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Abstract: (1) Objective: Systemic lupus erythematosus (SLE) is a complex disease involving immune
dysregulation, episodic flares, and poor quality of life (QOL). For a decentralized digital study of
SLE patients, machine learning was used to assess patient-reported outcomes (PROs), QOL, and
biometric data for predicting possible disease flares. (2) Methods: Participants were recruited from
the LupusCorner online community. Adults self-reporting an SLE diagnosis were consented and
given a mobile application to record patient profile (PP), PRO, and QOL metrics, and enlisted
participants received smartwatches for digital biometric monitoring. The resulting data were profiled
using feature selection and classification algorithms. (3) Results: 550 participants completed digital
surveys, 144 (26%) agreed to wear smartwatches, and medical records (MRs) were obtained for 68.
Mining of PP, PRO, QOL, and biometric data yielded a 26-feature model for classifying participants
according to MR-identified disease flare risk. ROC curves significantly distinguished true from
false positives (ten-fold cross-validation: p < 0.00023; five-fold: p < 0.00022). A 25-feature Bayesian
model enabled time-variant prediction of participant-reported possible flares (P(true) > 0.85, p < 0.001;
P(nonflare) > 0.83, p < 0.0001). (4) Conclusions: Regular profiling of patient well-being and biometric
activity may support proactive screening for circumstances warranting clinical assessment.

Keywords: SLE; digital; biosensor; patient-reported outcomes; signs and symptoms of flare; real-world
evidence

Key Contribution: Digital data collected by mobile apps and wearable sensors have the potential to
capture impactful information for improving patient health and QOL by informing proactive clinical
management of SLE.

1. Introduction

Chronic autoimmune conditions like systemic lupus erythematosus (SLE) create sig-
nificant challenges for both healthcare systems and patients. This is because they often
require frequent and unpredictable medical attention due to varying levels of disease
activity and volatility of clinical disease flares [1]. SLE is a complex and devastating disease
whose prevalence ranges from 73 to 100 cases per 100,000 reported from population-based
studies [1–4] up to as high as 406 per 100,000 in African American women [5]. Disease onset
often occurs in young adults, particularly in women of childbearing age and minorities.
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Given that disease onset often occurs in young adults, many SLE patients require consistent
medical care for decades of their lives. Morbidity and early mortality associated with
permanent organ damage driven by the frequency and severity of disease flares thus lead to
significant direct and indirect medical costs [1] with the estimated annual economic burden
at USD 31 billion. The annual treatment costs for patients suffering clinically diagnosed
severe SLE flares has been estimated to be as high as USD 49,754 per patient with inpatient,
outpatient, and pharmacy costs included [6].

The clinical manifestations of SLE are highly heterogenous and patients are classified,
rather than diagnosed, as no definitive diagnostic test for disease classification exists [7–9].
SLE disease activity varies significantly across individuals but on average each patient is at
risk of experiencing 1.8 flares per year. Clinical disease flares as well as the medications
used to treat flares, including steroids, increase the risk of permanent organ damage,
morbidity, and early mortality [10]. The way we currently treat and manage SLE is mostly
responsive. This is because the tools we have for assessing clinical disease activity and
flares, such as validated clinical instruments [11–17] that include the Safety of Estrogens
in Lupus Erythematosus National Assessment-Systemic Lupus Erythematosus Disease
Activity Index (SELENA-SLEDAI) for disease activity [13] and flare [18], as well as lab
tests [19,20] do not predict future symptoms that might need medical attention. Due to
the present and anticipated shortage of rheumatologists trained in using these validated
clinical tools, along with the time they require and their subjectivity, there is a growing
need for new methods of clinical assessment. Ideally, these new approaches should predict
the risk of future heightened clinical disease activity and flares.

