Bioremediation Potential of a Non-Axenic Cyanobacterium Synechococcus sp. for Municipal Wastewater Treatment in the Peruvian Amazon: Growth Kinetics, Ammonium Removal, and Biochemical Characterization Within a Circular Bioeconomy Framework
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Sample Processing
2.3. Cyanobacterial Strain and Cultivation
2.4. Growth Conditions and Scaling
2.5. Experimental Treatments
2.6. Growth Kinetics
2.7. Ammonium Removal Efficiency
2.8. Biochemical Characterization
2.9. Statistical Analysis
3. Results and Discussion
3.1. Growth Kinetics
3.2. Ammonium Removal Efficiency
3.3. Biochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNESCO. Water and Climate Change; The United Nations World Water Development Report; UNESCO: Paris, France, 2020; ISBN 978-92-3-100371-4. [Google Scholar]
- Sisman-Aydin, G.; Simsek, K. Municipal Wastewater Effects on the Performance of Nutrient Removal, and Lipid, Carbohydrate, and Protein Productivity of Blue-Green Algae Chroococcus turgidus. Sustainability 2022, 14, 17021. [Google Scholar] [CrossRef]
- Verma, A.; Sharma, A.; Kumar, R.; Sharma, P. Nitrate Contamination in Groundwater and Associated Health Risk Assessment for Indo-Gangetic Plain, India. Groundw. Sustain. Dev. 2023, 23, 100978. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Hong, Y.; Liu, X.; Zhao, G.; Zhang, H.; Zhai, Q. Microalgae Cultivation in Domestic Wastewater for Wastewater Treatment and High Value-Added Production: Species Selection and Comparison. Biochem. Eng. J. 2022, 185, 108493. [Google Scholar] [CrossRef]
- Ye, S.; Gao, L.; Zhao, J.; An, M.; Wu, H.; Li, M. Simultaneous Wastewater Treatment and Lipid Production by Scenedesmus sp. HXY2. Bioresour. Technol. 2020, 302, 122903. [Google Scholar] [CrossRef]
- Wu, K.; Atasoy, M.; Zweers, H.; Rijnaarts, H.; Langenhoff, A.; Fernandes, T.V. Impact of Wastewater Characteristics on the Removal of Organic Micropollutants by Chlorella sorokiniana. J. Hazard. Mater. 2023, 453, 131451. [Google Scholar] [CrossRef] [PubMed]
- Haider, M.N.; Liu, C.-G.; Tabish, T.A.; Balakrishnan, D.; Show, P.-L.; Qattan, S.Y.A.; Gull, M.; Mehmood, M.A. Resource Recovery of the Wastewater-Derived Nutrients into Algal Biomass Followed by Its Cascading Processing to Multiple Products in a Circular Bioeconomy Paradigm. Fermentation 2022, 8, 650. [Google Scholar] [CrossRef]
- Aditya, L.; Mahlia, T.M.I.; Nguyen, L.N.; Vu, H.P.; Nghiem, L.D. Microalgae-Bacteria Consortium for Wastewater Treatment and Biomass Production. Sci. Total Environ. 2022, 838, 155871. [Google Scholar] [CrossRef]
- Janpum, C.; Pombubpa, N.; Monshupanee, T.; Incharoensakdi, A.; In-Na, P. Advancement on Mixed Microalgal-Bacterial Cultivation Systems for Nitrogen and Phosphorus Recoveries from Wastewater to Promote Sustainable Bioeconomy. J. Biotechnol. 2022, 360, 198–210. [Google Scholar] [CrossRef]
- Goyal, S.; Dhanker, R.; Hussain, T.; Ferreira, A.; Gouveia, L.; Kumar, K.; Mohamed, H.I. Modern Advancement in Biotechnological Applications for Wastewater Treatment through Microalgae: A Review. Water. Air Soil Pollut. 2023, 234, 417. [Google Scholar] [CrossRef]
