Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Recruitment
2.3. Consent
2.4. LCR-App
2.5. Study Tasks
2.6. Wearable Device
2.7. Participant Medical Records Data Processing
2.8. OASIS Participant Stratification Based on Medical Records
2.9. Analysis
2.10. Data Processing and Mining of Survey and Biometric Data
3. Results
3.1. Participant Demographics
3.2. Patient-Reported Medication Usage
3.3. Medical Records Data
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lau, C.S.; Mak, A. The socioeconomic burden of SLE. Nat. Rev. Rheumatol. 2009, 5, 400–404. [Google Scholar] [CrossRef]
- Li, S.; Gong, T.; Peng, Y.; Nieman, K.M.; Gilbertson, D.T. Prevalence and incidence of systemic lupus erythematosus and associated outcomes in the 2009–2016 US Medicare population. Lupus 2020, 29, 15–26. [Google Scholar] [CrossRef]
- Somers, E.C.; Marder, W.; Cagnoli, P.; Lewis, E.E.; DeGuire, P.; Gordon, C.; Helmick, C.G.; Wang, L.; Wing, J.J.; Dhar, J.P.; et al. Population-based incidence and prevalence of systemic lupus erythematosus: The Michigan Lupus Epidemiology and Surveillance program. Arthritis Rheumatol. 2014, 66, 369–378. [Google Scholar] [CrossRef]
- Feldman, C.H.; Hiraki, L.T.; Liu, J.; Fischer, M.A.; Solomon, D.H.; Alarcon, G.S.; Winkelmayer, W.C.; Costenbader, K.H. Epidemiology and sociodemographics of systemic lupus erythematosus and lupus nephritis among US adults with Medicaid coverage, 2000–2004. Arthritis Rheum. 2013, 65, 753–763. [Google Scholar] [CrossRef]
- Chakravarty, E.F.; Bush, T.M.; Manzi, S.; Clarke, A.E.; Ward, M.M. Prevalence of adult systemic lupus erythematosus in California and Pennsylvania in 2000: Estimates obtained using hospitalization data. Arthritis Rheum. 2007, 56, 2092–2094. [Google Scholar] [CrossRef]
- Kan, H.J.; Song, X.; Johnson, B.H.; Bechtel, B.; O’Sullivan, D.; Molta, C.T. Healthcare utilization and costs of systemic lupus erythematosus in Medicaid. BioMed Res. Int. 2013, 2013, 808391. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, M.C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997, 40, 1725. [Google Scholar] [CrossRef]
- Petri, M.; Orbai, A.M.; Alarcon, G.S.; Gordon, C.; Merrill, J.T.; Fortin, P.R.; Bruce, I.N.; Isenberg, D.; Wallace, D.J.; Nived, O.; et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012, 64, 2677–2686. [Google Scholar] [CrossRef] [PubMed]
- Aringer, M.; Dorner, T.; Leuchten, N.; Johnson, S.R. Toward new criteria for systemic lupus erythematosus—A standpoint. Lupus 2016, 25, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Petri, M.; Singh, S.; Tesfasyone, H.; Malik, A. Prevalence of flare and influence of demographic and serologic factors on flare risk in systemic lupus erythematosus: A prospective study. J. Rheumatol. 2009, 36, 2476–2480. [Google Scholar] [CrossRef]
- Hay, E.M.; Bacon, P.A.; Gordon, C.; Isenberg, D.A.; Maddison, P.; Snaith, M.L.; Symmons, D.P.; Viner, N.; Zoma, A. The BILAG index: A reliable and valid instrument for measuring clinical disease activity in systemic lupus erythematosus. QJM 1993, 86, 447–458. [Google Scholar]