The identification of biometric factors to reliably predict the probable risk of increased
clinical disease activity and/or flare is essential to enable proactive intervention to prevent
or reduce the severity of clinical disease flares and the resulting short- and long-term
organ damage. Intermittent clinical visits (every 3–6 months) for clinical evaluation and
laboratory testing alone do not accurately capture the impact of physiological, environ-
mental, and psychosocial factors related to the complexities of SLE. For several chronic
diseases, high-resolution digital data from wearable devices interfaced with smartphone
apps have been utilized to quantify physiological activities such as physical activity (walk-
ing/exercise), sleep duration and depth, heart rate variability, memory, and voice pattern
variation [21–27]. Several published papers have addressed the validity of the Withings
smartwatch device used in this study [28–31]. Patients also use apps to complete periodic
surveys to collect PROs and real-world evidence (RWE). Mounting evidence continues to
support the utility of wearables interfaced with mobile phone apps for monitoring symp-
toms and promoting positive self-management behaviors in chronic disease management.

The effectiveness of remote monitoring by mobile phone was originally demonstrated
for several chronic diseases such as diabetes [21,22], cardiovascular disease [23,24], SLE, [25],
Parkinson’s disease [26], and rheumatoid arthritis (RA) [27]. In a study of 82 RA and 73 axial
spondyloarthritis (axSpA) patients, physical activity was measured by activity trackers,
and the output was analyzed by machine learning. Patient-reported symptoms of possi-
ble disease flares were associated with less physical activity in both RA and axSpA [27].
Application of machine learning showed that changes in physical activity patterns were as-
sociated with patient-reported symptoms of possible disease flares with 96% sensitivity and
97% specificity. Clearly, the opportunity exists for machine learning models derived from
wearable physiological trackers and PROs to enable real-time active disease monitoring.

The collection of digital data from connected wearable devices and smartphone apps
offers a viable avenue in SLE to explore the complex and dynamic nature of clinical disease
phenotypes in real time. This fully decentralized longitudinal, observational study used
the LupusCorner Research App (LCR-App) interfaced with the Withings Steel HR to collect
biosensor-detected physiological digital signals (e.g., activity level, sleep duration and
depth, heart rate variability) and complete PRO survey data. We determine the potential of
this data to predict changes in self-reported symptoms of SLE disease activity and possible
clinical disease flares that warrant further clinical evaluation.
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2. Materials and Methods
2.1. Study Design

OASIS was conducted as a fully decentralized study. The overall study design was
informed by survey data and overall web/app traffic analyzed from the LupusCorner
community of 120,000 patients and their caregivers. Additionally, the LupusCorner Patient
Innovation Council provided feedback on a range of protocol decisions including wearable
device options, survey questions, and the frequency of events.

2.2. Recruitment

A study landing page was created, and a combination of digital marketing strategies
was used to recruit an interested and appropriate audience to LupusCorner. A Facebook
group of the same name with ~36,000 followers was also utilized to publicize the study.
Interested potential participants signed up by answering pre-screening questions on a web
app. If the participant passed pre-screening criteria, they subsequently had to meet the
following eligibility criteria: (a) female or male age 18 or older; (b) currently not enrolled
in another study; (c) able to understand the requirements of the study, provide written
informed consent, including consent for the use and disclosure of research-related health
information, and comply with the study data collection procedures. Participants were
excluded for the following reasons: (a) under 18 years old; (b) known to be pregnant;
(c) not able to understand the requirements of the study, provide written informed consent,
including consent for the use and disclosure of research-related health information, or
comply with the study data collection procedures.

2.3. Consent

Participants meeting screening and eligibility criteria interested in participating in
the study electronically reviewed and signed the WCG-IRB-approved study consent form.
Each participant was asked if they agreed to participate and acknowledged that they had
read and understood the consent form, as well as confirming that they were aware of
how to contact the study coordinator if they had any unanswered questions. Following
completion of the electronic consent form, each participant was supplied an electronic copy
of the signed form via e-mail.

