Polysaccharides and Composite Adsorbents in the Spotlight for Effective Agrochemical Residue Removal from Water
Abstract
:1. Introduction
2. Agrochemical Residues in Water: Environmental Impact and Challenges
- Soil leaching: Pesticides penetrate soil layers, contaminating groundwater, particularly in regions with high irrigation or rainfall.
- Surface runoff: Rainfall or irrigation transports pesticides from agricultural lands into nearby rivers, lakes, and streams.
- Atmospheric deposition: Pesticides dispersed into the air are redeposited into water bodies and soil.
- Direct application: Pesticides directly applied to water bodies further contaminate aquatic ecosystems.
- Ecological transfer: These chemicals accumulate within organisms and magnify as they move up the food chain, with potential widespread ecological consequences.
3. Mechanisms and Interactions to Remove Agrochemicals from Water
4. Polysaccharides as Adsorbents: Recent Developments
4.1. Chitosan
4.2. Alginate
4.3. Cellulose
4.4. Other Unusual Polysaccharides as Adsorbents
5. Composite Adsorbents: Synergistic Approaches
5.1. Graphene-Based Composites
5.2. Carbon Nanotube Composites
5.3. Nanocomposites and Hybrid Materials
5.4. Metal Oxide Composites
6. Technological Advances and Innovations in Agrochemical Removal
6.1. Nanotechnology in Adsorbent Development
6.2. Advanced Functionalization Techniques
6.3. Three-Dimensionally Printing Adsorbents
6.4. Machine Learning and Computational Chemistry in Adsorbent Design
7. Challenges and Opportunities for Future Development
7.1. Scalability and Industrial Application
7.2. Regeneration and Reusability
7.3. Real-World Applications and Environmental Conditions
7.4. Cost and Economic Viability
7.5. Interdisciplinary Collaboration and Innovation
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar Yadav, P.; Kumar Nigam, K.; Kumar Singh, S.; Kumar, A.; Swarupa Tripathy, S. Bioremediation of Pesticides. In Bioremediation for Environmental Pollutants; Bentham Science Publishers: Sharjah, United Arab Emirates, 2023; pp. 97–117. [Google Scholar]
- Khoo, P.S.; Ilyas, R.A.; Aiman, A.; Wei, J.S.; Yousef, A.; Anis, N.; Zuhri, M.Y.M.; Abral, H.; Sari, N.H.; Syafri, E.; et al. Revolutionizing Wastewater Treatment: A Review on the Role of Advanced Functional Bio-Based Hydrogels. Int. J. Biol. Macromol. 2024, 278, 135088. [Google Scholar] [CrossRef]
- Nwabike Amitaye, A.; Elemike, E.E.; Akpeji, H.B.; Amitaye, E.; Hossain, I.; Mbonu, J.I.; Aziza, A.E. Chitosan: A Sustainable Biobased Material for Diverse Applications. J. Environ. Chem. Eng. 2024, 12, 113208. [Google Scholar] [CrossRef]
- Atheena, P.V.; Basawa, R.; Raval, R. Advancing Wastewater Treatment: Chitin and Derivatives for PPCP Contaminant Mitigation. Polym. Bull. 2024, 81, 14307–14336. [Google Scholar] [CrossRef]
- Fakhri, V.; Hamzehlouy, A.; Janmaleki Dehchani, A.; Moradi, E.; Tavakoli Dare, M.; Jafari, A.; Khonakdar, H.A. Green Solutions for Blue Waters: Using Biomaterials to Purify Water from Microplastics and Nanoplastics. J. Water Process Eng. 2024, 65, 105854. [Google Scholar] [CrossRef]
- Rajan, S.; Parween, M.; Raju, N.J. Pesticides in the Hydrogeo-Environment: A Review of Contaminant Prevalence, Source and Mobilisation in India. Environ. Geochem. Health 2023, 45, 5481–5513. [Google Scholar] [CrossRef]
- Srivastav, A.L. Chemical Fertilizers and Pesticides: Role in Groundwater Contamination. In Agrochemicals Detection, Treatment and Remediation: Pesticides and Chemical Fertilizers; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects and Treatment Processes. Water 2021, 13, 3258. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide Pesticide Usage and Its Impacts on Ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Khan, S.H.; Pathak, B. Zinc Oxide Based Photocatalytic Degradation of Persistent Pesticides: A Comprehensive Review. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100290. [Google Scholar] [CrossRef]
- Leonard, R.A. Movement of Pesticides into Surface Waters. In Pesticides in the Soil Environment: Processes, Impacts, and Modeling; Soil Science Society of America: Madison, WI, USA, 2018. [Google Scholar]
- Tang, F.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of Pesticide Pollution at the Global Scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Khalifa, S.A.M.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.A.; Algethami, A.F.; Musharraf, S.G.; AlAjmi, M.F.; Zhao, C.; Masry, S.H.D.; Abdel-Daim, M.M.; et al. Overview of Bee Pollination and Its Economic Value for Crop Production. Insects 2021, 12, 688. [Google Scholar] [CrossRef]
- Tschoeke, P.H.; Oliveira, E.E.; Dalcin, M.S.; Silveira-Tschoeke, M.C.A.C.; Sarmento, R.A.; Santos, G.R. Botanical and synthetic pesticides alter the flower visitation rates of pollinator bees in Neotropical melon fields. Environ. Pollut. 2019, 251, 591–599. [Google Scholar] [CrossRef]