- Isenberg, D.A.; Rahman, A.; Allen, E.; Farewell, V.; Akil, M.; Bruce, I.N.; D’Cruz, D.; Griffiths, B.; Khamashta, M.; Maddison, P.; et al. BILAG 2004. Development and initial validation of an updated version of the British Isles Lupus Assessment Group’s disease activity index for patients with systemic lupus erythematosus. Rheumatology 2005, 44, 902–906. [Google Scholar] [CrossRef] [PubMed]
- Petri, M.; Kim, M.Y.; Kalunian, K.C.; Grossman, J.; Hahn, B.H.; Sammaritano, L.R.; Lockshin, M.; Merrill, J.T.; Belmont, H.M.; Askanase, A.D.; et al. Combined oral contraceptives in women with systemic lupus erythematosus. N. Engl. J. Med. 2005, 353, 2550–2558. [Google Scholar] [CrossRef]
- Bonakdar, Z.S.; Mohtasham, N.; Karimifar, M. Evaluation of damage index and its association with risk factors in patients withsystemic lupus erythematosus. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2011, 16 (Suppl. S1), S427–S432. [Google Scholar]
- Mikdashi, J.; Nived, O. Measuring disease activity in adults with systemic lupus erythematosus: The challenges of administrative burden and responsiveness to patient concerns in clinical research. Arthritis Res. Ther. 2015, 17, 183. [Google Scholar] [CrossRef] [PubMed]
- Thong, B.; Olsen, N.J. Systemic lupus erythematosus diagnosis and management. Rheumatology 2017, 56 (Suppl. S1), i3–i13. [Google Scholar] [CrossRef]
- Thanou, A.; Chakravarty, E.; James, J.A.; Merrill, J.T. Which outcome measures in SLE clinical trials best reflect medical judgment? Lupus Sci. Med. 2014, 1, e000005. [Google Scholar] [CrossRef]
- Buyon, J.P.; Petri, M.A.; Kim, M.Y.; Kalunian, K.C.; Grossman, J.; Hahn, B.H.; Merrill, J.T.; Sammaritano, L.; Lockshin, M.; Alarcón, G.S.; et al. The effect of combined estrogen and progesterone hormone replacement therapy on disease activity in systemic lupus erythematosus: A randomized trial. Ann. Intern. Med. 2005, 142, 953–962. [Google Scholar] [CrossRef]
- Petri, M.A.; van Vollenhoven, R.F.; Buyon, J.; Levy, R.A.; Navarra, S.V.; Cervera, R.; Zhong, Z.J.; Freimuth, W.W.; on behalf of the BLISS-52 and BLISS-76 Study Groups. Baseline Predictors of Systemic Lupus Erythematosus Flares: Data from the Combined Placebo Groups in the Phase III Belimumab Trials. Arthritis Rheum. 2013, 65, 2143–2153. [Google Scholar] [CrossRef]
- Liu, C.C.; Ahearn, J.M. The search for lupus biomarkers. Best Pract. Res. Clin. Rheumatol. 2009, 23, 507–523. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, D.A.; Young, H.M.; Quinn, C.C. Telehealth remote monitoring systematic review: Structured self-monitoring of blood glucose and impact on A1C. J. Diabetes Sci. Technol. 2014, 8, 378–389. [Google Scholar] [CrossRef]
- Pal, K.; Eastwood, S.V.; Michie, S.; Farmer, A.J.; Barnard, M.L.; Peacock, R.; Wood, B.; Inniss, J.D.; Murray, E. Computer-based diabetes self-management interventions for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2013, 3, CD008776. [Google Scholar]
- Di Lenarda, A.; Casolo, G.; Gulizia, M.M.; Aspromonte, N.; Scalvini, S.; Mortara, A.; Alunni, G.; Ricci, R.P.; Mantovan, R.; Russo, G.; et al. ANMCO/SIC/SIT Consensus document: The future of telemedicine in heart failure. G. Ital. Cardiol. 2016, 17, 491–507. [Google Scholar]
- Saner, H.; van der Velde, E. eHealth in cardiovascular medicine: A clinical update. Eur. J. Prev. Cardiol. 2016, 23 (Suppl. S2), 5–12. [Google Scholar] [CrossRef]
