Removal of Cadmium (II) from Aqueous Solution Using Galdieria sulphuraria CCMEE 5587.1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algal Strain and Cultural Medium
2.2. Preparation of Different Media Composition
2.3. Experimental Setup
2.4. Measurement of Biomass Density
- Y = Ash-free dry wt.
- X = OD value at 750 nm
2.5. Measurement of Time Course, Extracellular and Intracellular Cd Concentration
- Ci = Cd concentrations in the supernatant on Day 0
- Cf = Cd concentrations in the supernatant on Day 10
- Ri = Intracellular Cd removal
- Rt = Total Cd removal
- Re = Extracellular Cd removal
2.6. Statistical Techniques and Graph Plotting
3. Results
3.1. Cadmium Bioremediation
3.1.1. Total Cadmium Removal
3.1.2. Time Course Cadmium Removal
3.1.3. Extracellular and Intracellular Cadmium Removal
3.2. Growth of G. sulphuraria
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdi, O.; Kazemi, M. A review study of biosorption of heavy metals and comparison between different biosorbents. J. Mater. Environ. Sci. 2015, 6, 1386–1399. [Google Scholar]
- Mehta, S.; Gaur, J. Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Crit. Rev. Biotechnol. 2005, 25, 113–152. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.; Cid, A.; Herrero, C.; Abalde, J. Removal of cadmium ions by the marine diatom Phaeodactylum tricornutum Bohlin accumulation and long-term kinetics of uptake. Bioresour. Technol. 1998, 63, 213–220. [Google Scholar] [CrossRef]
- Tukaj, Z.; Baścik-Remisiewicz, A.; Skowroński, T.; Tukaj, C. Cadmium effect on the growth, photosynthesis, ultrastructure and phytochelatin content of green microalga Scenedesmus armatus: A study at low and elevated CO2 concentration. Environ. Exp. Bot. 2007, 60, 291–299. [Google Scholar] [CrossRef]
- Pérez-Rama, M.; Alonso, J.A.; López, C.H.; Vaamonde, E.T. Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresour. Technol. 2002, 84, 265–270. [Google Scholar] [CrossRef]
- Martin, S.; Griswold, W. Human health effects of heavy metals. Environ. Sci. Technol. Briefs Citiz. 2009, 15, 1–6. [Google Scholar]
- Kinuthia, G.K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: Community health implication. Sci. Rep. 2020, 10, 8434. [Google Scholar] [CrossRef]
- USEPA. Effluent Guidelines Database. Available online: https://www.epa.gov/eg/effluent-guidelines-database (accessed on 20 September 2023).
- Chandrashekharaiah, P.; Sanyal, D.; Dasgupta, S.; Banik, A. Cadmium biosorption and biomass production by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa: An integrated approach. Chemosphere 2021, 269, 128755. [Google Scholar]
- Gupta, V.; Rastogi, A. Equilibrium and kinetic modelling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J. Hazard. Mater. 2008, 153, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Zeraatkar, A.K.; Ahmadzadeh, H.; Talebi, A.F.; Moheimani, N.R.; McHenry, M.P. Potential use of algae for heavy metal bioremediation, a critical review. J. Environ. Manag. 2016, 181, 817–831. [Google Scholar] [CrossRef]
- Karki, B.K.; Baniya, S.; Kharel, H.L.; Angove, M.J.; Paudel, S.R. Urban wastewater management in Nepal: Generation, treatment, engineering, and policy perspectives. H2Open J. 2024, 7, 222–242. [Google Scholar] [CrossRef]
- Kumar, K.S.; Dahms, H.-U.; Won, E.-J.; Lee, J.-S.; Shin, K.-H. Microalgae—A promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 2015, 113, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef] [PubMed]
- Jacinto, M.L.J.; David, C.P.C.; Perez, T.R.; De Jesus, B.R. Comparative efficiency of algal biofilters in the removal of chromium and copper from wastewater. Ecol. Eng. 2009, 35, 856–860. [Google Scholar] [CrossRef]
- Danouche, M.; El Ghachtouli, N.; El Arroussi, H. Phycoremediation mechanisms of heavy metals using living green microalgae: Physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 2021, 7, e07609. [Google Scholar] [CrossRef] [PubMed]