- Ghasemnejad-Berenji, M.; Nemati, M.; Pourheydar, B.; Gholizadeh, S.; Karimipour, M.; Mohebbi, I.; Jafari, A. Neurological effects of long-term exposure to low doses of pesticides mixtures in male rats: Biochemical, histological, and neurobehavioral evaluations. Chemosphere 2021, 264, 128464. [Google Scholar] [CrossRef]
- Warren-Vega, W.M.; Campos-Rodríguez, A.; Zárate-Guzmán, A.I.; Romero-Cano, L.A. A Current Review of Water Pollutants in American Continent: Trends and Perspectives in Detection, Health Risks, and Treatment Technologies. Int. J. Environ. Res. Public Health 2023, 20, 4499. [Google Scholar] [CrossRef]
- Gamage, V.; Nishshanka, U.; Thiripuranathar, G.; Priyantha, N.; Gunewardene, S.; Jayanetti, S. Pesticides Detection by Nanothechnology-Based Sensors; Elsevier: Amsterdam, The Netherlands, 2024; pp. 215–236. [Google Scholar] [CrossRef]
- Nwinyimagu, A.J.; Eyo, J.E.; Nwonumara, G.N. Distribution and Ecological Risk Assessment of Herbicide Residues in Water, Sediment and Fish from Anyim River, Ebonyi State, Nigeria. Environ. Toxicol. Pharmacol. 2023, 100, 104131. [Google Scholar] [CrossRef]
- Elizarragaz-de la Rosa, D.; Guzmán-Mar, J.L.; Salas-Espinosa, E.A.; Heras-Ramírez, M.E.; Hinojosa-Reyes, L.; Gaspar-Ramírez, O.; Ruíz-Ruíz, E.J. Multi-Residual Determination of Multi-Class Pesticides in Groundwater by Direct Immersion Solid-Phase Microextraction with Gas Chromatography-Selected Ion Monitoring Mass Spectrometry (GC–MS/SIM) Detection. Water Air Soil Pollut. 2022, 233, 76. [Google Scholar] [CrossRef]
- Jorfi, S.; Rahim, F.; Rahmani, A.; Jaafarzadeh, N.; Ghaedrahmat, Z.; Almasi, H.; Zahedi, A. Herbicide Residues in Water Sources: A Scoping. Health Eng. 2021, 8, 126–133. [Google Scholar] [CrossRef]
- Topare, N.S.; Wadgaonkar, V.S. A review on application of low-cost adsorbents for heavy metals removal from wastewater. Mater. Today Proc. 2023, 77, 8–18. [Google Scholar] [CrossRef]
- Chen, Y.-d.; Duan, X.; Zhou, X.; Wang, R.; Wang, S.; Ren, N.; Ho, S.-H. Advanced oxidation processes for water disinfection: Features, mechanisms and prospects. Chem. Eng. J. 2021, 409, 128207. [Google Scholar] [CrossRef]
- Leifert, D.; Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Ed. 2020, 59, 74–108. [Google Scholar] [CrossRef]
- Yang, Z.C.; Qian, J.S.; Shan, C.; Li, H.C.; Yin, Y.Y.; Pan, B.C. Toward Selective Oxidation of Contaminants in Aqueous Systems. Environ. Sci. Technol. 2021, 55, 14494–14514. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.L.; Robinson, B.; Ohashi, A.; Ozaki, N.; Kindaichi, T.; Farraji, H.; Vakili, M. Pesticides in Aquatic Environments and Their Removal by Adsorption Methods. Chemosphere 2020, 253, 126646. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G.; Adelodun, A.A. Recent Advances on the Adsorption of Herbicides and Pesticides from Polluted Waters: Performance Evaluation via Physical Attributes. J. Ind. Eng. Chem. 2020, 93, 117–137. [Google Scholar] [CrossRef]
- Lozano-Montante, J.; Garza-Hernández, R.; Sánchez, M.; Moran-Palacio, E.; Niño-Medina, G.; Almada, M.; Hernández-García, L. Chitosan Functionalized with 2-Methylpyridine Cross-Linker Cellulose to Adsorb Pb(II) from Water. Polymers 2021, 13, 3166. [Google Scholar] [CrossRef]
- Nam, K.; Kim, J.Y. Persistence and Bioavailability of Hydrophobic Organic Compounds in the Environment. Geosci. J. 2002, 6, 13–21. [Google Scholar] [CrossRef]
- Afrin, M.F.; Kabir, E.; Noyon, M.R.O.K.; Akter, N.; Sultana, T.; Un Nayeem, J.; Uzzaman, M. Spectrochemical, Biological, and Toxicological Studies of DDT, DDD, and DDE: An in-Silico Approach. Inf. Med. Unlocked 2023, 39, 101254. [Google Scholar] [CrossRef]
- Thakur, M.; Pathania, D. Environmental Fate of Organic Pollutants and Effect on Human Health. In Abatement of Environmental Pollutants: Trends and Strategies; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Hoque, M.; Alam, M.; Wang, S.; Zaman, J.U.; Rahman, M.S.; Johir, M.A.H.; Tian, L.; Choi, J.G.; Ahmed, M.B.; Yoon, M.H. Interaction Chemistry of Functional Groups for Natural Biopolymer-Based Hydrogel Design. Mater. Sci. Eng. R Rep. 2023, 156, 5249. [Google Scholar] [CrossRef]
- Cui, C.; Gao, L.; Dai, L.; Ji, N.; Qin, Y.; Shi, R.; Qiao, Y.; Xiong, L.; Sun, Q. Hydrophobic Biopolymer-Based Films: Strategies, Properties, and Food Applications. Food Eng. Rev. 2023, 15, 360–379. [Google Scholar] [CrossRef]
- Cherian, R.M.; Kargarzadeh, H.; Rosli, N.A.; Jose, C.; Thomas, S. Tuning the Hydrophilic/Hydrophobic Behavior of Biopolymers: Surface Modifications. In Handbook of Biopolymers; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar]
