Properties of Multiple-Processed Natural Short Fiber Polypropylene and Polylactic Acid Composites: A Comparison
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Processing
2.3. Materials Testing
3. Results and Discussion
3.1. Reinforcing Properties of Cellulose Fibers
3.2. Multiple Processing of Fiber Composites
3.3. Influence of the Fibers and the Matrix on the Property Development in Reprocessing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karan, H.; Funk, C.; Grabert, M.; Oey, M.; Hankamer, B. Green Bioplastics as Part of a Circular Bioeconomy. Trends Plant Sci. 2019, 24, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Awais, H.; Nawab, Y.; Amjad, A.; Anjang, A.; Akil, H.M.; Abidin MS, Z. Environmental Benign Natural Fibre Reinforced Thermoplastic Composites: A Review. Compos. Part C Open Access 2021, 4, 100082. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Lavoine, N.; Lucia, L.A.; Dou, C. Formulating Bioplastic Composites for Biodegradability, Recycling, and Performance: A Review. BioResources 2020, 16, 2021–2083. [Google Scholar] [CrossRef]
- Oksman, K. Mechanical Properties of Natural Fibre Mat Reinforced Thermoplastic. Appl. Compos. Mater. 2000, 7, 403–414. [Google Scholar] [CrossRef]
- Sathees Kumar, S. Dataset on Mechanical Properties of Natural Fiber Reinforced Polyester Composites for Engineering Applications. Data Brief 2020, 28, 105054. [Google Scholar] [CrossRef]
- SaravanaKumar, M.; Kumar, S.S.; Babu, B.S.; Chakravarthy, C.N. Influence of Fiber Loading on Mechanical Characterization of Pineapple Leaf and Kenaf Fibers Reinforced Polyester Composites. Mater. Today Proc. 2021, 46, 439–444. [Google Scholar] [CrossRef]
- Wambua, P.; Ivens, J.; Verpoest, I. Natural Fibres: Can They Replace Glass in Fibre Reinforced Plastics? Compos. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites Reinforced with Natural Fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Syduzzaman, M.; Al Faruque, M.A.; Bilisik, K.; Naebe, M. Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. Coatings 2020, 10, 973. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Drzal, L.T. (Eds.) Natural Fibers, Biopolymers, and Biocomposites; CRC Press: Boca Raton, FL, USA, 2005; Chapter 1.3; p. 4ff. [Google Scholar]
- Soroudi, A.; Jakubowicz, I. Recycling of Bioplastics, Their Blends and Biocomposites: A Review. Eur. Polym. J. 2013, 49, 2839–2858. [Google Scholar] [CrossRef]
- Hong, C.H.; Kim, S.H.; Seo, J.-Y.; Han, D.S. Development of Four Unit Processes for Biobased PLA Manufacturing. ISRN Polym. Sci. 2012, 2012, 938261. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P. Biodegradability and Biodegradation of Poly(Lactide). Appl. Microbiol. Biotechnol. 2006, 72, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Tokiwa, Y.; Jarerat, A. Biodegradation of Poly(l-Lactide). Biotechnol. Lett. 2004, 26, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Satti, S.M.; Shah, A.A.; Marsh, T.L.; Auras, R. Biodegradation of Poly(Lactic Acid) in Soil Microcosms at Ambient Temperature: Evaluation of Natural Attenuation, Bio-Augmentation and Bio-Stimulation. J. Polym. Environ. 2018, 26, 3848–3857. [Google Scholar] [CrossRef]
- Ganster, J.; Fink, H.-P. Novel Cellulose Fibre Reinforced Thermoplastic Materials. Cellulose 2006, 13, 271–280. [Google Scholar] [CrossRef]
- Ganster, J.; Fink, H.-P.; Uihlein, K.; Zimmerer, B. Cellulose Man-Made Fibre Reinforced Polypropylene—Correlations between Fibre and Composite Properties. Cellulose 2008, 15, 561–569. [Google Scholar] [CrossRef]
- Mathew, A.P.; Oksman, K.; Sain, M. Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystalline Cellulose (MCC). J. Appl. Polym. Sci. 2005, 97, 2014–2025. [Google Scholar] [CrossRef]
- Csizmadia, R.; Faludi, G.; Renner, K.; Móczó, J.; Pukánszky, B. PLA/Wood Biocomposites: Improving Composite Strength by Chemical Treatment of the Fibers. Compos. Part A Appl. Sci. Manuf. 2013, 53, 46–53. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Franciszczak, P.; Meljon, A. High Performance Hybrid PP and PLA Biocomposites Reinforced with Short Man-Made Cellulose Fibres and Softwood Flour. Compos. Part A Appl. Sci. Manuf. 2015, 74, 132–139. [Google Scholar] [CrossRef]
- Oksman, K.; Skrifvars, M.; Selin, J.-F. Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites. Compos. Sci. Technol. 2003, 63, 1317–1324. [Google Scholar] [CrossRef]