- Pishbin, M.; Sarrafzadeh, M.-H.; Faramarzi, M.A. Nitrate and Phosphate Removal Efficiency of Synechococcus elongatus Under Mixotrophic and Heterotrophic Conditions for Wastewater Treatment. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021, 45, 1831–1843. [Google Scholar] [CrossRef]
- De Farias Silva, C.E.; Bertucco, A.; Vieira, R.C.; Abud, A.K.D.S.; Silva Almeida, F.B.P.D. Synechococcus PCC 7002 to Produce a Carbohydrate-Rich Biomass Treating Urban Wastewater. Biofuels 2022, 13, 551–558. [Google Scholar] [CrossRef]
- Bellver, M.; Ruales, E.; Díez-Montero, R.; Escolà Casas, M.; Matamoros, V.; Ferrer, I. Natural Pigments and Biogas Recovery from Cyanobacteria Grown in Treated Wastewater. Fate of Organic Microcontaminants. Water Res. 2025, 273, 123005. [Google Scholar] [CrossRef] [PubMed]
- Mathimani, T.; Alshiekheid, M.A.; Sabour, A.; Le, T.; Xia, C. Appraising the Phycoremediation Potential of Cyanobacterial Strains Phormidium and Oscillatoria for Nutrient Removal from Textile Wastewater (TWW) and Synchronized Biodiesel Production from TWW-Tolerant Biomass. Environ. Res. 2024, 241, 117628. [Google Scholar] [CrossRef] [PubMed]
- Prabha, S.; Vijay, A.K.; Paul, R.R.; George, B. Cyanobacterial Biorefinery: Towards Economic Feasibility through the Maximum Valorization of Biomass. Sci. Total Environ. 2022, 814, 152795. [Google Scholar] [CrossRef]
- Satya, A.D.M.; Cheah, W.Y.; Yazdi, S.K.; Cheng, Y.-S.; Khoo, K.S.; Vo, D.-V.N.; Bui, X.D.; Vithanage, M.; Show, P.L. Progress on Microalgae Cultivation in Wastewater for Bioremediation and Circular Bioeconomy. Environ. Res. 2023, 218, 114948. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Singh, A. Biomass Production and Phycoremediation of Microalgae Cultivated in Polluted River Water. Bioresour. Technol. 2022, 351, 126948. [Google Scholar] [CrossRef]
- Cobos, M.; Condori, R.C.; Grandez, M.A.; Estela, S.L.; Del Aguila, M.T.; Castro, C.G.; Rodríguez, H.N.; Vargas, J.A.; Tresierra, A.B.; Barriga, L.A.; et al. Genomic Analysis and Biochemical Profiling of an Unaxenic Strain of Synechococcus sp. Isolated from the Peruvian Amazon Basin Region. Front. Genet. 2022, 13, 973324. [Google Scholar] [CrossRef]
- Sousa, J.F.; Amaro, H.M.; Ribeirinho-Soares, S.; Esteves, A.F.; Salgado, E.M.; Nunes, O.C.; Pires, J.C.M. Native Microalgae-Bacteria Consortia: A Sustainable Approach for Effective Urban Wastewater Bioremediation and Disinfection. Microorganisms 2024, 12, 1421. [Google Scholar] [CrossRef]
- Richmond, A.; Hu, Q. (Eds.) Handbook of Microalgae Culture: Applied Phycology and Biotechnology, 2nd ed.; Wiley Blackwell: Hoboken, NJ, USA, 2013; ISBN 978-0-470-67389-8. [Google Scholar]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017; ISBN 978-0-87553-287-5. [Google Scholar]
- Huizenga, J.R.; Teelken, A.W.; Tangerman, A.; De Jager, A.E.J.; Gips, C.H.; Jansen, P.L.M. Determination of Ammonia in Cerebrospinal Fluid Using the Indophenol Direct Method. Mol. Chem. Neuropathol. 1998, 34, 169–177. [Google Scholar] [CrossRef]
- Cobos, M.; Paredes, J.D.; Maddox, J.D.; Vargas-Arana, G.; Flores, L.; Aguilar, C.P.; Marapara, J.L.; Castro, J.C. Isolation and Characterization of Native Microalgae from the Peruvian Amazon with Potential for Biodiesel Production. Energies 2017, 10, 224. [Google Scholar] [CrossRef]