- Kandasamy, G.; Manisekaran, R.; Arthikala, M.K. Chitosan Nanoplatforms in Agriculture for Multi-Potential Applications—Adsorption/Removal, Sustained Release, Sensing of Pollutants & Delivering Their Alternatives—A Comprehensive Review. Environ. Res. 2024, 240, 117447. [Google Scholar]
- Biondo, F.; Baldassarre, F.; Vergaro, V.; Ciccarella, G. Controlled Biocide Release from Smart Delivery Systems: Materials Engineering to Tune Release Rate, Biointeractions, and Responsiveness. In Nanotechnology-Based Sustainable Alternatives for the Management of Plant Diseases; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Carneiro, R.T.A.; Taketa, T.B.; Gomes Neto, R.J.; Oliveira, J.L.; Campos, E.V.R.; de Moraes, M.A.; da Silva, C.M.G.; Beppu, M.M.; Fraceto, L.F. Removal of Glyphosate Herbicide from Water Using Biopolymer Membranes. J. Environ. Manag. 2015, 151, 353–360. [Google Scholar] [CrossRef]
- Samuel, L.; Wang, R.; Dubois, G.; Allen, R.; Wojtecki, R.; La, Y.H. Amine-Functionalized, Multi-Arm Star Polymers: A Novel Platform for Removing Glyphosate from Aqueous Media. Chemosphere 2017, 169, 437–442. [Google Scholar] [CrossRef]
- Ramírez-Gómez, J.A.; Illescas, J.; Díaz-Nava, M.d.C.; Muro-Urista, C.; Martínez-Gallegos, S.; Rivera, E. Synthesis and Characterization of Clay Polymer Nanocomposites of P(4VP-Co-AAm) and Their Application for the Removal of Atrazine. Polymers 2019, 11, 721. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, B.; Shen, J.; Yan, P.; Kang, J.; Wang, W.; Bi, L.; Zhu, X.; Li, Y.; Wang, S.; et al. Preparation of Novel N-Doped Biochar and Its High Adsorption Capacity for Atrazine Based on Π–Π Electron Donor-Acceptor Interaction. SSRN Electron. J. 2022, 432, 128757. [Google Scholar] [CrossRef]
- Marlatt, V.L.; Martyniuk, C.J. Biological Responses to Phenylurea Herbicides in Fish and Amphibians: New Directions for Characterizing Mechanisms of Toxicity. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol. 2017, 194, 9–21. [Google Scholar] [CrossRef]
- Lu, G.H.; Hou, K.K.; Liu, J.C. Sorption and Desorption of Selected Phenyl Urea Herbicides in Laboratory Water-Sediment Systems. IOP Conf. Ser. Earth Environ. Sci. 2018, 191, 012021. [Google Scholar] [CrossRef]
- Benitez, F.J.; Acero, J.L.; Real, F.J.; Garcia, C. Removal of Phenyl-Urea Herbicides in Ultrapure Water by Ultrafiltration and Nanofiltration Processes. Water Res. 2009, 43, 267–276. [Google Scholar] [CrossRef]
- García-Hernández, E.; Palomino-Asencio, L.; Catarino-Centeno, R.; Nochebuena, J.; Cortés-Arriagada, D.; Chigo-Anota, E. In Silico Study of the Adsorption of Acetamiprid on Functionalized Carbon Nanocones. Phys. E Low Dimens. Syst. Nanostruct. 2021, 128, 114516. [Google Scholar] [CrossRef]
- Srikhaow, A.; Chaengsawang, W.; Kiatsiriroat, T.; Kajitvichyanukul, P.; Smith, S.M. Adsorption Kinetics of Imidacloprid, Acetamiprid and Methomyl Pesticides in Aqueous Solution onto Eucalyptus Woodchip Derived Biochar. Minerals 2022, 12, 528. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, M.; Cao, N.; Zhu, J.; Ji, J.; Liu, D.; Gao, R.; Pang, S.; Ma, Y. In Situ Boron-Doped Cellulose-Based Biochar for Effective Removal of Neonicotinoids: Adsorption Mechanism and Safety Evaluation. Int. J. Biol. Macromol. 2023, 237, 124186. [Google Scholar] [CrossRef]
- Mo, Q.; Yang, X.; Wang, J.; Xu, H.; Li, W.; Fan, Q.; Gao, S.; Yang, W.; Gao, C.; Liao, D.; et al. Adsorption Mechanism of Two Pesticides on Polyethylene and Polypropylene Microplastics: DFT Calculations and Particle Size Effects. Environ. Pollut. 2021, 291, 118120. [Google Scholar] [CrossRef]
- Bromley, L.; Videla, P.E.; Cartagena-Brigantty, J.L.; Batista, V.S.; Velarde, L. Binding and Orientation of Carbamate Pesticides on Silica Surfaces. J. Phys. Chem. C 2023, 127, 8399–8410. [Google Scholar] [CrossRef]
- de Oliveira, R.; Sant’Ana, A.C. Featured Properties of the Adsorption of Tebuconazole on Ag Surface Characterized through SERS Spectroscopy. J Braz. Chem. Soc. 2023, 34, 1309–1316. [Google Scholar] [CrossRef]
- Deng, Y.; Feng, X.; Yang, D.; Yi, C.; Qiu, X. π-π Stacking of the Aromatic Groups in Lignosulfonates. Bioresources 2012, 7, 1145–1156. [Google Scholar] [CrossRef]
- Da Costa, L.M.; Stoyanov, S.R.; Gusarov, S.; Tan, X.; Gray, M.R.; Stryker, J.M.; Tykwinski, R.; Carneiro, J.W.d.M.; Seidl, P.R.; Kovalenko, A. Density Functional Theory Investigation of the Contributions of π-π Stacking and Hydrogen-Bonding Interactions to the Aggregation of Model Asphaltene Compounds. Energy Fuels 2012, 26, 2727–2735. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N. Recent Modifications of Chitosan for Adsorption Applications: A Critical and Systematic Review. Mar. Drugs 2015, 13, 312–337. [Google Scholar] [CrossRef]
