Heterologous Production of Torularhodin, the Monocyclic Carotenoid with a Terminal Carboxyl Group, in Escherichia coli
Abstract
1. Introduction
2. Materials and Methods
2.1. Microbial Strains
2.2. Analysis of Rhodotorula Genome Sequences
2.3. Construction of Plasmids
2.4. Culture of Microbes
2.5. Carotenoid Extraction and Analysis
2.6. Purification of Torularhodin
2.7. Preparation of Authentic Sample of Torularhodin from Rhodotorula toruloides
2.8. Torularhodin Identification
2.9. Spectroscopic Data
3. Results
3.1. Torulene Production Using Rhodotorula crtI (CAR1) and crtYB (CAR2)
3.2. Homology Search in Rhodotorula Genome Sequences
3.3. Evaluation of Planococcus C30 Carotenogenic Genes
3.4. Identification of Torularhodin
3.5. Functional Analysis of the aldH Gene from the Rhodotorula Genus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. (Eds.) Carotenoid Handbook; Birkhäuser Verlag: Basel, Switzerland; Boston, MA, USA; Berlin, Germany, 2004. [Google Scholar]
- Takaichi, S. Carotenoids in Algae: Distributions, Biosyntheses and Functions. Mar. Drugs 2011, 9, 1101–1118. [Google Scholar] [CrossRef] [PubMed]
- Moise, A.R.; Al-Babili, S.; Wutzel, E.T. Mechanistic aspects of carotenoid biosynthesis. Chem. Rev. 2014, 114, 164–193. [Google Scholar] [CrossRef] [PubMed]
- Alcaíno, J.; Baeza, M.; Cifuentes, V. Carotenoid Distribution in Nature. In Carotenoids in Nature. Subcellular Biochemistry; Stange, C., Ed.; Springer: Cham, Switzerland, 2016; Volume 79, pp. 3–33. [Google Scholar]
- Moran, N.A.; Jarvik, T. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 2010, 328, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Grbić, M.; Van Leeuwen, T.; Clark, R.M.; Rombauts, S.; Rouzé, P.; Grbić, V.; Osborne, E.J.; Dermauw, W.; Ngoc, P.C.T.; Ortego, F.; et al. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 2011, 479, 487–492. [Google Scholar] [CrossRef]
- Takemura, M.; Maoka, T.; Koyanagi, T.; Kawase, N.; Nishida, R.; Tsuchida, T.; Hironaka, M.; Ueda, T.; Misawa, N. Elucidation of the whole carotenoid biosynthetic pathway of aphids at the gene level and arthropodal food chain involving aphids and the red dragonfly. BMC Zool. 2021, 6, 19. [Google Scholar] [CrossRef]
- Krinsky, N.I. Antioxidant functions of carotenoids. Free Radic. Biol. Med. 1989, 7, 617–635. [Google Scholar] [CrossRef]
- Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Asp. Med. 2003, 24, 345–351. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Gonzalez-Miquel, M.; Santos-Ebinuma, V.C.; Pereira, J.F.B. Microbial torularhodin—A comprehensive review. Crit. Rev. Biotech. 2022, 43, 540–558. [Google Scholar] [CrossRef]
- Sakaki, H.; Nakanishi, T.; Komemushi, S.; Namikawa, K.; Miki, W. Torularhodin as a potent scavenger against peroxyl radicals isolated from a soil yeast, Rhodotorula glutinis. J. Clin. Biotech. Nutr. 2001, 30, 1–10. [Google Scholar] [CrossRef]
- Breierová, E.; Gregorb, T.; Marova, I.; Certikd, M.C.; Kogana, G. Enhanced antioxidant formula based on a selenium-supplemented carotenoid-producing yeast biomass. Chem. Biodivers. 2008, 5, 440–446. [Google Scholar] [CrossRef]
- Ungureanu, C.; Ferdes, M. Evaluation of Antioxidant and Antimicrobial Activities of Torularhodin. Adv. Sci. Lett. 2012, 5, 50–53. [Google Scholar] [CrossRef]