2.4. LCR-App

The LCR-App is our HIPAA and CFR 21, Part 11-compliant platform for collecting and
processing research-grade digital signals, as well as survey and medication data from SLE
patients. The LCR-App was developed using the FDA MyStudies open-source codebase
to create a custom, branded implementation of this platform [32]. The original codebase
was developed by the FDA to ensure data integrity and security when conducting digital
research and clinical trials [32]. The LCR-App is available for both iOS and Android
and enables the collection of patient-reported outcomes (PROs) and the gathering of real-
world evidence (RWE) data. The LCR-App supports fully remote studies including digital
enrollment and administration of informed eConsent. The LCR-App also has the capability
to use on-phone sensors and features, such as the camera, to record biometrics and supports
the integration of commercial devices. In this study, the LCR-App was integrated with a
Withings wearable (discussed in detail below).

2.5. Study Tasks

Participants completing the consenting process were given the LCR-App. Figure 1
summarizes one-time and ongoing study tasks the participants completed. Using the app,
the participants completed a 20 min survey and 4 activities within 7 days of enrolling in
the study. In total, this one-time assessment which involved completing the following five
tasks: Patient Profile, Phone Verification, Location Sharing, Friend Referral, and Prescription
Image Capture (Figure 1, left panel) was estimated to take less than 30 min. Following
completion of these tasks, participants completed two 15 min surveys, biweekly, in the
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LCR-App concerning how their SLE, or general wellness, had affected their daily life in the
past two weeks.
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On a semi-weekly basis, the participants used their phone device camera to calculate
Heart Rate Variability by placing a finger on the device camera for two minutes. In weeks
where they did not complete the Heart Rate Variability test, participants were prompted to
provide a brief, optional (approximately one to two minute) ‘selfie’ video on how their life
was impacted by SLE in the last seven days (Figure 1, right panel).

2.6. Wearable Device

All active survey participants were offered the opportunity to receive a Withings Steel
HR smartwatch [33] free of charge. A total of 144 out of 550 participants (26%) consented
to wearing a smartwatch. Following the introductory survey, study qualification, and the
completion of the first non-introductory weekly assignment, interested participants were
shipped the smartwatch. If requested, our clinical coordinator assisted the participant in
downloading the LCR-App and pairing the smartwatch with the app.

The smartwatch collects user activity in fivemin increments through accelerometers [27,33,34]
and is Bluetooth equipped to communicate with most modern smartphones. It automat-
ically measures and records physical activity (steps/distance), heart rate, and sleep du-
ration/quality. It has a long-life battery that only requires recharging every 28 days and
is water resistant up to 50 m. Data collected by the watch is transferred to the paired
iOS/Android smartphone through the accompanying Health Mate app, which offers an
API function to exchange user’s collected data to the LCR-App. Figure 2 summarizes
the onboarding tasks and the frequency of data collection for ongoing tasks for partici-
pants wearing the smartwatch. Specific PROs were collected either weekly or bi-weekly
as shown. The SLE Quality of Life Questionnaire (SLEQOL) was utilized to evaluate the
participant’s disease-specific quality of life [35]. This SLE-specific standardized survey has
been widely utilized and validated against other more generic quality of life surveys [36].
Participants were asked to wear the smartwatch both day and night, keep the battery
charged as required, and allow access to the collected data in the LCR-App.
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2.7. Participant Medical Records Data Processing

Medical records were obtained and analyzed for 68 individual participants in the
study who were regular participants in OASIS data collection for at least 90 days. All
medical records were subjected to optical character recognition text keyword extraction via
the VietOCR program [37].

From these records, a visual inspection was made for a sample of six participants (all
represented by different medical providers) to identify keywords of plausible SLE relevance
that were recorded in a textually consistent manner and were tracked for more than one of
the six participants examined. All resulting search terms, the associated medical concept,
and the incidence (total number of detected instances, plus the number of patients with at
least one mention) were recorded and transcribed.

2.8. OASIS Participant Stratification Based on Medical Records

All medical record terms relating to the concept of ‘flare’, flares’, or ‘flaring’ were
automatically detected, counted, and manually scored as one (1) if the instance seemed
to reflect a direct observation or account of either a possible SLE flare or a common co-
pathology, one-half (0.5) if an unconfirmed implication that a flare might be occurring or
have occurred recently, or zero (0) if either a negative finding or a purely incidental mention.
From this analysis, an ordinate value for patient/participant possible flare vulnerability
was derived as a fraction of the total manual score divided by the total automated count.
These values were then converted into distinct qualitative classes by defining patients with
scores of less than 0.4 as having low possible flare-risk, those with scores greater than 0.6 as
having high possible flare risk, and those with intermediate value (between 0.4 and 0.6) as
being of intermediate or ambiguous possible flare risk.

