PLA Films Containing Montmorillonite Nanoclay–Citronella Essential Oil Hybrids for Potential Active Film Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Hybrid Preparation
2.2.2. Preparation of PLA/MMT–Ct Nanocomposites
2.3. Characterizations of Nanocomposites
2.3.1. X-ray Diffraction
2.3.2. Scanning Electron Microscopy
2.3.3. Thermogravimetric Analysis
2.3.4. Differential Scanning Calorimetry
2.3.5. Mechanical Tests
2.3.6. Migration Test
3. Results
3.1. X-ray Diffraction
3.2. Scanning Electron Microscopy
3.3. Thermogravimetric Analysis (TGA)
3.4. Differential Scanning Calorimetry
3.5. Mechanical Tests
3.6. Migration Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madhumitha, G.; Fowsiya, J.; Roopan, S.M.; Thakur, V.K. Recent advances in starch–clay nanocomposites. Int. J. Polym. Anal. Charact. 2018, 23, 331–345. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Huang, J.; Lin, N.; Ahmad, I.; Mariano, M.; Dufresne, A.; Thomas, S.; Gał, A. Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog. Polym. Sci. 2018, 87, 197–227. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Dufresne, A.; Pinheiro, I.F.; Souza, D.H.S.; Gouveia, R.F.; Mei, L.H.I.; Lona, L.M.F. How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: A comprehensive review. Eur. Polym. J. 2018, 108, 274–285. [Google Scholar] [CrossRef]
- Ainali, N.M.; Kalaronis, D.; Evgenidou, E.; Kyzas, G.Z.; Bobori, D.C.; Kaloyianni, M.; Yang, X.; Bikiaris, D.N.; Lambropoulou, D.A. Do poly(lactic acid) microplastics instigate a threat? A perception for their dynamic towards environmental pollution and toxicity. Sci. Total Environ. 2022, 832, 155014. [Google Scholar] [CrossRef]
- Sadeghi, A.; Razavi, S.M.A.; Shaharampour, D. Fabrication and characterization of biodegradable active films with modified morphology based on polycaprolactone-polylactic acid-green tea extract. Int. J. Biol. Macromol. 2022, 205, 341–356. [Google Scholar] [CrossRef]
- Ma, Y.; Li, L.; Wang, Y. Development of PLA-PHB-based biodegradable active packaging and its application to salmon. Packag. Technol. Sci. 2018, 31, 739–746. [Google Scholar] [CrossRef]
- Zheng, H.; Tang, H.; Yang, C.; Chen, J.; Wang, L.; Dong, Q.; Shi, W.; Li, L.; Liu, Y. Evaluation of the slow-release polylactic acid/polyhydroxyalkanoates active film containing oregano essential oil on the quality and flavor of chilled pufferfish (Takifugu obscurus) fillets. Food Chem. 2022, 385, 132693. [Google Scholar] [CrossRef]
- Bai, T.; Zhu, B.; Liu, H.; Wang, Y.; Song, G.; Liu, C.; Shen, C. Biodegradable poly(lactic acid) nanocomposites reinforced and toughened by carbon nanotubes/clay hybrids. Int. J. Biol. Macromol. 2020, 151, 628–634. [Google Scholar] [CrossRef]
- Alves, J.L.; Rosa, P.d.T.V.; Realinho, V.; Antunes, M.; Velasco, J.I.; Morales, A.R. The effect of Brazilian organic-modified montmorillonites on the thermal stability and fire performance of organoclay-filled PLA nanocomposites. Appl. Clay Sci. 2020, 194, 105697. [Google Scholar] [CrossRef]
- Abdallah, W.; Mirzadeh, A.; Tan, V.; Kamal, M.R. Influence of Nanoparticle Pretreatment on the Thermal, Rheological and Mechanical Properties of PLA-PBSA Nanocomposites Incorporating Cellulose Nanocrystals or Montmorillonite. Nanomaterials 2018, 9, 29. [Google Scholar] [CrossRef]