- Moliné, M.; Flores, M.R.; Libkind, D.; del Carmen Dieguez, M.; Farías, M.E.; van Broock, M. Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: The role of torularhodin. Photochem. Photobiol. Sci. 2010, 9, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Zoz, L.; Carvalho, J.C.; Soccol, V.T.; Casagrande, T.C.; Cardoso, L. Torularhodin and Torulene: Bioproduction, Properties and Prospective Applications in Food and Cosmetics—A Review. Braz. Arch. Biol. Technol. 2015, 58, 278–288. [Google Scholar] [CrossRef]
- Kot, A.M.; Błażejak, S.; Gientka, I.; Kieliszek, M.; Boyś, J. Torulene and torularhodin: “new” fungal carotenoids for industry? Microb. Cell Factor. 2018, 17, 49. [Google Scholar] [CrossRef]
- Bao, R.; Gao, N.; Lv, J.; Ji, C.; Liang, H.; Li, S.; Yu, C.; Wang, Z.; Lin, X. Enhancement of torularhodin production in Rhodosporidium toruloides by Agrobacterium tumefaciens-mediated tsransformation and culture condition optimization. Agric. Food Chem. 2019, 67, 1156–1164. [Google Scholar] [CrossRef]
- Marshall, J.H.; Wilmoth, G.J. Proposed pathway of triterpenoid carotenoid biosynthesis in Staphylococcus aureus: Evidence from a study of mutants. J. Bacteriol. 1981, 147, 914–919. [Google Scholar] [CrossRef]
- Pelz, A.; Wieland, K.; Putzbach, K.; Hentschel, P.; Albert, K.; Götz, F. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J. Biol. Chem. 2005, 280, 32493–32498. [Google Scholar] [CrossRef]
- Steiger, S.; Perez-Fons, L.; Cutting, S.M.; Fraser, P.D.; Sandmann, G. Annotation and functional assignment of the genes for the C30 carotenoid pathways from the genomes of two bacteria: Bacillus indicus and Bacillus firmus. Microbiology 2015, 161, 194–202. [Google Scholar] [CrossRef]
- Siziya, I.N.; Hwang, C.Y.; Seo, M.-J. Antioxidant potential and capacity of microorganism-sourced C30 carotenoids—A review. Antioxidants 2022, 11, 1963. [Google Scholar] [CrossRef]
- Misawa, N.; Takemura, M.; Matsumoto, W.; Fraser, P.D.; Shindo, K. C30 Carotenoids: Biosynthesis, Chemical and Biological Aspects. In Carotenoids; Campos Chisté, R., Helena de Aguiar Andrade, E., Santana de Oliveira, M., Eds.; Springer: Cham, Switzerland, 2024; pp. 75–92. [Google Scholar]
- Hagiwara, M.; Maehara, C.; Takemura, M.; Misawa, N.; Shindo, K. Production of highly modified C30-carotenoids with singlet oxygen-quenching activities, 5-glucosyl-5,6-dihydro-4,4′-diapolycopenoic acid, and its three intermediates using genes from Planococcus maritimus strain iso-3. Synth. Biol. Eng. 2023, 1, 10002. [Google Scholar] [CrossRef]
- Tao, L.; Schenzle, A.; Odom, J.M.; Cheng, Q. Novel carotenoid oxidase involved in biosynthesis of 4,4′-diapolycopne dialdehyde. Appl. Environ. Microbiol. 2005, 71, 3294–3301. [Google Scholar] [CrossRef]
- Köcher, S.; Breitenbach, J.; Müller, V.; Sandmann, G. Structure, function and biosynthesis of carotenoids in the moderately halophilic bacterium Halobacillus halophilus. Arch. Microbiol. 2009, 191, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, P.C. Functional expression and extension of Staphylococcal staphyloxanthin biosynthetic pathway in Escherichia coli. J. Biol. Chem. 2012, 287, 21575–21583. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, J.W.; Lee, P.C. Genome mining reveals two missing CrtP and AldH enzymes in the C30 carotenoid biosynthesis pathway in Planococcus faecalis AJ003T. Molecules 2020, 25, 5892. [Google Scholar] [CrossRef] [PubMed]