The independent variables entail a non-uniform number of time-varying OASIS ob-
servations collected for each study participant. Given the prospective information value
contained in the time variation of these xi variables, the full OASIS dataset was recast as
a superset of the mean (x), variance (σ2), maximum (xmax), and range (xmax–xmin) of each
quantity. This large set of metrics was then objectively parsed using a diverse range of
feature selection techniques available in Weka [38] which, through experimentation, led
to the conclusion that a 10-parameter subset of variables derived using the Gain Ratio
Attribute algorithm fostered significant discrimination between patients with strong flaring
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risk versus those with little or no risk, while a semi-distinct 20-parameter set derived from
the ReliefF algorithm produced much better delineation of those patients with marginal
vulnerability. A summation set of 24 variables was aggregated from the 2 descriptor sets to
craft a composite descriptor basis sensitive to both the factors that distinguish high and
low possible flare vulnerability and those that characterize patients with intermediate risk.
Diverse classification algorithms (also available in Weka) were then explored to identify
schemes that produced strong levels of possible flare-risk delineation.

2.9. Analysis

Summary statistics were used to describe patient demographic and clinical charac-
teristics of the study population with descriptive statistical analyses conducted where
appropriate to determine mean, standard deviation, median, maximum, minimum, 95%
confidence intervals, and p-values, all computed in Google Sheets using built-in functions
for accuracy estimate for a single-variable expectation value (xi) or for a single difference
(xi–xj) resulting from two-variable comparison for locally normal distributions [39]. The
frequency and percentages of categorical metrics were determined from consideration of
explicit data.

2.10. Data Processing and Mining of Survey and Biometric Data

Artificial intelligence (AI) provides a wealth of tools available to perceive operationally
practical relationships in complex data, and numerous applications in healthcare are emerg-
ing [40,41]. Drawing on analytical capacities far greater than conventional statistics, AI
enables the assimilation of disparate data types toward the prediction of loosely associ-
ated phenomena. In patient health assessment, AI can conceivably enhance pathology
monitoring strategies or refine treatment schemes based on disparate information such as
patient profiles, periodic self-assessments of life quality and disease activity, and biometric
measurements.

In seeking to assimilate such disparate data, a key challenge entailed accommodating
substantial variations in density and regularity of different recorded variables, as arose
from imperfect compliance by participants in adhering to information collection protocols.
To address such variations, a variety of non-linear functions have been explored, which
tend to rely on numerically populating sparse regions between explicit reports [42–46]. To
this end, we implemented a paradigm that first entails the elimination of each data point
that is temporally isolated (i.e., for which there are no comparable data points available
within the two weeks immediately before or immediately after the point in question),
then de-prioritized all data corresponding to participants who did not sustain activity
in the study for at least three months (i.e., data for short-term/temporary participants is
not utilized for complex modeling). As is common practice in AI treatment of data with
non-homogeneous density, gaps within this reduced dataset were then closed by linear
interpolations between temporally proximal measurements [42].

The resulting data, spanning more than 200 parameters with potential influence on sev-
eral dozen pathological metrics (and with further possible extensions to terms mined from
medical records), were applied to inquiries regarding possible relationships between spe-
cific biometric and life-quality observations versus tangible health and pathology outcomes.
To illustrate how medical observations might relate to the level of patients/participants, the
medical record texts and the OASIS metrics were subjected to parsing and reconditioning.

3. Results
3.1. Participant Demographics

A total of 550 participants (self-reported SLE patients) consented and actively partici-
pated in the study. The majority (96%) of the participants were female, with an average age
of 44 (SD ± 14) years (Table 1). The high percentage of female participants is expected be-
cause SLE is nine times more frequent in women than men. The self-reported racial/ethnic
demographics for all participants and the 68 participants used in the modeling are shown
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in Table 1. Most participants reported being of European American (74.4%) descent fol-
lowed by African American (10.4%) and Hispanic ethnicity (5.6%) while the distribution
of the medical record subset was 85.3% European American with African Americans and
Hispanics at 5.9% and Native Americans at 2.9%.