- Nelson, N.; Huynh, T.; Nguyen, M.; Choudhury, N.; Dao, D.; Bougere, J.; Crouere, J.; Baroun, A. Heavy metal removal via phycoremediation. In Proceedings of the 2020 Waste-Management Education Research (WERC), Las Cruces, NM, USA, 12–15 April 2020; pp. 1–10. [Google Scholar]
- Leong, Y.K.; Chang, J.-S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef] [PubMed]
- Selvaratnam, T.; Kharel, H.L.; Tan, M. Algal-Based Bioremediation of Landfill Leachate. In Proceedings of the 2022 AIChE Annual Meeting, Phoenix, AZ, USA, 13–18 November 2022. [Google Scholar]
- Sirakov, M.; Palmieri, M.; Iovinella, M.; Davis, S.J.; Petriccione, M.; di Cicco, M.R.; De Stefano, M.; Ciniglia, C. Cyanidiophyceae (Rhodophyta) Tolerance to Precious Metals: Metabolic Response to Palladium and Gold. Plants 2021, 10, 2367. [Google Scholar] [CrossRef] [PubMed]
- Iovinella, M.; Lombardo, F.; Ciniglia, C.; Palmieri, M.; Di Cicco, M.R.; Trifuoggi, M.; Race, M.; Manfredi, C.; Lubritto, C.; Fabbricino, M. Bioremoval of Yttrium (III), Cerium (III), Europium (III), and Terbium (III) from Single and Quaternary Aqueous Solutions Using the Extremophile Galdieria sulphuraria (Galdieriaceae, Rhodophyta). Plants 2022, 11, 1376. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-L.; Lee, Y.-C.; Hsu, L.-C.; Wang, C.-C.; Chen, P.-C.; Liu, S.-L.; Teah, H.-Y.; Liu, Y.-T.; Tzou, Y.-M. Molecular mechanisms for Pb removal by Cyanidiales: A potential biomaterial applied in thermo-acidic conditions. Chem. Eng. J. 2020, 401, 125828. [Google Scholar] [CrossRef]
- Minoda, A.; Sawada, H.; Suzuki, S.; Miyashita, S.-i.; Inagaki, K.; Yamamoto, T.; Tsuzuki, M. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid. Appl. Microbiol. Biotechnol. 2015, 99, 1513–1519. [Google Scholar] [CrossRef]
- Čížková, M.; Mezricky, P.; Mezricky, D.; Rucki, M.; Zachleder, V.; Vítová, M. Bioaccumulation of rare earth elements from waste luminophores in the red algae, Galdieria phlegrea. Waste Biomass Valorization 2021, 12, 3137–3146. [Google Scholar] [CrossRef]
- Oesterhelt, C.; Schmälzlin, E.; Schmitt, J.M.; Lokstein, H. Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria. Plant J. 2007, 51, 500–511. [Google Scholar] [CrossRef] [PubMed]
- Kharel, H.L.; Shrestha, I.; Tan, M.; Nikookar, M.; Saraei, N.; Selvaratnam, T. Cyanidiales-Based Bioremediation of Heavy Metals. BioTech 2023, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Selvaratnam, T.; Pegallapati, A.; Montelya, F.; Rodriguez, G.; Nirmalakhandan, N.; Lammers, P.J.; Van Voorhies, W. Feasibility of algal systems for sustainable wastewater treatment. Renew. Energy 2015, 82, 71–76. [Google Scholar] [CrossRef]
- Pan, S.; Dixon, K.L.; Nawaz, T.; Rahman, A.; Selvaratnam, T. Evaluation of Galdieria sulphuraria for nitrogen removal and biomass production from raw landfill leachate. Algal Res. 2021, 54, 102183. [Google Scholar] [CrossRef]
- Rahman, A.; Pan, S.; Houston, C.; Selvaratnam, T. Evaluation of Galdieria sulphuraria and Chlorella vulgaris for the Bioremediation of Produced Water. Water 2021, 13, 1183. [Google Scholar] [CrossRef]
- Kumar, M.; Kushwaha, A.; Goswami, L.; Singh, A.K.; Sikandar, M. A review on advances and mechanism for the phycoremediation of cadmium contaminated wastewater. Clean. Eng. Technol. 2021, 5, 100288. [Google Scholar] [CrossRef]
- Cui, M.; Jang, M.; Cho, S.-H.; Khim, J.; Cannon, F.S. A continuous pilot-scale system using coal-mine drainage sludge to treat acid mine drainage contaminated with high concentrations of Pb, Zn, and other heavy metals. J. Hazard. Mater. 2012, 215, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Palma, H.; Killoran, E.; Sheehan, M.; Berner, F.; Heimann, K. Assessment of microalga biofilms for simultaneous remediation and biofuel generation in mine tailings water. Bioresour. Technol. 2017, 234, 327–335. [Google Scholar] [CrossRef]
