, Y.Y.; Shi, M.M.; Mo, X.D.; Sun, Y.Q.; Chang, Y.J.; Xu, L.P.; Zhang, X.H.; Liu, K.Y.; et al. Prophylactic oral NAC reduced poor hematopoietic reconstitution by improving endothelial cells after haploidentical transplantation. Blood Adv. 2019, 3, 1303–1317. [Google Scholar] [CrossRef]
- Shi, M.M.; Kong, Y.; Song, Y.; Sun, Y.Q.; Wang, Y.; Zhang, X.H.; Xu, L.P.; Liu, K.Y.; Huang, X.J. Atorvastatin enhances endothelial cell function in posttransplant poor graft function. Blood 2016, 128, 2988–2999. [Google Scholar] [CrossRef]
- Larocca, A.; Piaggio, G.; Podesta, M.; Pitto, A.; Bruno, B.; GRazia, C.D.; Gualandi, F.; Occhini, D.; Raiola, A.M.; Dominietto, A.; et al. Boost of CD34+-selected peripheral blood cells without further conditioning in patients with poor graft function following allogeneic stem cell transplantation. Haematologica 2006, 9, 935–940. [Google Scholar]
- Klyuchnikov, E.; El-Cheikh, J.; Sputtek, A.; Lioznov, M.; Calmels, B.; Furstm, S.; Chabannon, C.; Crocchiolo, R.; Lemarié, C.; Faucher, C.; et al. CD34+-selected stem cell boost without further conditioning for poor graft function after allogeneic stem cell transplantation in patients with hematological malignancies. Biol. Blood Marrow Transpl. 2014, 20, 382–386. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, C.; Ebinger, M.; Enkel, S.; Feuchtinger, T.; Teltschik, H.M.; Eryich, M.; Schumm, M.; Rabsteyn, A.; Schlegel, P.; Seitz, C.; et al. CD34+ selected stem cell boosts can improve poor graft function after paediatric allogeneic stem cell transplantation. Brit. J. Haematol. 2018, 180, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Mohty, R.; Brissot, E.; Battipaglia, G.; Ruggeri, A.; Sestili, S.; Mediavilla, C.; Belhocine, R.; Dulery, R.; Mohty, M.; Malard, F. CD34+-selected stem cell “boost” for poor graft function after allogeneic hematopoietic stem cell transplantation. Curr. Res. Transl. Med. 2019, 67, 112–114. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, M.M.; Szydlo, R.M.; Watts, M.; Patel, N.; Renshaw, H.; Dorman, J.; Lowdell, M.; Ings, S.; Anthias, C.; Madrigal, A.; et al. Predictors of recovery following allogeneic CD34+-selected cell infusion without conditioning to correct poor graft function. Haematologica 2019, 105, 2639–2646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bussel, J.B.; Cheng, G.; Saleh, M.N. Eltrombopag for the treatment of chronic idiopathic thrombocytopenic purpura. N. Engl. J. Med. 2007, 357, 2237–2247. [Google Scholar] [CrossRef] [PubMed]
- Townsley, D.M.; Scheinberg, P.; Winkler, T.; Desmond, R.; Dumitriu, B.; Rios, O.; Weinstein, B.; Valdez, J.; Lotter, J.; Feng, X.; et al. Eltrombopag added to standard immunosuppression for aplastic anemia. N. Engl. J. Med. 2017, 376, 1540–1550. [Google Scholar] [CrossRef] [Green Version]
- Vince, A.; Patel, B.A.; Gutierrez-Rodrigues, F.; Groarke, E.; Giudice, V.; Lotter, J.; Feng, X.; Kagigaya, S.; Weinstein, B.; Barranta, E.; et al. Eltrombopag momnotherapy can improve hematopoiesis in patients with low to intermediate risk-1 myelodysplastic syndrome. Haematologica 2020, 105. [Google Scholar] [CrossRef]
- Marotta, S.; Marano, L.; Ricci, P.; Cacace, F.; Frieri, C.; Simeone, L.; Trastulli, F.; Vitiello, S.; Cardano, F.; Pane, F.; et al. Eltrombopag for post-transplant cytopenias due to poor graft function. Bone Marrow Transpl. 2019, 54, 1346–1353. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, X.; Han, T.; Mo, X.; Wang, Y.; Chen, H.; Han, W.; Wang, J.; Wang, F.; Yan, C. Eltrombopag is an effective and safe therapy for refractory thrombocytopenia after haploidentical hematopoietic stem cell transplantation. Bone Marrow Transpl. 2019, 54, 1310–1318. [Google Scholar] [CrossRef]