- Nonato, R.C.; Mei, L.H.I.; Bonse, B.C.; Chinaglia, E.F.; Morales, A.R. Nanocomposites of PLA containing ZnO nanofibers made by solvent cast 3D printing: Production and characterization. Eur. Polym. J. 2019, 114, 271–278. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J.; Yin, X.; Wang, X.; Qiu, B.; Zhu, L.; Lin, Q. Microencapsulation of tea tree oil by spray-drying with methyl cellulose as the emulsifier and wall material together with chitosan/alginate. J. Appl. Polym. Sci. 2017, 134, 1–10. [Google Scholar] [CrossRef]
- Inkinen, S.; Hakkarainen, M.; Albertsson, A.C.; Södergård, A. From lactic acid to poly(lactic acid) (PLA): Characterization and analysis of PLA and Its precursors. Biomacromolecules 2011, 12, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Dhatarwal, P.; Sengwa, R.J.; Choudhary, S. Effect of intercalated and exfoliated montmorillonite clay on the structural, dielectric and electrical properties of plasticized nanocomposite solid polymer electrolytes. Compos. Commun. 2017, 5, 1–7. [Google Scholar] [CrossRef]
- Torin, R.F.S.; Camani, P.H.; da Silva, L.N.; Sato, J.A.P.; Ferreira, F.F.; Rosa, D.d.S. Effect of clay and clay/essential oil in packaging films. Polym. Compos. 2018, 39, 4034–4040. [Google Scholar] [CrossRef]
- Kyung, E.G.; Song, B. Effect of java citronella essential oil addition on the physicochemical properties of Gelidium corneum -chitosan composite films. Food Sci. Biotechnol. 2020, 29, 909–915. [Google Scholar] [CrossRef]
- Wang, L.; He, J.; Zhu, L.; Wang, Y.; Feng, X.; Chang, B.; Karahan, H.E.; Chen, Y. Assembly of pi-functionalized quaternary ammonium compounds with graphene hydrogel for efficient water disinfection. J. Colloid Interface Sci. 2019, 535, 149–158. [Google Scholar] [CrossRef]
- Ojagh, S.M.; Ghorbani, M.; Hasani, M.; Resources, N.; Resources, N.; Resources, N.; Branch, S.; Azad, I. Nano-Encapsulation of Lemon Essential Oil Approach to Reducing the Oxidation Process in Fish Burger during Refrigerated Storage. J. Food Biosci. Technol. 2020, 10, 35–46. [Google Scholar]
- Yahyaoui, M.; Gordobil, O.; Herrera Díaz, R.; Abderrabba, M.; Labidi, J. Development of novel antimicrobial films based on poly(lactic acid) and essential oils. React. Funct. Polym. 2016, 109, 1–8. [Google Scholar] [CrossRef]
- Park, K.; Sadeghi, K.; Panda, P.K.; Seo, J.; Seo, J. Ethylene vinyl acetate/low-density polyethylene/oyster shell powder composite films: Preparation, characterization, and antimicrobial properties for biomedical applications. J. Taiwan Inst. Chem. Eng. 2022, 134, 104301. [Google Scholar] [CrossRef]
- Pereira, R.B.; Morales, A.R. Estudo do comportamento térmico e mecânico do PLA modificado com aditivo nucleante e modificador de impacto TT—Study of mechanical and thermal behavior of PLA modified with nucleating additive and impact modifier. Polímeros 2014, 24, 198–202. [Google Scholar] [CrossRef]
- Rhim, J.W.; Hong, S.I.; Ha, C.S. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT Food Sci. Technol. 2009, 42, 612–617. [Google Scholar] [CrossRef]
- Abdelwahab, M.A.; Flynn, A.; Chiou, B.S.; Imam, S.; Orts, W.; Chiellini, E. Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym. Degrad. Stab. 2012, 97, 1822–1828. [Google Scholar] [CrossRef]