- Faludi, G.; Link, Z.; Renner, K.; Móczó, J.; Pukánszky, B. Factors Determining the Performance of Thermoplastic Polymer/Wood Composites, the Limiting Role of Fiber Fracture. Mater. Des. 2014, 61, 203–210. [Google Scholar] [CrossRef]
- Lee, S.-H.; Wang, S. Biodegradable Polymers/Bamboo Fiber Biocomposite with Bio-Based Coupling Agent. Compos. Part A Appl. Sci. Manuf. 2006, 37, 80–91. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Fortunati, E.; Dominici, F.; López, J.; Kenny, J.M. Bionanocomposite Films Based on Plasticized PLA–PHB/Cellulose Nanocrystal Blends. Carbohydr. Polym. 2015, 121, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, M. The Effects of the Injection Moulding Temperature on the Mechanical Properties and Morphology of Polypropylene Man-Made Cellulose Fibre Composites. Compos. Part A Appl. Sci. Manuf. 2016, 87, 146–152. [Google Scholar] [CrossRef]
- Patti, A.; Acierno, D.; Latteri, A.; Tosto, C.; Pergolizzi, E.; Recca, G.; Cristaudo, M.; Cicala, G. Influence of the Processing Conditions on the Mechanical Performance of Sustainable Bio-Based PLA Compounds. Polymers 2020, 12, 2197. [Google Scholar] [CrossRef]
- Bernatas, R.; Dagreou, S.; Despax-Ferreres, A.; Barasinski, A. Recycling of Fiber Reinforced Composites with a Focus on Thermoplastic Composites. Clean. Eng. Technol. 2021, 5, 100272. [Google Scholar] [CrossRef]
- Henshaw, J.M.; Owens, A.D.; Houston, D.Q.; Smith, I.T.; Cook, T. Recycling of a Cyclic Thermoplastic Composite Material by Injection and Compression Molding. J. Thermoplast. Compos. Mater. 1994, 7, 14–29. [Google Scholar] [CrossRef]
- Cabrera, N. Recyclable All-Polypropylene Composites: Concept, Properties and Manufacturing; Eindhoven University of Technology: Eindhoven, The Netherlands, 2004; Available online: https://pure.tue.nl/ws/portalfiles/portal/1818689/200412886.pdf (accessed on 1 October 2024).
- Saikrishnan, S.; Jubinville, D.; Tzoganakis, C.; Mekonnen, T.H. Thermo-Mechanical Degradation of Polypropylene (PP) and Low-Density Polyethylene (LDPE) Blends Exposed to Simulated Recycling. Polym. Degrad. Stab. 2020, 182, 109390. [Google Scholar] [CrossRef]
- Huang, P.-W.; Peng, H.-S. Number of Times Recycled and Its Effect on the Recyclability, Fluidity and Tensile Properties of Polypropylene Injection Molded Parts. Sustainability 2021, 13, 11085. [Google Scholar] [CrossRef]
- Cuadri, A.A.; Martín-Alfonso, J.E. Thermal, Thermo-Oxidative and Thermomechanical Degradation of PLA: A Comparative Study Based on Rheological, Chemical and Thermal Properties. Polym. Degrad. Stab. 2018, 150, 37–45. [Google Scholar] [CrossRef]
- Signori, F.; Coltelli, M.-B.; Bronco, S. Thermal Degradation of Poly(Lactic Acid) (PLA) and Poly(Butylene Adipate-Co-Terephthalate) (PBAT) and Their Blends upon Melt Processing. Polym. Degrad. Stab. 2009, 94, 74–82. [Google Scholar] [CrossRef]
- Żenkiewicz, M.; Richert, J.; Rytlewski, P.; Moraczewski, K.; Stepczyńska, M.; Karasiewicz, T. Characterisation of Multi-Extruded Poly(Lactic Acid). Polym. Test. 2009, 28, 412–418. [Google Scholar] [CrossRef]
- Speranza, V.; De Meo, A.; Pantani, R. Thermal and Hydrolytic Degradation Kinetics of PLA in the Molten State. Polym. Degrad. Stab. 2014, 100, 37–41. [Google Scholar] [CrossRef]
- Elsawy, M.A.; Kim, K.-H.; Park, J.-W.; Deep, A. Hydrolytic Degradation of Polylactic Acid (PLA) and Its Composites. Renew. Sustain. Energy Rev. 2017, 79, 1346–1352. [Google Scholar] [CrossRef]
- Evens, T.; Bex, G.-J.; Yigit, M.; De Keyzer, J.; Desplentere, F.; Van Bael, A. The Influence of Mechanical Recycling on Properties in Injection Molding of Fiber-Reinforced Polypropylene. Int. Polym. Process. 2019, 34, 398–407. [Google Scholar] [CrossRef]
- Åkesson, D.; Vrignaud, T.; Tissot, C.; Skrifvars, M. Mechanical Recycling of PLA Filled with a High Level of Cellulose Fibres. J. Polym. Environ. 2016, 24, 185–195. [Google Scholar] [CrossRef]
- Graupner, N.; Albrecht, K.; Ziegmann, G.; Enzler, H.; Muessig, J. Influence of Reprocessing on Fibre Length Distribution, Tensile Strength and Impact Strength of Injection Moulded Cellulose Fibre-Reinforced Polylactide (PLA) Composites. Express Polym. Lett. 2016, 10, 647–663. [Google Scholar] [CrossRef]
- ISO 527; Plastics—Determination of Tensile Properties. International Organization for Standardization: Geneva, Switzerland, 2019.