- Yuan, C.; Boyd, A.M.; Nelson, J.; Patel, R.; Varela, J.C.; Goldstein, S.C.; Ahmad, S.; Zhu, X.; Mori, S. Eltrombopag for treating thrombocytopenia after allogeneic stem cell transplantation. Biol. Blood Marrow Transpl. 2019, 25, 1320–1324. [Google Scholar] [CrossRef]
- Méndez-Ferrer, S.; Bonnet, D.; Steensma, D.P.; Hasserjian, R.P.; Ghobrial, I.M.; Gribben, J.G.; Andreeff, M.; Krause, D.S. Bone marrow niches in haematological malignancies. Nat. Rev. Cancer 2020, 20, 285–298. [Google Scholar] [CrossRef]
- Golan, K.; Singh, A.K.; Kollet, O.; Bertagna, M.; Althoff, M.J.; Khatib-Massalha, E.; Petrovich-Kopitman, E.; Wellendorf, A.M.; Massalha, H.; Levin-Zaidman, S.; et al. Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma. Blood 2020, 136, 2607–2619. [Google Scholar] [CrossRef]
- Islam, M.N.; Das, S.R.; Emin, M.T.; Wei, M.; Sun, L.; Westphalen, K.; Rowlands, D.J.; Quadri, S.K.; Bhattacharya, S.; Bhattacharya, J. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 2012, 18, 759–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistry, J.J.; Marlein, C.R.; Moore, J.A.; Hellmich, C.; Wojtowicz, E.E.; Smith, J.G.W.; Macaulay, I.; Sun, Y.; Morfakis, A.; Patterson, A.; et al. ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. Proc. Natl. Acad. Sci. USA 2019, 116, 24610–24619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniguchi Ishikawa, E.; Gonzalez-Nieto, D.; Ghiaur, G.; Dunn, S.K.; Ficker, A.M.; Murali, B.; Madhu, M.; Gutstein, D.E.; Fishman, G.I.; Barrio, L.C.; et al. Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc. Natl. Acad. Sci. USA 2012, 109, 9071–9076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Studied in: | Type of GVHD | Target | References | Reported Year |
---|---|---|---|---|
Murine | Acute | Osteoblasts | [130] Shono Y, et al. | 2010 |
Vascular niches | ||||
CAR cells | ||||
Human | Acute/chronic | Endosteal niches | [138] Kong Y, et al. | 2013 |
Vascular niches | ||||
Perivascular niches | ||||
Hematopoietic stem cells | ||||
Human | Chronic | Osteoblasts | [137] Shono Y, et al. | 2014 |
Murine | Acute | Vascular niches | [140] Yao Y, et al. | 2014 |
Human | Acute | Perivascular niches | [141] Medinger M, et al. | 2015 |
Human | Acute | Endosteal niches | [139] Kong Y, et al. | 2016 |
Vascular niches | ||||
Perivascular niches | ||||
Hematopoietic stem cells | ||||
Human | Acute | Vascular niches | [142] Cao XN, et al. | 2018 |
Human | Acute | Mesenchymal stem cells | [143] Song Y, et al. | 2018 |
Impaired Hematopoiesis | Chimerism | Initial | Initial | Treatments |
---|---|---|---|---|
engraftment | hematological | |||
recovery | ||||
Primary graft failure | Mixed/full | − | − | Second transplant |
recipient | ||||
Secondary graft failure | Mixed/full | + | + | CD34+ cell boost |
recipient | Mesenchymal stem cells * | |||
Eltrombopag | ||||
Low-dose IL-2 | ||||
Anti-IFN-γ antibody | ||||
Second transplant | ||||
Primary poor graft function | Full donor | + | − | CD34+ cell boost, Eltrombopag |
Mesenchymal stem cell * | ||||
Low-dose IL-2 | ||||
Anti-IFN-γ antibody | ||||
Second transplant | ||||
Secondary poor graft function | Full donor | + | + | CD34+ cell boost, Eltrombopag |
Mesenchymal stem cell * | ||||
Low dose IL-2 | ||||
Anti-IFN-γ antibody | ||||
Second transplant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imamura, M. Impaired Hematopoiesis after Allogeneic Hematopoietic Stem Cell Transplantation: Its Pathogenesis and Potential Treatments. Hemato 2021, 2, 43-63. https://doi.org/10.3390/hemato2010002
Imamura M. Impaired Hematopoiesis after Allogeneic Hematopoietic Stem Cell Transplantation: Its Pathogenesis and Potential Treatments. Hemato. 2021; 2(1):43-63. https://doi.org/10.3390/hemato2010002
Chicago/Turabian StyleImamura, Masahiro. 2021. "Impaired Hematopoiesis after Allogeneic Hematopoietic Stem Cell Transplantation: Its Pathogenesis and Potential Treatments" Hemato 2, no. 1: 43-63. https://doi.org/10.3390/hemato2010002