- Nawaz, S.; Tabassum, A.; Muslim, S.; Nasreen, T.; Baradoke, A.; Kim, T.H.; Boczkaj, G.; Jesionowski, T.; Bilal, M. Effective Assessment of Biopolymer-Based Multifunctional Sorbents for the Remediation of Environmentally Hazardous Contaminants from Aqueous Solutions. Chemosphere 2023, 329, 138552. [Google Scholar] [CrossRef]
- Ilango, A.K.; Liang, Y. Surface Modifications of Biopolymers for Removal of Per- and Polyfluoroalkyl Substances from Water: Current Research and Perspectives. Water Res. 2024, 249, 120927. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Wang, P.; Zhang, Y.; Tian, Z. High-Efficiency Removal of Pyrethroids Using a Redesigned Odorant Binding Protein. J. Hazard. Mater. 2024, 463, 132856. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Hameed, B.H.; Hummadi, E.H. Review on Recent Progress in Chitosan/Chitin-Carbonaceous Material Composites for the Adsorption of Water Pollutants. Carbohydr. Polym. 2020, 247, 116690. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Starch, Cellulose, Pectin, Gum, Alginate, Chitin and Chitosan Derived (Nano)Materials for Sustainable Water Treatment: A Review. Carbohydr. Polym. 2021, 251, 116986. [Google Scholar] [CrossRef]
- Mukherjee, D.; Dewanjee, A.; Ghosh, S.; Majumdar, S. Development of Graphene Oxide/Chitosan Composite Membrane on Ceramic Support for Atrazine Remediation by MBR Process. Environ. Sci. Pollut. Res. 2018, 25, 33334–33352. [Google Scholar] [CrossRef]
- Li, S.; Qu, L.M.; Wang, J.F.; Ran, X.Q.; Niu, X. Acetylcholinesterase Based RGO-TEPA-Copper Nanowires Biosensor for Detecting Malathion. Int. J. Electrochem. Sci. 2020, 15, 505–514. [Google Scholar] [CrossRef]
- Gkika, D.A.; Mitropoulos, A.C.; Kyzas, G.Z. Why Reuse Spent Adsorbents? The Latest Challenges and Limitations. Sci. Total Environ. 2022, 822, 153612. [Google Scholar] [CrossRef]
- Nicolle, L.; Journot, C.M.A.; Gerber-Lemaire, S. Chitosan Functionalization: Covalent and Non-Covalent Interactions and Their Characterization. Polymers 2021, 13, 4118. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, S.; Peng, Y.; Fang, X.; Zhao, X.; Yu, G.; Xie, Y.; Li, J.; Feng, Y. Ca2+-Triggered Interaction of Amphiphilic Alginate and Soil to Facilitate Agrochemical Adsorption. J. Polym. Environ. 2023, 31, 1628–1641. [Google Scholar] [CrossRef]
- Subash, A.; Naebe, M.; Wang, X.; Kandasubramanian, B. Biopolymer—A Sustainable and Efficacious Material System for Effluent Removal. J. Hazard. Mater. 2023, 443, 130168. [Google Scholar] [CrossRef]
- Trejo-Espinosa, M.d.J. Evaluation of the Adsorption Capacity of Glyphosate in a Microbial Cellulose Composite. J.-Agrar. Nat. Resour. Econ. 2023, 7, 7–15. [Google Scholar] [CrossRef]
- Rana, A.K.; Mishra, Y.K.; Gupta, V.K.; Thakur, V.K. Sustainable Materials in the Removal of Pesticides from Contaminated Water: Perspective on Macro to Nanoscale Cellulose. Sci. Total Environ. 2021, 797, 149129. [Google Scholar] [CrossRef]
- Acharya, S.; Liyanage, S.; Abidi, N.; Parajuli, P.; Rumi, S.S.; Shamshina, J.L. Utilization of Cellulose to Its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications. Polymers 2021, 13, 4344. [Google Scholar] [CrossRef]
- Lee, K.; Jeon, Y.; Kim, D.; Kwon, G.; Kim, U.J.; Hong, C.; Choung, J.W.; You, J. Double-Crosslinked Cellulose Nanofiber Based Bioplastic Films for Practical Applications. Carbohydr. Polym. 2021, 260, 117817. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, H.; Pan, Y.; Wang, L. Novel Composite Adsorbent Consisting of Dissolved Cellulose Fiber/Microfibrillated Cellulose for Dye Removal from Aqueous Solution. ACS Sustain. Chem. Eng. 2018, 6, 6994–7002. [Google Scholar] [CrossRef]
- Baigorria, E.; Sanchez, L.M.; Primiano, R.P.O.; Alvarez, V.A. Recent Trends in Eco-Friendly Materials for Agrochemical Pollutants Removal: Polysaccharide-Based Nanocomposite Materials. In Biobased Materials: Recent Developments and Industrial Applications; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Mohammad, N.; Atassi, Y.; Tally, M. Synthesis and Swelling Behavior of Metal-Chelating Superabsorbent Hydrogels Based on Sodium Alginate-g-Poly(AMPS-Co-AA-Co-AM) Obtained under Microwave Irradiation. Polym. Bull. 2017, 74, 4453–4481. [Google Scholar] [CrossRef]
- Khoo, P.S.; Ilyas, R.A.; Uda, M.N.A.; Hassan, S.A.; Nordin, A.H.; Norfarhana, A.S.; Ab Hamid, N.H.; Rani, M.S.A.; Abral, H.; Norrrahim, M.N.F.; et al. Starch-Based Polymer Materials as Advanced Adsorbents for Sustainable Water Treatment: Current Status, Challenges, and Future Perspectives. Polymers 2023, 15, 3114. [Google Scholar] [CrossRef] [PubMed]
- Lara-Espinoza, C.; Carvajal-Millán, E.; Balandrán-Quintana, R.; López-Franco, Y.; Rascón-Chu, A. Pectin and Pectin-Based Composite Materials: Beyond Food Texture. Molecules 2018, 23, 942. [Google Scholar] [CrossRef] [PubMed]
