The Impact of Titanium Dioxide Type Combined with Coffee Oil Obtained from Coffee Industry Waste on Sunscreen Product Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Characterization of Titanium Dioxide (TiO2) Powder
Wettability Measurements
Particle Size Distribution
2.2.2. Characterization of Titanium Oxide Sunscreen Formulations
Droplet Size Distribution
Structure Analysis
- (A)
- Dynamic viscosity—Flow curves
- (B)
- Oscillation measurements
Texture Profile Analysis (TPA)
In Vitro Studies of Sun Protection Factor and Water Resistance Retention
Topical Delivery Studies
- (A)
- In Vitro Caffeine Release
- (B)
- In vitro caffeine permeability
Statistical Analysis
3. Results and Discussion
3.1. Characterization of TiO2 Powder
- Wettability measurements
- Particle size distribution
3.2. Characterization of TiO2 Sunscreen Formulations
- Droplet Size Distribution
- Structure Analysis
- (A)
- Dynamic viscosity—Flow curves
- (B)
- Oscillation measurements
- TPA
- In Vitro Studies of Sun Protection Factor (SPF) and Water Resistance Retention (WRR)
- Topical Delivery Studies
- (A)
- In vitro caffeine release
- (B)
- In vitro caffeine permeability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Svobodová, A.R.; Galandakova, A.; Šianská, J.; Doležal, D.; Lichnovská, R.; Ulrichova, J.; Vostálová, J. DNA damage after acute exposure of mice skin to physiological doses of UVB and UVA light. Arch. Dermatol. Res. 2012, 304, 407–412. [Google Scholar] [CrossRef]
- Mancuso, J.B.; Maruthi, R.; Wang, S.Q.; Lim, H.W. Sunscreens: An update. Am. J. Clin. Dermatol. 2017, 18, 643–650. [Google Scholar] [CrossRef]
- Latha, M.S.; Martis, J.; Shobha, V.R.; Shinde, S.; Bangera, S.; Krishnankutty, B.; Bellary, S.; Varughese, P.R.; Naveen Kumar, B.R. Sunscreening agents: A review. J. Clin. Aesthet. Dermatol. 2013, 6, 16–26. [Google Scholar] [PubMed]
- Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium dioxide nanoparticles: A review of current toxicological data. Part. Fibre Toxicol. 2013, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Smijs, T.G.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, W.; Yang, Z. Toxicology of nanosized titanium dioxide: An update. Arch. Toxicol. 2015, 89, 2207–2217. [Google Scholar] [CrossRef]
- Chen, X.X.; Cheng, B.; Yang, Y.X.; Cao, A.; Liu, J.H.; Du, L.J.; Liu, Y.; Zhao, Y.; Wang, H. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum. Small 2013, 9, 1765–1774. [Google Scholar] [CrossRef]
- Liu, K.; Lin, X.; Zhao, J. Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physi-cal factors. Int. J. Nanomed. 2013, 8, 2509–2520. [Google Scholar]
- Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G.Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641. [Google Scholar] [CrossRef] [Green Version]
- Vandebriel, R.J.; Vermeulen, J.P.; Van Engelen, L.B.; De Jong, B.; Verhagen, L.M.; De La Fonteyne-Blankestijn, L.J.; Hoonakker, M.E.; De Jong, W.H. The crystal structure of titanium dioxide nanoparticles influences immune activity in vitro and in vivo. Part. Fibre Toxicol. 2018, 15, 9. [Google Scholar] [CrossRef] [Green Version]
- Yeh, M.-I.; Huang, H.-C.; Liaw, J.-H.; Huang, M.-C.; Huang, K.-F.; Hsu, F.-L. Dermal delivery by niosomes of black tea extract as a sunscreen agent. Int. J. Dermatol. 2013, 52, 239–245. [Google Scholar] [CrossRef]
- Chiari-Andréo, B.G.; Trovatti, E.; Pecoraro, É.; Corrêa, M.A.; Cicarelli, R.M.B.; Ribeiro, S.J.L.; Isaac, V.L.B. Synergistic effect of green coffee oil and synthetic sunscreen for health care application. Ind. Crop. Prod. 2014, 52, 389–393. [Google Scholar] [CrossRef]