- Palsikowski, P.A.; Kuchnier, C.N.; Pinheiro, I.F.; Morales, A.R. Biodegradation in Soil of PLA/PBAT Blends Compatibilized with Chain Extender. J. Polym. Environ. 2018, 26, 330–341. [Google Scholar] [CrossRef]
- Ramesh, P.; Prasad, B.D.; Narayana, K.L. Effect of fiber hybridization and montmorillonite clay on properties of treated kenaf/aloe vera fiber reinforced PLA hybrid nanobiocomposite. Cellulose 2020, 27, 6977–6993. [Google Scholar] [CrossRef]
- Shojaee-Aliabadi, S.; Mohammadifar, M.A.; Hosseini, H.; Mohammadi, A.; Ghasemlou, M.; Hosseini, S.M.; Haghshenas, M.; Khaksar, R. Characterization of nanobiocomposite kappa-carrageenan film with Zataria multiflora essential oil and nanoclay. Int. J. Biol. Macromol. 2014, 69, 282–289. [Google Scholar] [CrossRef] [PubMed]
- de Macedo, J.R.N.; dos Santos Rosa, D. Effect of Fiber and Starch Incorporation in Biodegradation of PLA-TPS-Cotton Composites. Key Eng. Mater. 2015, 668, 54–62. [Google Scholar] [CrossRef]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.H.A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef]
- Shemesh, R.; Krepker, M.; Goldman, D.; Danin-Poleg, Y.; Kashi, Y.; Nitzan, N.; Vaxman, A.; Segal, E. Antibacterial and antifungal LDPE films for active packaging. Polym. Adv. Technol. 2015, 26, 110–116. [Google Scholar] [CrossRef]
- Najafi, N.; Heuzey, M.C.; Carreau, P.J.; Wood-Adams, P.M. Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders. Polym. Degrad. Stab. 2012, 97, 554–565. [Google Scholar] [CrossRef]
- Zhao, H.; Cui, Z.; Wang, X.; Turng, L.S.; Peng, X. Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites. Compos. Part B Eng. 2013, 51, 79–91. [Google Scholar] [CrossRef]
- Sun, J.; Yu, H.; Zhuang, X.; Chen, X.; Jing, X. Crystallization behavior of asymmetric PLLA/PDLA blends. J. Phys. Chem. B 2011, 115, 2864–2869. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, L.H.; Munhoz, R.A.; Marini, J.; Maestrelli, S.C. Development and characterization of PLA composites with high contents of a Brazilian refractory clay and improved fire performance. Mater. Res. 2022, 25. [Google Scholar] [CrossRef]
- Risyon, N.P.; Othman, S.H.; Basha, R.K.; Talib, R.A. Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging. Food Packag. Shelf Life 2020, 23, 100450. [Google Scholar] [CrossRef]
- Kumar Panda, P.; Jebastine, J.; Ramarao, M.; Fairooz, S.; Reddy, C.K.; Nasif, O.; Alfarraj, S.; Manikandan, V.; Jenish, I. Exploration on Mechanical Behaviours of Hyacinth Fibre Particles Reinforced Polymer Matrix-Based Hybrid Composites for Electronic Applications. Adv. Mater. Sci. Eng. 2021, 2021, 4933450. [Google Scholar] [CrossRef]
- Liu, D.; Li, H.; Jiang, L.; Chuan, Y.; Yuan, M.; Chen, H. Characterization of active packaging films made from poly(lactic acid)/poly(trimethylene carbonate) incorporated with oregano essential oil. Molecules 2016, 21, 695. [Google Scholar] [CrossRef]
- Damacena, L.H.C.; Rosa, G.A.D.; Maia, A.; Derval, S.; Torin, R.F.S. Estudo da Interação e Migração dos Óleos Carvacrol e Eugenol Incorporados no Nanocompósito (PEBD/Nanoargila). 2017; Volume 3. Available online: http://www.pos.cps.sp.gov.br/files/artigo/file/251/ee1ba3894243510bae73456fa389350c.pdf (accessed on 1 November 2022).