- Vinayagam, V.; Murugan, S.; Kumaresan, R.; Narayanan, M.; Sillanpää, M.; Vo, D.V.N.; Kushwaha, O.S. Protein Nanofibrils as Versatile and Sustainable Adsorbents for an Effective Removal of Heavy Metals from Wastewater: A Review. Chemosphere 2022, 301, 134635. [Google Scholar] [CrossRef]
- Khan, E.; Ozaltin, K.; Bernal-Ballen, A.; Di Martino, A. Renewable Mixed Hydrogels Based on Polysaccharide and Protein for Release of Agrochemicals and Soil Conditioning. Sustainability 2021, 13, 10439. [Google Scholar] [CrossRef]
- Russo, T.; Fucile, P.; Giacometti, R.; Sannino, F. Sustainable Removal of Contaminants by Biopolymers: A Novel Approach for Wastewater Treatment. Current State and Future Perspectives. Processes 2021, 9, 719. [Google Scholar] [CrossRef]
- Mojica-Sánchez, J.P.; Langarica-Rivera, V.M.; Pineda-Urbina, K.; Nochebuena, J.; Jayaprakash, G.K.; Sandoval, Z.G. Adsorption of Glyphosate on Graphene and Functionalized Graphenes: A DFT Study. Comput. Theor. Chem. 2022, 1215, 113840. [Google Scholar] [CrossRef]
- da Silva Alves, D.C.; Healy, B.; Yu, T.; Breslin, C.B. Graphene-Based Materials Immobilized within Chitosan: Applications as Adsorbents for the Removal of Aquatic Pollutants. Materials 2021, 14, 3655. [Google Scholar] [CrossRef]
- Hoviatdoost, A.; Naderi, M.; Ghazitabar, A.; Gholami, F. Fabrication of High-Performance Ultralight and Reusable Graphene Aerogel/Cellulose Fibers Nanocomposite to Remove Organic Pollutants. Mater. Today Commun. 2023, 34, 105077. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, K.; Sun, W.; Fu, Z.; Ahmad, H.; Fan, M.; Gao, H. Revealing the Adsorption Energy and Interface Characteristic of Cellulose-Graphene Oxide Composites by First-Principles Calculations. Compos. Sci. Technol. 2021, 218, 109209. [Google Scholar] [CrossRef]
- Wang, G.; Li, F.; Li, L.; Zhao, J.; Ruan, X.; Ding, W.; Cai, J.; Lu, A.; Pei, Y. In Situ Synthesis of Ag-Fe3O4 Nanoparticles Immobilized on Pure Cellulose Microspheres as Recyclable and Biodegradable Catalysts. ACS Omega 2020, 5, 8839–8846. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Bilal, M.; Iqbal, H.M.N. Carbon-Based Nanomaterials with Multipurpose Attributes for Water Treatment: Greening the 21st-Century Nanostructure Materials Deployment. Biomater. Polym. Horiz. 2021, 1, 48–58. [Google Scholar] [CrossRef]
- Agasti, N.; Gautam, V.; Priyanka; Manju; Pandey, N.; Genwa, M.; Meena, P.L.; Tandon, S.; Samantaray, R. Carbon Nanotube Based Magnetic Composites for Decontamination of Organic Chemical Pollutants in Water: A Review. Appl. Surf. Sci. Adv. 2022, 10, 100270. [Google Scholar] [CrossRef]
- Haq, A.U.; Saeed, M.; Usman, M.; Muneer, M.; Adeel, S.; Abbas, S.; Iqbal, A. Removal of Butachlor from Aqueous Solution Using Cantaloupe Seed Shell Powder: Kinetic, Equilibrium and Thermodynamic Studies. Int. J. Environ. Sci. Technol. 2018, 16, 6029–6042. [Google Scholar] [CrossRef]
- Tovar Jimenez, G.I.; Valverde, A.; Mendes-Felipe, C.; Wuttke, S.; Fidalgo-Marijuan, A.; Larrea, E.S.; Lezama, L.; Zheng, F.; Reguera, J.; Lanceros-Méndez, S.; et al. Chitin/Metal-Organic Framework Composites as Wide-Range Adsorbent. ChemSusChem 2021, 14, 2892–2901. [Google Scholar] [CrossRef]
- Bej, S.; Sarma, H.; Ghosh, M.; Banerjee, P. Metal-Organic Frameworks/Cellulose Hybrids with Their Modern Technological Implementation towards Water Treatment. Environ. Pollut. 2023, 323, 121278. [Google Scholar] [CrossRef]
- Rivadeneira-Mendoza, B.F.; Estrela Filho, O.A.; Fernández-Andrade, K.J.; Curbelo, F.; Fred da Silva, F.; Luque, R.; Rodríguez-Díaz, J.M. MOF@biomass Hybrids: Trends on Advanced Functional Materials for Adsorption. Environ. Res. 2023, 216, 114424. [Google Scholar] [CrossRef]
- Farhan, A.; Rashid, E.U.; Waqas, M.; Ahmad, H.; Nawaz, S.; Munawar, J.; Rahdar, A.; Varjani, S.; Bilal, M. Graphene-Based Nanocomposites and Nanohybrids for the Abatement of Agro-Industrial Pollutants in Aqueous Environments. Environ. Pollut. 2022, 308, 119557. [Google Scholar] [CrossRef]
- Truong, H.B.; Ike, I.A.; Ok, Y.S.; Hur, J. Polyethyleneimine Modification of Activated Fly Ash and Biochar for Enhanced Removal of Natural Organic Matter from Water via Adsorption. Chemosphere 2020, 243, 125454. [Google Scholar] [CrossRef]
- Swasy, M.I.; Brummel, B.R.; Narangoda, C.; Attia, M.F.; Hawk, J.M.; Alexis, F.; Whitehead, D.C. Degradation of Pesticides Using Amine-Functionalized Cellulose Nanocrystals. RSC Adv. 2020, 10, 44312–44322. [Google Scholar] [CrossRef] [PubMed]
- Bharti; Jangwan, J.S.; Kumar, S.S.; Kumar, V.; Kumar, A.; Kumar, D. A Review on the Capability of Zinc Oxide and Iron Oxides Nanomaterials, as a Water Decontaminating Agent: Adsorption and Photocatalysis. Appl. Water Sci. 2022, 12, 46. [Google Scholar] [CrossRef]