- Toplin, J.A.; Norris, T.B.; Lehr, C.R.; McDermott, T.R.; Castenholz, R.W. Biogeographic and phylogenetic diversity of thermoacidophilic cyanidiales in Yellowstone National Park, Japan, and New Zealand. Appl. Environ. Microbiol. 2008, 74, 2822–2833. [Google Scholar] [CrossRef]
- Duque, D.; Montoya, C.; Botero, L.R. Cadmium (Cd) tolerance evaluation of three strains of microalgae of the genus Ankistrodesmus, C hlorella and Scenedesmus. Rev. Fac. Ing. Univ. Antioq. 2019, 92, 88–95. [Google Scholar] [CrossRef]
- Abinandan, S.; Subashchandrabose, S.R.; Venkateswarlu, K.; Perera, I.A.; Megharaj, M. Acid-tolerant microalgae can withstand higher concentrations of invasive cadmium and produce sustainable biomass and biodiesel at pH 3.5. Bioresour. Technol. 2019, 281, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Xie, S.; Feng, J.; Li, Y.; Chen, L. Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta. J. Appl. Phycol. 2012, 24, 979–983. [Google Scholar] [CrossRef]
- Shamshad, I.; Khan, S.; Waqas, M.; Asma, M.; Nawab, J.; Gul, N.; Raiz, A.; Li, G. Heavy metal uptake capacity of fresh water algae (Oedogonium westti) from aqueous solution: A mesocosm research. Int. J. Phytoremediat. 2016, 18, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Ostroumov, S.; Tropin, I.; Kiryushin, A. Removal of cadmium and other toxic metals from water: Thermophiles and new biotechnologies. Russ. J. Gen. Chem. 2018, 88, 2962–2966. [Google Scholar] [CrossRef]
- Isachsen, I. Cadmium Tolerance in the Thermo-Acidophilic Red Alga C. merolae, Possible Mechanisms and Implications for Bioremediation; Arizona State University: Tempe, AZ, USA, 2022. [Google Scholar]
- Folgar, S.; Torres, E.; Pérez-Rama, M.; Cid, A.; Herrero, C.; Abalde, J. Dunaliella salina as marine microalga highly tolerant to but a poor remover of cadmium. J. Hazard. Mater. 2009, 165, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Henriques, B.; Rocha, L.S.; Lopes, C.B.; Figueira, P.; Duarte, A.; Vale, C.; Pardal, M.; Pereira, E. A macroalgae-based biotechnology for water remediation: Simultaneous removal of Cd, Pb and Hg by living Ulva lactuca. J. Environ. Manag. 2017, 191, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Henriques, B.; Teixeira, A.; Figueira, P.; Reis, A.T.; Almeida, J.; Vale, C.; Pereira, E. Simultaneous removal of trace elements from contaminated waters by living Ulva lactuca. Sci. Total Environ. 2019, 652, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xia, L.; Song, S.; Farías, M.E.; Li, Y.; Tang, C. Cadmium removal from diluted wastewater by using high-phosphorus-culture modified microalgae. Chem. Phys. Lett. 2021, 771, 138561. [Google Scholar] [CrossRef]
- Kharel, H.L.; Shrestha, I.; Tan, M.; Selvaratnam, T. Removal of cadmium and lead from synthetic wastewater using Galdieria sulphuraria. Environments 2023, 10, 174. [Google Scholar] [CrossRef]
- Plöhn, M.; Escudero-Oñate, C.; Funk, C. Biosorption of Cd(II) by Nordic microalgae: Tolerance, kinetics and equilibrium studies. Algal Res. 2021, 59, 102471. [Google Scholar] [CrossRef]
- Priyadarshini, E.; Priyadarshini, S.S.; Pradhan, N. Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Appl. Microbiol. Biotechnol. 2019, 103, 3297–3316. [Google Scholar] [CrossRef]
- Flouty, R.; Estephane, G. Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: A comparative study. J. Environ. Manag. 2012, 111, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.; Cid, A.; Herrero, C.; Abalde, J. Effect of cadmium on growth, ATP content, carbon fixation and ultrastructure in the marine diatom Phaeodactylum tricornutum Bohlin. Water Air Soil Pollut. 2000, 117, 1–14. [Google Scholar] [CrossRef]
- Yang, J.; Cao, J.; Xing, G.; Yuan, H. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour. Technol. 2015, 175, 537–544. [Google Scholar] [CrossRef]