- Mwaikambo, L.Y.; Ansell, M.P. The Determination of Porosity and Cellulose Content of Plant FIbers by Density Methods. J. Mater. Sci. Lett. 2001, 20, 2095–2096. [Google Scholar] [CrossRef]
- ISO 1183; Plastics—Methods for Determining the Density of Non-Cellular Plastics. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 179; Plastics—Determination of Charpy Impact Properties. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 11357; Plastics—Differential Scanning Calorimetry (DSC). International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 1628; Plastics—Determination of the Viscosity of Polymers in Dilute Solution Using Capillary Viscometers. International Organization for Standardization: Geneva, Switzerland, 2023.
- Kelly, A.; Tyson, W.R. Tensile Properties of Fibre-Reinforced Metals: Copper/Tungsten and Copper/Molybdenum. J. Mech. Phys. Solids 1965, 13, 329–350. [Google Scholar] [CrossRef]
- Lekube, B.M.; Purgleitner, B.; Renner, K.; Burgstaller, C. Influence of Screw Configuration and Processing Temperature on the Properties of Short Glass Fiber Reinforced Polypropylene Composites. Polym. Eng. Sci. 2019, 59, 1552–1559. [Google Scholar] [CrossRef]
- Burgstaller, C. Comparison of Interfacial Shear Strength from Fibre Pull out and Mechanical Testing in Polypropylene Sisal Composites. Int. J. Mater. Prod. Technol. 2009, 36, 11. [Google Scholar] [CrossRef]
- Burgstaller, C.; Stadlbauer, W. Influence of polymer grade and compatibilizer concentration on the interfacial shear strength in sisal fibre polypropylene composites. In Proceedings of the 28th Risø International Symposium on Materials Science: Interface Design of Polymer Matrix Composites–Mechanics, Chemistry, Modelling and Manufacturing, Risø, Denmark, 3–6 September 2007. [Google Scholar]
Matrix (wt%) | Coupling Agent (wt%) | Cellulose Fiber (wt%) | Reprocessing | ||||
---|---|---|---|---|---|---|---|
PP | 100 | 0 | 0 | 0 | 1 | 2 | 3 |
89 | 1 | 10 | 0 | 1 | 2 | 3 | |
67 | 3 | 30 | 0 | 1 | 2 | 3 | |
56 | 4 | 40 | 0 | 1 | 2 | 3 | |
PLA | 100 | - | 0 | 0 | 1 | 2 | 3 |
90 | - | 10 | 0 | 1 | 2 | 3 | |
70 | - | 30 | 0 | 1 | 2 | 3 | |
60 | - | 40 | 0 | 1 | 2 | 3 |
Matrix Material | Cellulose Fiber Share | |
---|---|---|
Dosed (wt%) | Calculated (vol%) | |
PP | 0 | 0 |
10 | 6.53 | |
30 | 19.43 | |
40 | 26.80 | |
PLA | 0 | 0 |
10 | 12.25 | |
30 | 30.04 | |
40 | 35.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liedl, B.; Höftberger, T.; Burgstaller, C. Properties of Multiple-Processed Natural Short Fiber Polypropylene and Polylactic Acid Composites: A Comparison. Macromol 2024, 4, 723-738. https://doi.org/10.3390/macromol4040043
Liedl B, Höftberger T, Burgstaller C. Properties of Multiple-Processed Natural Short Fiber Polypropylene and Polylactic Acid Composites: A Comparison. Macromol. 2024; 4(4):723-738. https://doi.org/10.3390/macromol4040043
Chicago/Turabian StyleLiedl, Barbara, Thomas Höftberger, and Christoph Burgstaller. 2024. "Properties of Multiple-Processed Natural Short Fiber Polypropylene and Polylactic Acid Composites: A Comparison" Macromol 4, no. 4: 723-738. https://doi.org/10.3390/macromol4040043
APA StyleLiedl, B., Höftberger, T., & Burgstaller, C. (2024). Properties of Multiple-Processed Natural Short Fiber Polypropylene and Polylactic Acid Composites: A Comparison. Macromol, 4(4), 723-738. https://doi.org/10.3390/macromol4040043