Table 1. Demographic features of the OASIS study participants (n = 550) and MR subset (n = 68).

Sex (n, %) Female
Male

529 (96)
21(4)

68 (100)
0 (0)

Race/Ethnicity (n,%)

European American 409 (74.4) 58 (85.3)
African American 57 (10.4) 4 (5.9)

Hispanic 31 (5.6) 4 (5.9)
Asian 25 (4.5) 0 (0)
Other 12 (2.2) 0 (0)

Native American 11 (2.0) 2 (2.9)
Unknown 5 (0.9) 0 (0)

Age (Mean, SD) 44 (14) 44 (13)

Most participants (86%) reported receiving their SLE diagnosis from a rheumatol-
ogist, 9% reported diagnosis by a family practice doctor, and 5% reported diagnosis by
“other doctor.” Similarly, most participants (87%) reported receiving their SLE care from
a rheumatologist, 9% reported receiving care from a family practice doctor, 1% reported
“other doctor” and 3% reported receiving no medical care.

3.2. Patient-Reported Medication Usage

Figure 3 summarizes the results of patient-reported medications currently in use (A)
and medications that are no longer in use (B). Among all OASIS participants, the most
frequently used medication was antimalarials (74%) with 49% reporting using NSAIDs. A
total of 50% of participants reported no longer using steroids and 29% reported no longer
using immunosuppressants.
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3.3. Medical Records Data

Supplementary Table S1 shows the medically relevant keywords identified from
medical records whose presence could be productively quantified and used as search
terms as described in the methods. Also presented are the associated medical concept
and the incidence (total number of detected instances, plus the number of patients with
at least one mention) identified in the medical records of the sixty-eight long-duration
OASIS participants.

The outcomes of applying diverse classification algorithms to identify schemes that
produced strong levels of possible flare-risk delineation are shown in Table 2 and Figure 4.
From Table 2 we note that the final models typically achieve strong delineation of possible
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flare-resistant patients (both in terms of precision and recall), while recall of possible flare-
vulnerable patients is somewhat lagging, which implies that the model risk is missing some
participants whose profile is indicative of a possible flare risk.

Table 2. Performance statistics of Naïve Bayes classification of possible flare-vulnerable vs. ambigu-
ous vs. non-flaring patients, as predicted from OASIS metrics, at the levels of 10-fold and 5-fold
cross-validation.

10-Fold CV TP FP Precision Recall F-Measure ROC Class

Average

0.63 0.07 0.71 0.63 0.67 0.76 flares
0.67 0.18 0.55 0.67 0.60 0.67 ambiguous
0.80 0.18 0.84 0.80 0.82 0.74 non-flare
0.73 0.15 0.74 0.73 0.73 0.73

5-Fold CV TP FP Precision Recall F-measure ROC Class

Average

0.63 0.07 0.71 0.63 0.67 0.76 flares
0.56 0.18 0.50 0.56 0.53 0.56 ambiguous
0.80 0.24 0.80 0.80 0.80 0.69 non-flare
0.70 0.19 0.71 0.70 0.71 0.67

The corresponding coding labels and metrics applied in this analysis are listed in the Supplementary Materials.
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Figure 4. Confusion matrices for participants with possible flare history (F), versus ambiguous (A)
and likely non-flare (N), predicted via Naïve Bayes for varying levels of cross-validation. Each row
corresponds to a true medical class and reports how participants in that class are classified, whereas
columns correspond to how class members are sorted into predicted classes. Diagonal cells reflect
accurate predictions; off-diagonals are discordances.