- Marto, J.; Gouveia, L.; Chiari-Andréo, B.G.; Paiva, A.; Isaac, V.; Pinto, P.; Simões, P.; Almeida, A.; Ribeiro, H. The green generation of sunscreens: Using coffee industrial sub-products. Ind. Crop. Prod. 2016, 80, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Rosado, C.; Tokunaga, V.K.; Sauce, R.; De Oliveira, C.A.; Sarruf, F.D.; Filho, R.P.; Maurício, E.; De Almeida, T.S.; Velasco, M.V.R.; Baby, A.R. Another reason for using caffeine in dermocosmetics: Sunscreen adjuvant. Front. Physiol. 2019, 10, 519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawasumi, M.; Lemos, B.; Bradner, J.E.; Thibodeau, R.; Kim, Y.-S.; Schmidt, M.; Higgins, E.; Koo, S.-W.; Angle-Zahn, A.; Chen, A.; et al. Protection from UV-induced skin carcinogenesis by genetic inhibition of the ataxia telangiectasia and Rad3-related (ATR) kinase. Proc. Natl. Acad. Sci. USA 2011, 108, 13716–13721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Hu, J.Y.; Wang, S.Q. The role of antioxidants in photoprotection: A critical review. J. Am. Acad. Dermatol. 2012, 67, 1013–1024. [Google Scholar] [CrossRef]
- Isaac, V.L.B.; Moraes, J.D.D.; Chiari-Andréo, B.G.; Guglielmi, D.A.S.; Cefali, L.C.; Rissi, N.C.; Corrêa, M.A. Determination of the real influence of the addition of four thickening agents in creams using rheological measurements. J. Dispers. Sci. Technol. 2013, 34, 532–538. [Google Scholar] [CrossRef]
- Isaac, V.L.B.; Chiari-Andréo, B.G.; Marto, J.M.; Moraes, J.D.D.; Leone, B.A.; Corrêa, M.A.; Ribeiro, H.M. Rheology as a tool to predict the release of alpha-lipoic acid from emulsions used for the prevention of skin aging. BioMed Res. Int. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, S.; Pinto, F.V.; Antunes, F.; Miguel, M.G.; Sousa, J.; Pais, A. Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J. Colloid Interface Sci. 2008, 327, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Vitorino, C.; Alves, L.; Antunes, F.; Sousa, J.; Pais, A.A.C.C. Design of a dual nanostructured lipid carrier formulation based on physicochemical, rheological, and mechanical properties. J. Nanoparticle Res. 2013, 15, 1–14. [Google Scholar] [CrossRef]
- Chiari, B.G.; Almeida, M.G.J.; Corrêa, M.A.; Isaac, V. Cosmetics’ quality control. In Latest Research into Quality Control; Akyar, I., Ed.; TechOpen: London, UK, 2012; pp. 337–364. [Google Scholar]
- European Medicines Agency. Guideline on Bioanalytical Method Validation. EMA Guideline. 2012. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed on 31 December 2019).
- Kale, S.; Ghoge, P.; Ansari, A.; Waje, A. Formulation and in-vitro determination of sun protection factor of Ni-gella sativa Linn. seed oil sunscreen cream. Int. J. Pharm. Tech. Res. 2010, 2, 2194–2197. [Google Scholar]
- Cosmetics Europe. N° 16: WATER RESISTANCE LABELLING. 2005. Available online: https://www.cosmeticseurope.eu/files/2114/6408/3694/CR_16_Water.pdf (accessed on 31 December 2019).
- Ahn, S.; Yang, H.; Lee, H.; Moon, S.; Chang, I. Alternative evaluation method in vitro for the water-resistant ef-fect of sunscreen products. Skin Res. Technol. 2008, 14, 187–191. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 428: Skin Absorption. In Vitro Method; OECD Publishing: Paris, France; Available online: https://www.oecd-ilibrary.org/environment/test-no-428-skin-absorption-in-vitro-method_9789264071087-en (accessed on 31 December 2019).
- Srdjenovic, B.; Djordjevic-Milic, V.; Grujic, N.; Injac, R.; Lepojevic, Z. Simultaneous HPLC determination of caf-feine, theobromine, and theophylline in food, drinks, and herbal products. J. Chromat. Sci. 2008, 46, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Bhawani, S.A.; Fong, S.S.; Ibrahim, M.N.M. Spectrophotometric analysis of caffeine. Int. J. Anal. Chem. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Wang, S.Q.; Tooley, I.R. Photoprotection in the era of nanotechnology. Semin. Cutan. Med. Surg. 2011, 30, 210–213. [Google Scholar] [CrossRef] [PubMed]
- European Comission, SCCS. Scientific Committee on Consumer Safety OPINION ON Titanium Dioxide (nano form) coated with Cetyl Phosphate, Manganese Dioxide or Triethoxycaprylylsilane as UV-Filter in Dermally Applied Cosmetic. 2018. Available online: https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_202.pdf (accessed on 31 December 2019).