- Bennett, A.; Bogorad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. J. Cell Biol. 1973, 58, 419–435. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Mishra, S.; Pawar, R.; Ghosh, P.K. Purification and Characterization of C-Phycocyanin from Cyanobacterial Species of Marine and Freshwater Habitat. Protein Expr. Purif. 2005, 40, 248–255. [Google Scholar] [CrossRef]
- Agawin, N.S.R.; Duarte, C.M.; Agustí, S. Response of Mediterranean Synechococcus Growth and Loss Rates to Experimental Nutrient Inputs. Mar. Ecol. Prog. Ser. 2000, 206, 97–106. [Google Scholar] [CrossRef]
- Korosh, T.C.; Dutcher, A.; Pfleger, B.F.; McMahon, K.D. Inhibition of Cyanobacterial Growth on a Municipal Wastewater Sidestream Is Impacted by Temperature. mSphere 2018, 3, e00538-17. [Google Scholar] [CrossRef]
- Solís-Salinas, C.E.; Patlán-Juárez, G.; Okoye, P.U.; Guillén-Garcés, A.; Sebastian, P.J.; Arias, D.M. Long-Term Semi-Continuous Production of Carbohydrate-Enriched Microalgae Biomass Cultivated in Low-Loaded Domestic Wastewater. Sci. Total Environ. 2021, 798, 149227. [Google Scholar] [CrossRef]
- Bresaola, M.D.; Morocho-Jácome, A.L.; Matsudo, M.C.; de Carvalho, J.C.M. Semi-Continuous Process as a Promising Technique in Ankistrodesmus braunii Cultivation in Photobioreactor. J. Appl. Phycol. 2019, 31, 2197–2205. [Google Scholar] [CrossRef]
- Álvarez, X.; Otero, A. Nutrient Removal from the Centrate of Anaerobic Digestion of High Ammonium Industrial Wastewater by a Semi-Continuous Culture of Arthrospira sp. and Nostoc sp. PCC 7413. J. Appl. Phycol. 2020, 32, 2785–2794. [Google Scholar] [CrossRef]
- Markou, G. Fed-Batch Cultivation of Arthrospira and Chlorella in Ammonia-Rich Wastewater: Optimization of Nutrient Removal and Biomass Production. Bioresour. Technol. 2015, 193, 35–41. [Google Scholar] [CrossRef] [PubMed]
- García-Cañedo, J.C.; Cristiani-Urbina, E.; Flores-Ortiz, C.M.; Ponce-Noyola, T.; Esparza-García, F.; Cañizares-Villanueva, R.O. Batch and Fed-Batch Culture of Scenedesmus incrassatulus: Effect over Biomass, Carotenoid Profile and Concentration, Photosynthetic Efficiency and Non-Photochemical Quenching. Algal Res. 2016, 13, 41–52. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Park, J.; Heubeck, S.; Ralph, P.J.; Craggs, R.J. Size Matters—Microalgae Production and Nutrient Removal in Wastewater Treatment High Rate Algal Ponds of Three Different Sizes. Algal Res. 2020, 45, 101734. [Google Scholar] [CrossRef]
- Dutcher, A. Optimization of Growth Conditions for the Model Bacterium Synechococcus sp. PCC 7002 for Chemical Production Using Wastewater-Based Media. Master’s Thesis, University of Wisconsin-Madison, Madison, WI, USA, 2016. [Google Scholar]
- Garcia, N.S.; Bonachela, J.A.; Martiny, A.C. Interactions between Growth-Dependent Changes in Cell Size, Nutrient Supply and Cellular Elemental Stoichiometry of Marine Synechococcus. ISME J. 2016, 10, 2715–2724. [Google Scholar] [CrossRef]