- Goswami, B.; Mahanta, D. Polyaniline-Fe3O4 and Polypyrrole-Fe3O4 magnetic Nanocomposites for Removal of 2,4-Dichlorophenoxyacetic Acid from Aqueous Medium. J. Environ. Chem. Eng. 2020, 8, 103919. [Google Scholar] [CrossRef]
- Serbent, M.P.; Magario, I.; Saux, C. Immobilizing White-Rot Fungi Laccase: Toward Bio-Derived Supports as a Circular Economy Approach in Organochlorine Removal. Biotechnol. Bioeng. 2024, 121, 434–455. [Google Scholar] [CrossRef]
- Shokri, Z.; Seidi, F.; Karami, S.; Li, C.; Saeb, M.R.; Xiao, H. Laccase Immobilization onto Natural Polysaccharides for Biosensing and Biodegradation. Carbohydr. Polym. 2021, 262, 117963. [Google Scholar] [CrossRef]
- Sahithya, K.; Kounin, S.; Sahana, P.; Arjun, K.P. Applications of Nanomaterials for Adsorptive and Catalytic Removal of Chemical Pesticides: An Overview. Asian J. Chem. 2022, 34, 807–818. [Google Scholar] [CrossRef]
- Tursi, A.; Beneduci, A.; Chidichimo, F.; De Vietro, N.; Chidichimo, G. Remediation of Hydrocarbons Polluted Water by Hydrophobic Functionalized Cellulose. Chemosphere 2018, 201, 530–539. [Google Scholar] [CrossRef]
- Benettayeb, A.; Ghosh, S.; Usman, M.; Seihoub, F.Z.; Sohoo, I.; Chia, C.H.; Sillanpää, M. Some Well-Known Alginate and Chitosan Modifications Used in Adsorption: A Review. Water 2022, 14, 1353. [Google Scholar] [CrossRef]
- Li, S.S.; Song, Y.L.; Yang, H.R.; An, Q.D.; Xiao, Z.Y.; Zhai, S.R. Modifying Alginate Beads Using Polycarboxyl Component for Enhanced Metal Ions Removal. Int. J. Biol. Macromol. 2020, 158, 493–501. [Google Scholar] [CrossRef]
- Moody, C.; Brown, A.; Massaro, N.; Patel, A.; Zheng, H.; Pierce, J.; Brudno, Y. Restoring Carboxylates on Highly Modified Alginates Improves Gelation, Tissue Retention and Systemic Capture. SSRN Electron. J. 2021, 138, 208–217. [Google Scholar] [CrossRef]
- Xia, X.; Xu, X.; Lin, C.; Yang, Y.; Zeng, L.; Zheng, Y.; Wu, X.; Li, W.; Xiao, L.; Qian, Q.; et al. Microalgal-Immobilized Biocomposite Scaffold Fabricated by Fused Deposition Modeling 3D Printing Technology for Dyes Removal. ES Mater. Manuf. 2020, 7, 40–50. [Google Scholar] [CrossRef]
- Meng, S.; Wang, H.; Li, Y.C.; Li, T.; Liu, G.; Zhang, S.; Tong, Z. Porous 3D-Biocomposite Adsorbent for Iron Reclamation and Use in Agricultural Applications. ACS Appl. Polym. Mater. 2022, 4, 8277–8289. [Google Scholar] [CrossRef]
- Keith, J.A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, S.; Gastegger, M.; Müller, K.R.; Tkatchenko, A. Combining Machine Learning and Computational Chemistry for Predictive Insights into Chemical Systems. Chem. Rev. 2021, 121, 9816–9872. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, S.; Schwalbe-Koda, D.; Mohapatra, S.; Damewood, J.; Greenman, K.P.; Gómez-Bombarelli, R. Learning Matter: Materials Design with Machine Learning and Atomistic Simulations. Acc Mater. Res. 2022, 3, 343–357. [Google Scholar] [CrossRef]
- Mai, H.; Le, T.C.; Chen, D.; Winkler, D.A.; Caruso, R.A. Machine Learning in the Development of Adsorbents for Clean Energy Application and Greenhouse Gas Capture. Adv. Sci. 2022, 9, e2203899. [Google Scholar] [CrossRef]
- Marican, A.; Durán-Lara, E.F. A Review on Pesticide Removal through Different Processes. Environ. Sci. Pollut. Res. 2018, 25, 2051–2064. [Google Scholar] [CrossRef]
- Lau, K.S.; Azmi, N.A.S.; Chin, S.X.; Zakaria, S.; Chia, C.H. Chitosan-Bead-Encapsulated Polystyrene Sulfonate for Adsorption of Methylene Blue and Regeneration Studies: Batch and Continuous Approaches. Polymers 2023, 15, 1269. [Google Scholar] [CrossRef]
- Aguado, R.J.; Mazega, A.; Tarrés, Q.; Delgado-Aguilar, M. The Role of Electrostatic Interactions of Anionic and Cationic Cellulose Derivatives for Industrial Applications: A Critical Review. Ind. Crop. Prod. 2023, 201, 116898. [Google Scholar] [CrossRef]
- Vasile, C.; Baican, M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers 2023, 15, 3177. [Google Scholar] [CrossRef]
- Li, P.; Huang, Y.; Fu, C.; Jiang, S.X.; Peng, W.; Jia, Y.; Peng, H.; Zhang, P.; Manzie, N.; Mitter, N.; et al. Eco-Friendly Biomolecule-Nanomaterial Hybrids as next-Generation Agrochemicals for Topical Delivery. EcoMat 2021, 3, e12132. [Google Scholar] [CrossRef]
- Ma, C.M.; Yang, B.Y.; Hong, G.B. Husk of Agarwood Fruit-Based Hydrogel Beads for Adsorption of Cationic and Anionic Dyes in Aqueous Solutions. Molecules 2021, 26, 1437. [Google Scholar] [CrossRef] [PubMed]
- Mamah, S.C.; Goh, P.S.; Ismail, A.F.; Amin, M.A.M.; Ahmad, N.A.; Suzaimi, N.D.; Raji, Y.O. Facile Preparation of Palygorskite/Chitin Nanofibers Hybrids Nanomaterial with Remarkable Adsorption Capacity. Mater. Sci. Eng. B 2020, 262, 114725. [Google Scholar] [CrossRef]
- Abdel-Gawad, S.A.; Baraka, A.M.; Omran, K.A.; Mokhtar, M.M. Removal of Some Pesticides from the Simulated Waste Water by Electrocoagulation Method Using Iron Electrodes. Int. J. Electrochem. Sci. 2012, 7, 6654–6665. [Google Scholar] [CrossRef]