- de Souza, A.G.; Dos Santos, N.M.A.; Torin, R.F.S.; Santos, D.R. Synergic antimicrobial properties of Carvacrol essential oil and montmorillonite in biodegradable starch films. Int. J. Biol. Macromol. 2020, 164, 1737–1747. [Google Scholar] [CrossRef]
Samples | PLA (g) | MMT (g) | Ct (g) |
---|---|---|---|
PLA | 100 | - | - |
PLA/MMT–Ct3% | 100 | 1.0 | 2.0 |
PLA/MMT–Ct10% | 100 | 3.7 | 7.4 |
PLA/MMT–Ct15% | 100 | 5.8 | 11.7 |
PLA/MMT–Ct20% | 100 | 8.3 | 16.6 |
Samples | XRD | TGA | DTG | DSC | |||
---|---|---|---|---|---|---|---|
CI (%) | TI (°C) | TF (°C) | TMAX (°C) | Tm (°C) | Tc (°C) | Xc (%) | |
PLA | 83 | 303.7 | 377.0 | 356.0 | 153.67 | 107.06 | 3.11 |
PLA/MMT–Ct3% | 80 | 320.7 | 375.1 | 354.7 | 153.83 | 115.5 | 2.79 |
PLA/MMT–Ct10% | 73 | 273.5 | 385.6 | 362.4 | 152.32 | 99.94 | 2.86 |
PLA/MMT–Ct15% | 69 | 321.5 | 386.5 | 354.4 | 152.06 | 99.8 | 3.12 |
PLA/MMT–Ct20% | 62 | 301.6 | 393.3 | 356.6 | 152.59 | 97.34 | 2.62 |
Samples | Elastic Modulus (E) (MPa) | Tensile Strength (σ) (MPa) | Elongation at Break (ε) (%) |
---|---|---|---|
PLA | 15.4 ± 3.4 | 28.5 ± 8.3 | 10.4 ± 3.2 |
PLA/MMT–Ct3% | 27.3 ± 7.0 | 34.8 ± 1.9 | 3.5 ± 0.7 |
PLA/MMT–Ct10% | 19.6 ± 8.2 | 43.5 ± 38.0 | 13.0 ± 5.9 |
PLA/MMT–Ct15% | 10.7 ± 2.1 | 18.9 ± 2.7 | 48.3 ± 24.2 |
PLA/MMT–Ct20% | 5.9 ± 1.5 | 11.1 ± 2.6 | 43.7 ± 33.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, R.R.; Farina, M.C.; Maia, A.; Torin, R.F.S. PLA Films Containing Montmorillonite Nanoclay–Citronella Essential Oil Hybrids for Potential Active Film Formulation. Macromol 2023, 3, 200-210. https://doi.org/10.3390/macromol3020012
Ferreira RR, Farina MC, Maia A, Torin RFS. PLA Films Containing Montmorillonite Nanoclay–Citronella Essential Oil Hybrids for Potential Active Film Formulation. Macromol. 2023; 3(2):200-210. https://doi.org/10.3390/macromol3020012
Chicago/Turabian StyleFerreira, Rafaela R., Marilia C. Farina, Anderson Maia, and Rondes F. S. Torin. 2023. "PLA Films Containing Montmorillonite Nanoclay–Citronella Essential Oil Hybrids for Potential Active Film Formulation" Macromol 3, no. 2: 200-210. https://doi.org/10.3390/macromol3020012
APA StyleFerreira, R. R., Farina, M. C., Maia, A., & Torin, R. F. S. (2023). PLA Films Containing Montmorillonite Nanoclay–Citronella Essential Oil Hybrids for Potential Active Film Formulation. Macromol, 3(2), 200-210. https://doi.org/10.3390/macromol3020012