- Dantas, L.O.; Weber, S.; Osani, M.C.; Bannuru, R.R.; McAlindon, T.E.; Kasturi, S. Mobile health technologies for the management of systemic lupus erythematosus: A systematic review. Lupus 2020, 29, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Bot, B.; Suver, C.; Neto, E.; Kellen, M.; Klein, A.; Bare, C.; Doerr, M.; Pratap, A.; Wilbanks, J.; Dorsey, E.R.; et al. The mPower study, Parkinson disease mobile data collected using ResearchKit. Sci. Data 2016, 3, 160011. [Google Scholar] [CrossRef] [PubMed]
- Gossec, L.; Guyard, F.; Leroy, D.; Lafargue, T.; Seiler, M.; Jacquemin, C.; Molto, A.; Sellam, J.; Foltz, V.; Gandjbakhch, F.; et al. Detection of flares by decrease in physical activity, collected using wearable activity trackers, in rheumatoid arthritis or axial spondyloarthritis: An application of Machine Learning analyses in rheumatology. Arthritis Care Res. 2019, 71, 1336–1343. [Google Scholar] [CrossRef] [PubMed]
- Helmer, P.; Hottenrott, S.; Rodemers, P.; Leppich, R.; Helwich, M.; Pryss, R.; Kranke, P.; Meybohm, P.; Winkler, B.E.; Sammeth, M.; et al. Accuracy and Systematic Biases of Heart Rate Measurements by Consumer-Grade Fitness Trackers in Postoperative Patients: Prospective Clinical Trial. J. Med. Internet Res. 2022, 24, e42359. [Google Scholar] [CrossRef]
- Ferguson, T.; Rowlands, A.V.; Olds, T.; Maher, C. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 42. [Google Scholar] [CrossRef]
- Gruwez, A.; Bruyneel, A.V.; Bruyneel, M. The validity of two commercially-available sleep trackers and actigraphy for assessment of sleep parameters in obstructive sleep apnea patients. PLoS ONE 2019, 14, e0210569. [Google Scholar] [CrossRef]
- Hao, Y.; Ma, X.K.; Zhu, Z.; Cao, Z.B. Validity of Wrist-Wearable Activity Devices for Estimating Physical Activity in Adolescents: Comparative Study. JMIR mHealth uHealth 2021, 9, e18320. [Google Scholar] [CrossRef]
- Phasing Out of the COVID MyStudies Application (App). Available online: https://www.fda.gov/drugs/science-and-research-drugs/fdas-mystudies-application-app (accessed on 9 May 2023).
- Nokia Health. Available online: https://www.withings.com/us/en/steel-hr (accessed on 9 May 2023).
- Jacquemin, C.; Servy, H.; Molto, A.; Sellam, J.; Foltz, V.; Gandjbakhch, F.; Hudry, C.; Mitrovic, S.; Fautrel, B.; Gossec, L.; et al. Physical Activity Assessment Using an Activity Tracker in Patients with Rheumatoid Arthritis and Axial Spondyloarthritis: Prospective Observational Study. JMIR mHealth uHealth 2018, 6, e7948. [Google Scholar] [CrossRef]
- Leong, K.P.; Kong, K.O.; Thong, B.Y.; Koh, E.T.; Lian, T.Y.; Teh, C.L.; Cheng, Y.K.; Chng, H.H.; Badsha, H.; Law, W.G.; et al. Development and preliminary validation of a systemic lupus erythematosus-specific quality-of-life instrument (SLEQOL). Rheumatology 2005, 44, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Louthrenoo, W.; Kasitanon, N.; Morand, E.; Kandane-Rathnayake, R. Comparison of performance of specific (SLEQOL) and generic (SF36) health-related quality of life questionnaires and their associations with disease status of systemic lupus erythematosus: A longitudinal study. Arthritis Res. Ther. 2020, 22, 8. [Google Scholar] [CrossRef]
- VietOCR. Available online: http://vietocr.sourceforge.net/ (accessed on 8 July 2022).