- Bajguz, A. Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Arch. Environ. Contam. Toxicol. 2011, 60, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.; Sigaud-kutner, T.C.; Leitao, M.A.; Okamoto, O.K.; Morse, D.; Colepicolo, P. Heavy metal–induced oxidative stress in algae 1. J. Phycol. 2003, 39, 1008–1018. [Google Scholar] [CrossRef]
- Napan, K.; Teng, L.; Quinn, J.C.; Wood, B.D. Impact of heavy metals from flue gas integration with microalgae production. Algal Res. 2015, 8, 83–88. [Google Scholar] [CrossRef]
- Vymazal, J. Toxicity and accumulation of cadmium with respect to algae and cyanobacteria: A review. Toxic. Assess. 1987, 2, 387–415. [Google Scholar] [CrossRef]
- Mulbry, W.; Westhead, E.K.; Pizarro, C.; Sikora, L. Recycling of manure nutrients: Use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour. Technol. 2005, 96, 451–458. [Google Scholar] [CrossRef]
- Selvaratnam, T.; Pegallapati, A.; Reddy, H.; Kanapathipillai, N.; Nirmalakhandan, N.; Deng, S.; Lammers, P. Algal biofuels from urban wastewaters: Maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass. Bioresour. Technol. 2015, 182, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Chugh, M.; Kumar, L.; Shah, M.P.; Bharadvaja, N. Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus 2022, 7, 100129. [Google Scholar] [CrossRef]
- Guan, C.-Y.; Chen, S.S.; Lee, T.-H.; Yu, C.-P.; Tsang, D.C. Valorization of biomass from plant microbial fuel cells into levulinic acid by using liquid/solid acids and green solvents. J. Clean. Prod. 2020, 260, 121097. [Google Scholar] [CrossRef]
- Chai, Y.; Chen, A.; Bai, M.; Peng, L.; Shao, J.; Yuan, J.; Shang, C.; Zhang, J.; Huang, H.; Peng, C. Valorization of heavy metal contaminated biomass: Recycling and expanding to functional materials. J. Clean. Prod. 2022, 366, 132771. [Google Scholar] [CrossRef]
Algal Strain | Initial Cd Concentration (mg L−1) | pH | Sorption Capacity (mg g−1) | Removal Efficiency (%) | References |
---|---|---|---|---|---|
Green Algae | |||||
Scenedesmus acutus | 1.5 | 7.0 | 0.25 | 57.14 | [9] |
Chlorella pyrenoidosa | 1.5 | 7.0 | 0.27 | 45.45 | [9] |
Chlorella sp. | 1.0–7.0 | 8.07–8.60 | [34] | ||
Scenedesmus sp. | 1.0–7.0 | 5.13–32.74 | [34] | ||
Oedogonium westii | 0.50–2.00 | 5.0 | 0.974 | 55.00–95.00 | [37] |
Ulva lactuca | 0.01–0.2 | 0.347 | 57.00–96.00 | [41] | |
Ulva lactuca | 0.20 | 7.8 | 0.018 | 56.00 | [42] |
Desmodesmus sp. MAS1 | 1.00–2.00 | 3.5 | 0.37–0.77 | [35] | |
Heterochlorella sp. MAS3 | 1.00–2.00 | 3.5 | 0.16–0.36 | [35] | |
Didymogenes palatina XR | 2.0 | 6.0 | 7.41 | 87.99 | [43] |
Cladophora fracta | 0.1–1.0 | 5.0 | 0.05–0.24 | 97.00 | [36] |
Dunaliella salina | 5.0–120.0 | 7.8 | 2.9–11.3 | [40] | |
Tetraselmis suecica | 0.6–45.0 | 7.8 | 7.7–98.4 | [5] | |
Red Algae | |||||
Cyanidioschyzon merolae 10D | 1.00 | 1.75 | - | 31.55 | [39] |
Cyanidioschyzon merolae MS1 | 5.00 | 1.75 | - | 1.16 | [39] |
Galdieria sulphuraria IPPAS P-513 | 5.00 | 2.7 | - | 24.00 | [38] |
Galdieria sulphuraria CCMEE 5587.1 | 1.25–5.00 | 2.5 | 0.64–1.45 | 19.09–49.80 | [44] |
Galdieria sulphuraria CCMEE 5587.1 | 1.5–6.00 | 2.5 | 0.63–1.59 | 18.89–30.00 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharel, H.L.; Jha, L.; Tan, M.; Selvaratnam, T. Removal of Cadmium (II) from Aqueous Solution Using Galdieria sulphuraria CCMEE 5587.1. BioTech 2024, 13, 28. https://doi.org/10.3390/biotech13030028
Kharel HL, Jha L, Tan M, Selvaratnam T. Removal of Cadmium (II) from Aqueous Solution Using Galdieria sulphuraria CCMEE 5587.1. BioTech. 2024; 13(3):28. https://doi.org/10.3390/biotech13030028
Chicago/Turabian StyleKharel, Hari Lal, Lina Jha, Melissa Tan, and Thinesh Selvaratnam. 2024. "Removal of Cadmium (II) from Aqueous Solution Using Galdieria sulphuraria CCMEE 5587.1" BioTech 13, no. 3: 28. https://doi.org/10.3390/biotech13030028
APA StyleKharel, H. L., Jha, L., Tan, M., & Selvaratnam, T. (2024). Removal of Cadmium (II) from Aqueous Solution Using Galdieria sulphuraria CCMEE 5587.1. BioTech, 13(3), 28. https://doi.org/10.3390/biotech13030028