- Kolya, H.; Kang, C.W. Next-Generation Water Treatment: Exploring the Potential of Biopolymer-Based Nanocomposites in Adsorption and Membrane Filtration. Polymers 2023, 15, 3421. [Google Scholar] [CrossRef]
Agrochemical Type | Noteworthy Chemicals | Classes of Pesticides | Detected in | Environmental Concerns | Reference |
---|---|---|---|---|---|
Herbicides | Atrazine, glyphosate sarosate, paraquat, clear weed, delsate, roundup. | Organochlorines, organophosphates, carbamates, carboxylic acid derivatives, urea, substitute triazines, pyrethroids, and others. | Water samples. | Persistence, biodiversity impact, health risks, exceeded drinking water standards. | [19] |
Pesticides | DDT, DDE, parathion, malathion, chlordane, atrazine, glyphosate. | Organochlorines, organophosphates, carbamates, carboxylic acid derivatives, urea, substitute triazines, pyrethroids. | Water bodies, sediments, fish | Distribution patterns, ecological risks. | [11,19] |
Organophosphorus | Permethrin, diazinon, chlorpyrifos, malathion, fenvalerate, pyrethroids. | Organophosphorus, pyrethroids. | Deep wells | Prevalence, elevated pyrethroid concentrations. | [20] |
Various pesticides | p,p′-DDT, bifenthrin, aldrin, fenoxycarb. | N/A | Deep wells in Nuevo Leon, México | Risk assessment, exceeded European standards, potential health implications. | [20] |
Various chemicals | Atrazine, alachlor, metolachlor, metribuzin, simazine. | N/A | Diverse water sources | Variability in concentrations, alachlor, and atrazine predominantly detected. | [21] |
Agrochemical Group | Examples | Primary Adsorption Mechanism | Interaction Type | Biopolymer Functionalization | Reference |
---|---|---|---|---|---|
Organochlorines | DDT, DDE | Hydrophobic interactions, π-π stacking. | Aromatic interactions | Functionalization with hydrophobic/moieties (CMC, chitosan). | [29,30,31] |
Organophosphates | malathion, parathion | Electrostatic interactions, hydrogen bonding. | Ionic bonds, hydrogen bonds | Carboxylated, chitosan, alginate. | [35,36] |
Herbicides | glyphosate, atrazine | Hydrogen bonding, electrostatic interactions. | Hydrogen bonding, ionic bonds | Amine- or hydroxyl-modified polysaccharides (chitosan). | [37,38,39,40] |
Urea-based herbicides | diuron, linuron | Hydrophobic interactions. | Hydrophobic bonding | Hydrophobic groups (cellulose acetate). | [41,42,43] |
Neonicotinoids | imidacloprid, acetamiprid | Electrostatic interactions, hydrogen bonding. | Ionic bonds, hydrogen bonding | Carboxyl- and amine-modified chitosan. | [44,45,46] |
Carbamates | carbaryl, aldicarb | Electrostatic interactions, hydrophobic interactions. | Ionic bonds, hydrophobic bonding | Functionalization with polar groups (chitosan, silica). | [48] |
Fungicides | tebuconazole, mancozeb | Hydrogen bonding, π-π stacking. | Hydrogen bonding, π-π stacking | Aromatic functionalization with chitosan or cellulose. | [49,50,51] |
Pyrethroids | Permithrin, Fenvalerate | van der Waals forces, hydrophobic interactions. | Hydrophobic bonding | Hydrophobic modification of biopolymers (alginate, lignin, cellulose). | [55] |
Adsorbent | Contaminant | Initial Concentration | Adsorption Time | Adsorption Capacity | Adsorption Mechanism | Regeneration Ability | Functionalization | Ref |
---|---|---|---|---|---|---|---|---|
Chitosan | Nitrate and phosphate ions. | 100 mg/L for both nitrate and phosphate solutions | 45 min for nitrate, 30 min for phosphate | 90.09 mg g−1 for nitrate, 131.29 mg g−1 for phosphate | Electrostatic adsorption, ion exchange, hydrogen bonding. | Retains 75% efficiency over 5 cycles | Embedded Zr4+ ions into chitosan and soybean husk biochar. | [57] |
Nitrate ions | 100 mg/L | 5 min | 74% removal of nitrate at pH 11 | Photocatalytic reduction using UV light, with Ag nanoparticles enhancing electron-hole separation. | Maintains 71% efficiency over 3 cycles, dropping to 50% by the fourth cycle. | Ag-doped TiO2, γ-Al2O3, and chitosan hybrid structure. | [57] | |
Nitrate ions | 100–300 mg/L | Nano-CS/Clino:30 min; Nano-CS/Clino@H: 20 min; Nano-CS/Clino@PEHA:15 min | Nano-CS/Clino: 185.18 mg/g; Nano-CS/Clino@H: 227.27 mg/g; Nano-CS/Clino@PEHA: 277.77 mg/g | Electrostatic interaction between positively charged adsorbent sites (amine and hydroxyl groups) and nitrate anions. | Adsorption capacity maintained after three adsorption-desorption cycles with values of 77.93 mg/g for Nano-CS/Clino, 82.07 mg/g for Nano-CS/Clino@H, and 90.41 mg/g for Nano-CS/Clino@PEHA. | Nano-CS/Clino was modified with hydrochloric acid; Nano-CS/Clino@PEHA was functionalized with pentaethylenehexamine to increase the number of active adsorption sites. | [57] | |