- Frank, E.; Hall, M.A.; Holmes, G.; Kirkby, R.B.; Pfahringer, B.; Witten, I.H. Weka: A Machine Learning Workbench for Data Mining; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1305–1314. [Google Scholar] [CrossRef]
- Nick, T.G. Descriptive statistics. Methods Mol. Biol. 2007, 404, 33–52. [Google Scholar] [PubMed]
- Bini, S.A. Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care? J. Arthroplast. 2018, 33, 2358–2361. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Lux, T.; Watson, L.; Chang, T.; Hong, Y.; Cameron, K. Interpolation of sparse high-dimensional data. Numer. Algorithms 2021, 88, 281–313. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Le Cessie, S.; Van Houwelingen, J.C. Ridge Estimators in Logistic Regression. J. R. Stat. Soc. Ser. C Appl. Stat. 1992, 41, 191–201. [Google Scholar] [CrossRef]
- Bertram, M.; Rose, G.; Schafer, D.; Wiegert, J.; Aach, T. Directional interpolation of sparsely sampled cone-beam CT sinogram data. In Proceedings of the 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), Arlington, VA, USA, 15–18 April 2004; Volume 1, pp. 928–931. [Google Scholar] [CrossRef]
- Marinho, M.A.M.; Antreich, F.; Caizzone, S.; da Costa, J.P.C.L.; Vinel, A.; de Freitas, E.P. Robust Nonlinear Array Interpolation for Direction of Arrival Estimation of Highly Correlated Signals. Signal Process. 2018, 144, 19–28. [Google Scholar] [CrossRef]
- Vaidyam, A.; Halamka, J.; Torous, J. Actionable digital phenotyping: A framework for the delivery of just-in-time and longitudinal interventions in clinical healthcare. mHealth 2019, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Eysenbach, G. The role of chatgpt, generative language models, and artificial intelligence in medical education: A conversation with chatgpt and a call for papers. JMIR Med. Educ. 2023, 9, e46885. [Google Scholar] [CrossRef]
- Lillykutty, M.J.; Samson, R. Insights from Kristen M Swanson’s theory of caring. Asian J. Nurs. Educ. Res. 2018, 8, 173–177. [Google Scholar] [CrossRef]
Sex (n, %) | Female Male | 529 (96) 21(4) | 68 (100) 0 (0) |
---|---|---|---|
Race/Ethnicity (n,%) | European American | 409 (74.4) | 58 (85.3) |
African American | 57 (10.4) | 4 (5.9) | |
Hispanic | 31 (5.6) | 4 (5.9) | |
Asian | 25 (4.5) | 0 (0) | |
Other | 12 (2.2) | 0 (0) | |
Native American | 11 (2.0) | 2 (2.9) | |
Unknown | 5 (0.9) | 0 (0) | |
Age (Mean, SD) | 44 (14) | 44 (13) |
10-Fold CV | TP | FP | Precision | Recall | F-Measure | ROC | Class |
---|---|---|---|---|---|---|---|
Average | 0.63 | 0.07 | 0.71 | 0.63 | 0.67 | 0.76 | flares |
0.67 | 0.18 | 0.55 | 0.67 | 0.60 | 0.67 | ambiguous | |
0.80 | 0.18 | 0.84 | 0.80 | 0.82 | 0.74 | non-flare | |
0.73 | 0.15 | 0.74 | 0.73 | 0.73 | 0.73 | ||
5-Fold CV | TP | FP | Precision | Recall | F-measure | ROC | Class |
Average | 0.63 | 0.07 | 0.71 | 0.63 | 0.67 | 0.76 | flares |