However, from the results in Figure 4 we conclude that most false negative predictions
for possible flare-risk patients fall into the ‘ambiguous’ category which, from the perspective
of practical medicine, would be grounds for cautioning a patient of a possible impending
risk. Indeed, in Figure 4 we see very minimal instances of predictive disagreement, wherein
an at-risk patient is predicted to incur minimal chance of possible flares, or a patient with
no symptoms of possible flare reports is nonetheless predicted to be at elevated risk.

Table 2 suggests that the model is quite robust because only a slight decline in precision
and recall was observed when increasing the stringency of the cross-validation conditions
from 10-fold to 5-fold. Figure 4 takes this assertion further, in showing predictive per-
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formance as one goes to even more stringent conditions inherent in four-fold, three-fold,
and two-fold cross-validation. In fact, the very best aggregate predictivity is observed
when applying four-fold cross-validation constraints, although it is reasonable to assume
that this may be more accidental than fundamental (i.e., predictive performance is rarely
better for models based on 75% of available data than those generated from a basis of 80%).
Nonetheless, it is reasonable to assert good predictivity for the four-fold case, which implies
a model of reasonable generality and extensibility. The three-fold experiment retains a fair
capacity for distinguishing possible flare-susceptible patients from those with low risk, but
less sensitivity for assessing patients with intermediate risk. Even the two-fold experiment
appears to suggest some predictive value, especially given that the recorded predictions
yield only two outright clashes (two participants who had elevated medical vulnerability
to flaring but were predicted to be low risk); however, the small number of patients (three)
that are predicted to be possible flare vulnerable suggests that the predictive framework
is descending into a common pitfall for classification of unbalanced outcomes, whereby
the model sorts a disproportionate number of instances into larger classes, thus depleting
minority classes.

Beyond the capacity of a simple model to identify more possible flare-vulnerable
participants from within the survey participants, there is an equally tangible value in
identifying factors that lead to such differentiation. Our 24-metric descriptor set exhib-
ited conceptual diversity, with key factors including terms like the average biometrically
determined nocturnal wakefulness, variance in steroid usage, and average and maximal
values of Raynaud’s symptoms like finger color. Several other symptom-related metrics
were found to be important; however, the variances and ranges in those observations were
generally more important than their means or maxima.

It is finally worth noting that multiple factors relating to interpersonal support net-
works and responsibilities influenced the predictions. One factor that has surfaced in
multiple distinct models as an important metric for differentiating outcomes relates to
whether the participant had childcare responsibilities (children, caretaker.value). Those
participants responsible for the care of at least one other person were significantly more
likely to experience medically assessed possible SLE flares.

Table 3 shows the relative predictive accuracy for self-reported symptoms of possible
disease flares (TP-possible flare) and self-reported likely non-flares (TP-no) as a function of
7 different feature selection techniques (25 highest weighted features selected in all cases),
in the context of directed graph (Bayes), deep neural network (multi-layer perceptron),
and decision tree (LMT) methods. All prediction rates are derived from 10-fold cross-
validation analysis.

Table 3. Relative predictive accuracy for self-reported flares (TP-flare) and self-reported non-flares
(TP-no) as a function of seven different feature selection techniques (25 highest weighted features
selected in all cases), in the context of example graph (Bayes), deep neural (multi-layer perceptron) and
decision tree (LMT) methods. All prediction rates are derived from 10-fold cross-validation analyses.

Bayesian Network Multilayer Perceptron LMT

TP-flare TP-no TP-flare TP-no TP-flare TP-no
Correlation Feature Subset (CFS) 0.907 0.864 0.611 0.928 0.574 0.953

Classified Attribute (ClA) 0.907 0.703 0.352 0.892 0.296 0.961
Correlation Attribute (CoA) 0.907 0.792 0.630 0.928 0.556 0.946
Gain Ratio Attribute (GRA) 0.944 0.742 0.593 0.950 0.500 0.943

Information Gain Attribute (IGA) 0.907 0.792 0.648 0.939 0.574 0.957
One R Attribute (ORA) 0.593 0.932 0.593 0.921 0.537 0.961
Relief F Attribute (RFA) 0.944 0.713 0.630 0.939 0.500 0.953

Symmetry Uncertain Attribute (SUA) 0.926 0.778 0.611 0.953 0.556 0.961

Table 4 shows the relative capacity of Bayesian network models to accurately predict
self-reported symptoms of possible disease flares (TP-flare) and self-reported likely non-
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flares (TP-no) as a function of three different feature sets, as validated by five different
levels of cross-validation stringency.