- Marto, J.; Gouveia, L.F.; Gonçalves, L.; Chiari-Andréo, B.G.; Isaac, V.; Pinto, P.; Oliveira, E.; Almeida, A.J.; Ribeiro, H.M. Design of novel starch-based Pickering emulsions as platforms for skin photoprotection. J. Photochem. Photobiol. B 2016, 162, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Morphology of a TiO2 photocatalyst (Degussa, P-25) con-sisting of anatase and rutile crystalline phases. J. Catalys. 2001, 203, 82–86. [Google Scholar] [CrossRef]
- Lee, J.C.; Porcar, L.; Rogers, S.A. Unveiling temporal nonlinear structure–rheology relationships under dynamic shearing. Polymers 2019, 11, 1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marto, J.; Ascenso, A.; Gonçalves, L.M.; Gouveia, L.F.; Manteigas, P.; Pinto, P.; Oliveira, E.; Almeida, A.J.; Ribeiro, H.M. Melatonin-based pickering emulsion for skin’s photoprotection. Drug Deliv. 2016, 23, 1594–1607. [Google Scholar] [CrossRef] [Green Version]
- Melero, A.; Garrigues, T.M.; Alós, M.; Kostka, K.; Lehr, C.-M.; Schaefer, U. Nortriptyline for smoking cessation: Release and human skin diffusion from patches. Int. J. Pharm. 2009, 378, 101–107. [Google Scholar] [CrossRef]
- Stokes, R.; Diffey, B.; Dawson, L.; Barton, S. A novel in vitro technique for measuring the water resistance of sunscreens. Int. J. Cosmet. Sci. 1998, 20, 235–240. [Google Scholar] [CrossRef]
- Ascenso, A.; Batista, C.; Cardoso, P.; Mendes, T.; Praça, F.; Bentley, M.V.; Raposo, S.; Simões, S. Development, characterization, and skin delivery studies of related ultradeformable vesicles: Transfersomes, ethosomes, and transethosomes. Int. J. Nanomed. 2015, 10, 5837–5851. [Google Scholar] [CrossRef] [Green Version]
- Mitragotri, S.; Anissimov, Y.G.; Bunge, A.L.; Frasch, H.F.; Guy, R.H.; Hadgraft, J.; Kasting, G.B.; Lane, M.E.; Roberts, M.S. Mathematical models of skin permeability: An overview. Int. J. Pharm. 2011, 418, 115–129. [Google Scholar] [CrossRef] [Green Version]
Composition (%) | ||||||
---|---|---|---|---|---|---|
AM | AC | RM | RC | C | M | |
Cetearth-20 | 2.63 | 2.63 | 2.63 | 2.63 | 2.63 | 2.63 |
Cetearyl Alcohol | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 |
Dimethicone | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 |
Cetyl Palmitate | 2.63 | 2.63 | 2.63 | 2.63 | 2.63 | 2.63 |
Isopropryl Myristate | 3.51 | 3.51 | 3.51 | 3.51 | 3.51 | 3.51 |
BHT | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Propylparaben | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Methylparaben | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
Propylene Glycol | 2.63 | 2.63 | 2.63 | 2.63 | 2.63 | 2.63 |
Peg-75 Lanolin | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 |
Mineral Oil | 1.75 | - | 1.75 | - | - | 1.75 |
Tio2 Anatase | 3.51 | 3.51 | - | - | - | - |
Tio2 V Rutile (T-2000) | - | - | 3.51 | 3.51 | - | - |
Ethylhexyl Methoxycinnamate | 7.02 | 7.02 | 7.02 | 7.02 | 7.02 | 7.02 |