- Misawa, N.; Maoka, T.; Takemura, M. Carotenoids: Carotenoid and apocarotenoid analysis—Use of E. coli to produce carotenoid standards. In Carotenoids: Carotenoid and Apocarotenoid Analysis; Wurtzel, E.T., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 670, pp. 87–137. [Google Scholar]
- Yokoyama, A.; Miki, W. Composition and presumed biosynthetic pathway of carotenoids in the astaxanthin-producing bacterium Agrobacterium aurantiacum. FEMS Microbiol. Lett. 1995, 128, 139–144. [Google Scholar] [CrossRef]
- Maoka, T. Carotenoids: Distribution, Function in Nature, and Analysis Using LC-Photodiode Array Detector (DAD)-MS and MS/MS System. Mass Spectrom. 2023, 12, A0133. [Google Scholar] [CrossRef]
- Englert, G. NMR Spectroscopy. In Carotenoids; Britton, G., Liaaen-Jensen, S., Pfander, H., Eds.; Birkhauser: Basel, Switzerland, 1995; Volume 1B, pp. 147–262. [Google Scholar]
- Landolfo, S.; Ianiri, G.; Camiolo, S.; Porceddu, A.; Mulas, G.; Chessa, R.; Zara, G.; Mnnazzu, I. CAR gene cluster and transcript levels of carotenogenic genes in Rhodotorula mucilaginosa. Microbiolgy 2018, 164, 78–87. [Google Scholar] [CrossRef]
- Ahrazem, O.; Gómez-Gómez, L.; Rodrigo, M.J.; Avalos, J.; Limón, M.C. Carotenoid cleavage oxygenases from microbes and photosynthetic organisms: Features and functions. Int. J. Mol. Sci. 2016, 17, 1781. [Google Scholar] [CrossRef]
- Chreptowicz, K.; Mierzejewska, J.; Tkáčovčá, J.; Młynek, M.; Čertik, M. Carotenoid-Producing Yeasts: Identification and characteristics of environmental isolates with a valuable extracellular enzymatic activity. Microorganisms 2019, 7, 653. [Google Scholar] [CrossRef]
- Xie, Z.-T.; Mi, B.-Q.; Lu, Y.-L.; Chen, N.-T.; Ye, Z.-W. Research progress on carotenoid production by Rhodosporidium toruloides. Appl. Microbiol. Biotechnol. 2024, 108, 7. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, R.; Liang, J.; Zhang, H.; Yi, J.; Liu, Z. Strategies for recovery, purification and quantification of torularhodin produced by Rhodotorula mucilaginosa using different Carbon sources. Fermentation 2023, 9, 846. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Takemura, M.; Maoka, T.; Misawa, N. Heterologous Production of Torularhodin, the Monocyclic Carotenoid with a Terminal Carboxyl Group, in Escherichia coli. BioTech 2026, 15, 3. https://doi.org/10.3390/biotech15010003
Takemura M, Maoka T, Misawa N. Heterologous Production of Torularhodin, the Monocyclic Carotenoid with a Terminal Carboxyl Group, in Escherichia coli. BioTech. 2026; 15(1):3. https://doi.org/10.3390/biotech15010003
Chicago/Turabian StyleTakemura, Miho, Takashi Maoka, and Norihiko Misawa. 2026. "Heterologous Production of Torularhodin, the Monocyclic Carotenoid with a Terminal Carboxyl Group, in Escherichia coli" BioTech 15, no. 1: 3. https://doi.org/10.3390/biotech15010003
APA StyleTakemura, M., Maoka, T., & Misawa, N. (2026). Heterologous Production of Torularhodin, the Monocyclic Carotenoid with a Terminal Carboxyl Group, in Escherichia coli. BioTech, 15(1), 3. https://doi.org/10.3390/biotech15010003