Table 4. Relative capacity of Bayesian Network model to accurately predict self-reported flares
(TP-flare) and self-reported non-flare (TP-no) as a function of three different feature sets, as validated
by five different levels of cross-validation stringency.

Set 1: (CFS-25) Set 2 = {Set 1 + 12 Biometric Terms} Set 3 = {Set 2 Sub-Selected by Bayes-Steered CIA}

TP-flare TP-no TP-flare TP-no TP-flare TP-no
10-fold 0.907 0.864 0.907 0.860 0.944 0.875
5-fold 0.889 0.885 0.889 0.889 0.944 0.878
4-fold 0.907 0.867 0.907 0.864 0.944 0.839
3-fold 0.852 0.878 0.870 0.878 0.926 0.860
2-fold 0.796 0.885 0.852 0.878 0.852 0.871

The corresponding coding labels and metrics applied in this analysis are listed in the Supplementary Materials.

This 25-feature model aimed at identifying time-variant circumstances predicting
potentially medically relevant physical discomfort (as gauged by QOL symptoms of pos-
sible flare activity self-reports) yielded Bayesian networks that, over rigorous levels of
cross-validation, achieved useful true-positive and true-negative predictive accuracy for
symptoms of possible disease flare self-reports (P(true-possible flare) > 0.85; p < 0.001;
P(true-likely non-flare) > 0.83; p < 0.0001). The most informative terms were biometric sleep
data, the presence or absence of various epithelial lesions, and several QOL terms.

4. Discussion

Remote care of complex chronic or intermittent diseases such as SLE requires the
effective monitoring of a reasonable array of readily measurable patient health and physical
state parameters with some bearing on the disease state. Digital data from connected
wearable devices and smartphone apps offer a novel avenue to explore the complex and
dynamic nature of SLE clinical disease activity. Participants thus completed PRO surveys
in the LCR-App and had digital signals of their daily activities collected by the same app
interfaced with the wearable smartwatch. These non-medical metrics were augmented for
a subset of patients via digitized medical records data. Medical records data were collected
and digitized. Advanced data mining and machine learning were then applied to these data
to develop and validate digital predictive models for symptoms of SLE disease activity that
may indicate a clinical flare and require additional clinical assessment. Machine learning,
a subset of AI, includes algorithms to enable computers to detect patterns from large
complex datasets, learn important features, and use these patterns to make predictions
about previously unseen data. Digital phenotyping, defined as the “moment-by-moment
quantification of the individual-level human phenotype in situ using data from personal
digital devices” has emerged as a viable method to conceptualize such data to improve
health [47].

Regular profiling of patient self-reported well-being and biometric activity offers
promising screening potential to identify patients in need of additional clinical assessment.
Our data analysis determined that potentially predictive relationships are derivable for
anticipating specific patient metrics that predispose patients to suffering symptoms of
a possible SLE flare (Table 2). Specifically, five-fold and ten-fold cross-validated models
aimed at predicting flare severity yield statistically significant results. These models
provide insight into the prospective predictive capacity derived from aspects of patient
demographics, medical histories, biometric data, and self-reported QOL metrics.