- Leong, W.H.; Kiatkittipong, K.; Kiatkittipong, W.; Cheng, Y.W.; Lam, M.K.; Shamsuddin, R.; Mohamad, M.; Lim, J.W. Comparative Performances of Microalgal-Bacterial Co-Cultivation to Bioremediate Synthetic and Municipal Wastewaters Whilst Producing Biodiesel Sustainably. Processes 2020, 8, 1427. [Google Scholar] [CrossRef]
- Stauch-White, K.; Srinivasan, V.N.; Camilla Kuo-Dahab, W.; Park, C.; Butler, C.S. The Role of Inorganic Nitrogen in Successful Formation of Granular Biofilms for Wastewater Treatment That Support Cyanobacteria and Bacteria. AMB Express 2017, 7, 146. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Dong, W.; Liu, L.; Bi, Y.; Xu, W.; Wang, X. Uncovering the Differential Growth of Microcystis aeruginosa Cultivated under Nitrate and Ammonium from a Photophysiological Perspective. ACS EST Water 2023, 3, 1161–1171. [Google Scholar] [CrossRef]
- Patel, A.K.; Huang, E.L.; Low-Décarie, E.; Lefsrud, M.G. Comparative Shotgun Proteomic Analysis of Wastewater-Cultured Microalgae: Nitrogen Sensing and Carbon Fixation for Growth and Nutrient Removal in Chlamydomonas reinhardtii. J. Proteome Res. 2015, 14, 3051–3067. [Google Scholar] [CrossRef]
- Anand, J.; Arumugam, M. Enhanced Lipid Accumulation and Biomass Yield of Scenedesmus quadricauda Under Nitrogen Starved Condition. Bioresour. Technol. 2015, 188, 190–194. [Google Scholar] [CrossRef]
- Breuer, G.; Lamers, P.P.; Martens, D.E.; Draaisma, R.B.; Wijffels, R.H. The Impact of Nitrogen Starvation on the Dynamics of Triacylglycerol Accumulation in Nine Microalgae Strains. Bioresour. Technol. 2012, 124, 217–226. [Google Scholar] [CrossRef]
- Arguelles, E.D.; Laurena, A.C.; Monsalud, R.G.; Martinez-Goss, M.R. Fatty Acid Profile and Fuel-Derived Physico-Chemical Properties of Biodiesel Obtained from an Indigenous Green Microalga, Desmodesmus sp. (I-AU1), as Potential Source of Renewable Lipid and High Quality Biodiesel. J. Appl. Phycol. 2018, 30, 411–419. [Google Scholar] [CrossRef]
- Rodolfi, L.; Chini Zittelli, G.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112. [Google Scholar] [CrossRef]
- Castielli, O.; De la Cerda, B.; Navarro, J.A.; Hervás, M.; De la Rosa, M.A. Proteomic Analyses of the Response of Cyanobacteria to Different Stress Conditions. FEBS Lett. 2009, 583, 1753–1758. [Google Scholar] [CrossRef]
- Xiong, W.; Cano, M.; Wang, B.; Douchi, D.; Yu, J. The Plasticity of Cyanobacterial Carbon Metabolism. Curr. Opin. Chem. Biol. 2017, 41, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, D. Growth, Lipid Content, and Fatty Acid Profile of Freshwater Cyanobacteria Dolichospermum affine (Lemmermann) Wacklin, Hoffmann, & Komárek by Using Modified Nutrient Media. Aquac. Int. 2020, 28, 1371–1388. [Google Scholar] [CrossRef]
- Ciebiada, M.; Kubiak, K.; Daroch, M. Modifying the Cyanobacterial Metabolism as a Key to Efficient Biopolymer Production in Photosynthetic Microorganisms. Int. J. Mol. Sci. 2020, 21, 7204. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.V.; Upadhyay, A.K.; Singh, R.; Singh, D.P. Eco-Friendly and Eco Technological Approaches in Treatment of Wastewater by Different Algae and Cyanobacteria. In Algae and Sustainable Technologies; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-1-003-00191-1. [Google Scholar]