Atrazine | Maximum atrazine concentration of 5 mg/L | 60 min | 95% atrazine removal in the membrane bioreactor process | π-π interaction, hydrogen bonding, and electrostatic interaction between graphene oxide functional groups and atrazine molecules. | Membrane fouling and flux decline was reduced through pneumatic backpulsing techniques. | Graphene oxide was cross-linked with chitosan to form a stable, hydrophilic membrane on ceramic support | [58] | |
Malathion | from 1 ng/mL to 20 μg/mL | Optimal inhibition achieved after 10 min of incubation | Detection limit of 0.39 ng/mL, with linear detection in the range of 1 ng/mL to 20 μg/mL | Inhibition of acetylcholinesterase activity by malathion, causing a decrease in current due to inhibition. | - | graphene oxide-tetraethylenepentamine (rGO-TEPA) and copper nanowires to enhance conductivity and loading of acetylcholinesterase. | [59] | |
Alginate | Potassium nitrate | solutions at 0.5%, 1%, and 2% concentrations | Swelling kinetics and water retention were studied over several h. | Maximum adsorption capacities of lead (Pb) and cadmium (Cd) ions were 628.93 mg/g and 456.62 mg/g, respectively | Chelating of heavy metal ions (Pb, Cd, Ni, Cu) through sulfonate and carboxylate groups in the hydrogel. | The hydrogel maintained 83% efficiency for Pb(II) and 90% for Cd(II) after three adsorption-desorption cycles. | The hydrogel was modified by graft copolymerizing poly(AMPS-co-AA-co-AM) onto sodium alginate (NaAlg) | [70] |
Nitrate | 100 mg/L nitrate solutions | 48 h for nitrate reduction. | 4.3–9.6 mg NO3− reduced to ammoniacal nitrogen per gram of immobilized NZVI | Chemical reduction of nitrate to ammonium by NZVI and immobilization of ammonium by powdered activated carbon. | - | Calcium-alginate beads impregnated with nano zero-valent iron (NZVI), magnetite nanoparticles (MNP), and powdered activated carbon (PAC). | [62] | |
Cellulose | Industrial fertilizer effluents and Rhodamine B dye | 10 mM RhB dye; unspecified for industrial fertilizer effluents | 60 min | RhB dye: 96% degradation efficiency Fertilizer effluents: 52% degradation efficiency Mixture of RhB dye and fertilizer effluents: 86% degradation efficiency. | Photodegradation using visible light, where cellulose acts as a support to enhance the stability and charge separation in silver phosphate. | The catalyst retained 64% of its degradation efficiency after five cycles. | Silver phosphate nanoparticles were synthesized with cellulose extracted from agro-waste (fruit peels). | [5] |
Nitrate (NO3−), nitrite (NO2−), and phosphate (PO43−) | 100 mg/L for nitrate, nitrite, and phosphate | 60 min | Nitrate: 79.65% Nitrite: 73.04% Phosphate: 98.18% | Electrostatic attraction between negatively charged nitrate, nitrite, and phosphate ions and the protonated surface of the aerogel in acidic conditions. Ion exchange also plays a role. | The aerogel maintained over 60% removal efficiency for nitrate, nitrite, and phosphate after three adsorption/desorption cycles. | Cellulose nanofiber aerogel (CNF) crosslinked with carboxymethyl cellulose (CMC) and citric acid (CA). | [21] |
Composite Adsorbent | Fillers | Advantages | Disadvantages | References |
---|---|---|---|---|
Graphene-based composites | Graphene |
|
| [60,76,77,78,79] |
Metal oxide composites | Iron oxide (Fe304) Titanium dioxide (TiO2) Zinc oxide (ZnO) |
|
| [80,90] |
Carbon nanotube (CNT) composites | CNTs |
|
| [81,82] |
Nanocomposites and hybrid materials | Metal-organic frameworks (MOFs), Nanofibers |
|
| [84,85,86] |
Functionalized polymer composites | Polyethyleneimine (PEI), other functional groups |
|
| [88,89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz-Martínez, M.; Restori-Corona, B.; Hernández-García, L.; Alonso-Segura, D. Polysaccharides and Composite Adsorbents in the Spotlight for Effective Agrochemical Residue Removal from Water. Macromol 2024, 4, 785-804. https://doi.org/10.3390/macromol4040047
Ortiz-Martínez M, Restori-Corona B, Hernández-García L, Alonso-Segura D. Polysaccharides and Composite Adsorbents in the Spotlight for Effective Agrochemical Residue Removal from Water. Macromol. 2024; 4(4):785-804. https://doi.org/10.3390/macromol4040047
Chicago/Turabian StyleOrtiz-Martínez, Mónica, Brenda Restori-Corona, Luis Hernández-García, and Diana Alonso-Segura. 2024. "Polysaccharides and Composite Adsorbents in the Spotlight for Effective Agrochemical Residue Removal from Water" Macromol 4, no. 4: 785-804. https://doi.org/10.3390/macromol4040047
APA StyleOrtiz-Martínez, M., Restori-Corona, B., Hernández-García, L., & Alonso-Segura, D. (2024). Polysaccharides and Composite Adsorbents in the Spotlight for Effective Agrochemical Residue Removal from Water. Macromol, 4(4), 785-804. https://doi.org/10.3390/macromol4040047