A limitation of the current study arose from the fact that much of the data directly
relating to the characterization of the SLE pathology state was self-reported, which is
not guaranteed to align with the rigorous pathological assessments conducted by trained
medical professionals. For a subset of 68 participants, medical records were provided in
conjunction with participant visits to, and communications with, care facilities and medical
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personnel. Unfortunately, these interactions occurred sporadically, without controlled
correspondence to regularly collected QOL and biometric data. In addition, while each
record is dated, many records contain non-specific observations that lack temporal precision.
For example, there are frequent instances of non-specific phrases such as “the patient has
been experiencing. . .”, without specific time-stamp metadata that could permit causality
inferences within the context of the regularly collected QOL and biometric data. Encoding
temporal causation (i.e., prediction of observables such as self-reported symptoms of
possible disease flares) poses challenges because of data sparsity such as variables that
are not measured every day, and concurrent measurements of independent variables (e.g.,
survey inputs or biometric records) are frequently missing for days on which dependent
variables (i.e., symptoms of possible disease flare self-reports) are recorded. Finally, many
participants displayed greater dedication to one aspect of data collection (i.e., surveys vs.
biometrics) while letting other aspects lapse. On a practical level, the result of inconsistent
participation is sparse, non-uniform data wherein factors that might influence disease
activity, or reflect favorable treatment profiles, are not guaranteed to be reported in close
temporal alignment with those trends.

A second factor that extenuates the concern of data sparsity is the relatively small
sample size which, in the perspective of the relative heterogeneity of SLE, produces a sce-
nario wherein specific relationships between observable metrics and disease circumstances
may not be fully robust (i.e., suggestive trends may actually be statistical accidents). In this
light, it is important to view this study as a preliminary basis for constructing longer-term
longitudinal studies that can better validate proposed relationships, as well as expose
novel dependencies that were not evinced from this initial cohort. As preparation for such
refinements, our initial exploration deliberately introduced a metric basis that covered a
diverse range of different prospective data types and sources. Refined studies will likely
lead to judicious triage of some preliminary metrics but will be better positioned to avoid
the ab initio omission of important considerations.

Fortunately, to a reasonable extent, artificial intelligence may circumvent deficiencies
such as data sparsity through various schemes such as interpolative methods that determine
how independent measurements at points proximal to the predicted observable event
may influence the dependent observation. While a variety of non-linear functions have
been explored for populating sparse regions between explicit reports [33–37], we used
simple linear extrapolation to estimate the values of independent parameters at the time of
measurement of the predictable observable, based on any records of independent variables
within (but not exceeding) two weeks of the dependent observation.

To enhance the medical diagnostic rigor of the OASIS model, a fuller and more com-
prehensive data collection effort will be required to bridge areas of sparseness, and to
contextualize specific medical interventions rigorously and temporally within the QOL and
biometric input flow. Indeed, the collection of participant medical records is ongoing with
the goal of adding more clinical data into this unique digital dataset to further develop, re-
fine, and validate both the protocols for information-rich data acquisition and the enhanced
predictive models that may arise. In particular, in the future, the team aims to replace
the static QOL survey with an adaptive, generative conversational interface [48]. Tailored
to employ medically effective communication strategies such as those encoded within
Swanson’s Theory of Caring [49], the interface will procure more accurate and temporally
fine-grained information from participants, with three overarching synergistic goals: (a) to
better understand patient-specific metrics that may relate to transitions between stages of
health and pathology; (b) to compile trends across the full participant cohort to identify
cross-cutting metrics from (a) that appear in a significant fraction of cases, thus potentially
demarcating a diagnostically relevant subset, and (c) to use information from (a) and (b) to
devise ‘trigger’ conditions under which the input acquired from a given participant at a
given time appears to be sufficiently problematic as to prompt automated contact with a
live medical professional to directly assess the participant.
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Overall, the results from the current pilot study strongly suggest that regular profiling
of self-reported well-being and biometric activity has the potential to identify patients at risk
of symptoms of possible imminent increased disease activity and flare, thus indicating the
necessity for clinical assessment and/or intervention. In conjunction with a more adaptive
methodology for acquiring reliable and temporally interpretable medical assessments with
which to better train and validate our predictive models, we are confident that this research
will lay the groundwork for a shift in SLE management paradigms in clinical practice,
whereby clinical phenotypes may be derived from digital signals collected by mobile apps
and wearable sensors. This novel, digital biomarker platform not only captures data but
may also offer impactful information for improving patient health and quality of life.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biotech12040062/s1, Table S1: Text search term instances and
frequencies in the medical records of 68 long-duration OASIS participants; Text S1: Corresponding
coding labels and metrics for Table 2; Text S2: Corresponding coding labels and metrics for Table 4.
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