0.56 | 0.18 | 0.50 | 0.56 | 0.53 | 0.56 | ambiguous | |
0.80 | 0.24 | 0.80 | 0.80 | 0.80 | 0.69 | non-flare | |
0.70 | 0.19 | 0.71 | 0.70 | 0.71 | 0.67 |
Bayesian Network | Multilayer Perceptron | LMT | ||||
---|---|---|---|---|---|---|
TP-flare | TP-no | TP-flare | TP-no | TP-flare | TP-no | |
Correlation Feature Subset (CFS) | 0.907 | 0.864 | 0.611 | 0.928 | 0.574 | 0.953 |
Classified Attribute (ClA) | 0.907 | 0.703 | 0.352 | 0.892 | 0.296 | 0.961 |
Correlation Attribute (CoA) | 0.907 | 0.792 | 0.630 | 0.928 | 0.556 | 0.946 |
Gain Ratio Attribute (GRA) | 0.944 | 0.742 | 0.593 | 0.950 | 0.500 | 0.943 |
Information Gain Attribute (IGA) | 0.907 | 0.792 | 0.648 | 0.939 | 0.574 | 0.957 |
One R Attribute (ORA) | 0.593 | 0.932 | 0.593 | 0.921 | 0.537 | 0.961 |
Relief F Attribute (RFA) | 0.944 | 0.713 | 0.630 | 0.939 | 0.500 | 0.953 |
Symmetry Uncertain Attribute (SUA) | 0.926 | 0.778 | 0.611 | 0.953 | 0.556 | 0.961 |
Set 1: (CFS-25) | Set 2 = {Set 1 + 12 Biometric Terms} | Set 3 = {Set 2 Sub-Selected by Bayes-Steered CIA} | ||||
---|---|---|---|---|---|---|
TP-flare | TP-no | TP-flare | TP-no | TP-flare | TP-no | |
10-fold | 0.907 | 0.864 | 0.907 | 0.860 | 0.944 | 0.875 |
5-fold | 0.889 | 0.885 | 0.889 | 0.889 | 0.944 | 0.878 |
4-fold | 0.907 | 0.867 | 0.907 | 0.864 | 0.944 | 0.839 |
3-fold | 0.852 | 0.878 | 0.870 | 0.878 | 0.926 | 0.860 |
2-fold | 0.796 | 0.885 | 0.852 | 0.878 | 0.852 | 0.871 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jupe, E.R.; Lushington, G.H.; Purushothaman, M.; Pautasso, F.; Armstrong, G.; Sorathia, A.; Crawley, J.; Nadipelli, V.R.; Rubin, B.; Newhardt, R.; et al. Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study. BioTech 2023, 12, 62. https://doi.org/10.3390/biotech12040062
Jupe ER, Lushington GH, Purushothaman M, Pautasso F, Armstrong G, Sorathia A, Crawley J, Nadipelli VR, Rubin B, Newhardt R, et al. Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study. BioTech. 2023; 12(4):62. https://doi.org/10.3390/biotech12040062
Chicago/Turabian StyleJupe, Eldon R., Gerald H. Lushington, Mohan Purushothaman, Fabricio Pautasso, Georg Armstrong, Arif Sorathia, Jessica Crawley, Vijay R. Nadipelli, Bernard Rubin, Ryan Newhardt, and et al. 2023. "Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study" BioTech 12, no. 4: 62. https://doi.org/10.3390/biotech12040062
APA StyleJupe, E. R., Lushington, G. H., Purushothaman, M., Pautasso, F., Armstrong, G., Sorathia, A., Crawley, J., Nadipelli, V. R., Rubin, B., Newhardt, R., Munroe, M. E., & Adelman, B. (2023). Tracking of Systemic Lupus Erythematosus (SLE) Longitudinally Using Biosensor and Patient-Reported Data: A Report on the Fully Decentralized Mobile Study to Measure and Predict Lupus Disease Activity Using Digital Signals—The OASIS Study. BioTech, 12(4), 62. https://doi.org/10.3390/biotech12040062