- Sánchez-Bayo, A.; Morales, V.; Rodríguez, R.; Vicente, G.; Bautista, L.F. Cultivation of Microalgae and Cyanobacteria: Effect of Operating Conditions on Growth and Biomass Composition. Molecules 2020, 25, 2834. [Google Scholar] [CrossRef]
- El-Bestawy, E. Treatment of Mixed Domestic–Industrial Wastewater Using Cyanobacteria. J. Ind. Microbiol. Biotechnol. 2008, 35, 1503–1516. [Google Scholar] [CrossRef]
- Eriksen, N.T. Production of Phycocyanin—A Pigment with Applications in Biology, Biotechnology, Foods and Medicine. Appl. Microbiol. Biotechnol. 2008, 80, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Winayu, B.N.R.; Ho, J.-Y.; Hsueh, H.-T.; Chu, H. Multifunctional Thermosynechococcus sp. CL-1 Cultivation in Swine Wastewater for Nutrients Utilization, CO2 Fixation, and C-Phycocyanin Production. J. Taiwan Inst. Chem. Eng. 2025, 166, 105046. [Google Scholar] [CrossRef]
- Erratt, K.J.; Creed, I.F.; Trick, C.G. Comparative Effects of Ammonium, Nitrate and Urea on Growth and Photosynthetic Efficiency of Three Bloom-Forming Cyanobacteria. Freshw. Biol. 2018, 63, 626–638. [Google Scholar] [CrossRef]
- González, A.; Bes, M.T.; Valladares, A.; Peleato, M.L.; Fillat, M.F. FurA Is the Master Regulator of Iron Homeostasis and Modulates the Expression of Tetrapyrrole Biosynthesis Genes in Anabaena sp. PCC 7120. Environ. Microbiol. 2012, 14, 3175–3187. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabezudo, R.G.; Castro, J.C.; Castro, C.G.; Rodriguez, H.N.; García, G.L.; Vizcarra, P.M.; Ruiz-Huamán, C.; Cobos, M. Bioremediation Potential of a Non-Axenic Cyanobacterium Synechococcus sp. for Municipal Wastewater Treatment in the Peruvian Amazon: Growth Kinetics, Ammonium Removal, and Biochemical Characterization Within a Circular Bioeconomy Framework. BioTech 2025, 14, 36. https://doi.org/10.3390/biotech14020036
Cabezudo RG, Castro JC, Castro CG, Rodriguez HN, García GL, Vizcarra PM, Ruiz-Huamán C, Cobos M. Bioremediation Potential of a Non-Axenic Cyanobacterium Synechococcus sp. for Municipal Wastewater Treatment in the Peruvian Amazon: Growth Kinetics, Ammonium Removal, and Biochemical Characterization Within a Circular Bioeconomy Framework. BioTech. 2025; 14(2):36. https://doi.org/10.3390/biotech14020036
Chicago/Turabian StyleCabezudo, Remy G., Juan C. Castro, Carlos G. Castro, Hicler N. Rodriguez, Gabriela L. García, Paul M. Vizcarra, Carmen Ruiz-Huamán, and Marianela Cobos. 2025. "Bioremediation Potential of a Non-Axenic Cyanobacterium Synechococcus sp. for Municipal Wastewater Treatment in the Peruvian Amazon: Growth Kinetics, Ammonium Removal, and Biochemical Characterization Within a Circular Bioeconomy Framework" BioTech 14, no. 2: 36. https://doi.org/10.3390/biotech14020036
APA StyleCabezudo, R. G., Castro, J. C., Castro, C. G., Rodriguez, H. N., García, G. L., Vizcarra, P. M., Ruiz-Huamán, C., & Cobos, M. (2025). Bioremediation Potential of a Non-Axenic Cyanobacterium Synechococcus sp. for Municipal Wastewater Treatment in the Peruvian Amazon: Growth Kinetics, Ammonium Removal, and Biochemical Characterization Within a Circular Bioeconomy Framework. BioTech, 14(2), 36. https://doi.org/10.3390/biotech14020036