Green Coffee Oil | - | 1.75 | - | 1.75 | 1.75 | - |
Water | 68.20 | 68.20 | 68.20 | 68.20 | 71.71 | 71.71 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Particle Size Distribution (µm) | ||||
---|---|---|---|---|
Samples of TiO2 | Span | d (0.1) | d (0.5) | d (0.9) |
Anatase form | 0.595 ± 0.001 | 0.136 ± 0.001 | 0.179 ± 0.001 | 0.242 ± 0.001 |
Rutile form | 3.821 ± 2.471 | 1.146 ± 0.001 | 0.210 ± 0.001 | 1.952 ± 0.527 |
Formulations | Compressibility (g·s) | Hardness (g) | Adhesiveness (g·s) | Cohesiveness |
---|---|---|---|---|
AM | 27.84 ± 0.77 | 18.47 ± 1.15 | 25.95 ± 2.99 | 0.74 ± 0.02 |
AC | 31.53 ± 2.87 | 20.38 ± 1.53 | 32.19 ± 3.09 a | 0.76 ± 0.02 |
RM | 28.12 ± 2.50 a | 18.98 ± 0.32 a | 31.36 ± 1.15 c,e | 0.76 ± 0.03 |
RC | 34.45 ± 2.75 b | 22.01 ± 1.05 b | 36.11 ± 3.19 d | 0.73 ± 0.03 |
M | 24.71 ± 1.03 | 16.43 ± 0.58 | 20.53 ± 2.07 f | 0.77 ± 0.02 |
C | 26.81 ± 1.64 c | 18.57 ± 0.87 c | 24.37 ± 2.27 b | 0.77 ± 0.02 |
Formulation | SPF | WRR (%) |
---|---|---|
AC | 40.37 ± 3.24 a | 42.41 ± 2.95 a |
AM | 26.08 ± 1.43 b | 59.64 ± 3.56 b |
RC | 32.4 ± 1.67 c | 76.16 ± 5.38 c |
RM | 32.4 ± 1.88 c | 88.08 ± 7.49 d |
Formulation | Kd (h−1) | ±SD | n | ±SD | R2 |
---|---|---|---|---|---|
AC | 30.51 | ±2.67 a | 0.31 | ±0.03 | 0.9757 |
RC | 20.79 | ±0.83 b | 0.39 | ±0.02 | 0.9931 |
C | 25.07 | ±1.43 c | 0.33 | ±0.02 | 0.9910 |
Formulation | J (%/cm2/h) | tL (h) | R2 | Kp (cm /s) |
---|---|---|---|---|
AC | 0.05 ± 0.02 | 1.96 ± 0.86 | 0.996 ± 0.002 | 4.79 × 10−07 ± 1.90 × 10−07 |
RC | 0.05 ± 0.02 | 2.36 ± 1.34 | 0.997 ± 0.003 | 5.83 × 10−07 ± 2.03 × 10−07 |
C | 0.07 ± 0.02 | 1.90 ± 0.35 | 0.989 ± 0.011 | 7.76 × 10−07 ± 2.60 × 10−07 |
GCO (Oil) | 1.20 ± 0.28 * | 0.08 ± 1.16 | 0.988 ± 0.013 | 3.33 × 10−07 ± 7.65 × 10−08 * |
Caffeine Solution | 0.06 ± 0.01 | 3.36 ± 0.73 | 0.993 ± 0.003 | 6.41 × 10−07 ± 6.95 × 10−08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiari-Andréo, B.G.; Marto, J.; Ascenso, A.; Carneiro, C.; Rodríguez, L.; Guillot, A.J.; Garrigues, T.M.; Ribeiro, H.M.; Melero, A.; Isaac, V. The Impact of Titanium Dioxide Type Combined with Coffee Oil Obtained from Coffee Industry Waste on Sunscreen Product Performance. Dermato 2021, 1, 2-17. https://doi.org/10.3390/dermato1010002
Chiari-Andréo BG, Marto J, Ascenso A, Carneiro C, Rodríguez L, Guillot AJ, Garrigues TM, Ribeiro HM, Melero A, Isaac V. The Impact of Titanium Dioxide Type Combined with Coffee Oil Obtained from Coffee Industry Waste on Sunscreen Product Performance. Dermato. 2021; 1(1):2-17. https://doi.org/10.3390/dermato1010002
Chicago/Turabian StyleChiari-Andréo, Bruna G., Joana Marto, Andreia Ascenso, Carlos Carneiro, Laura Rodríguez, Antonio José Guillot, Teresa M. Garrigues, Helena M. Ribeiro, Ana Melero, and Vera Isaac. 2021. "The Impact of Titanium Dioxide Type Combined with Coffee Oil Obtained from Coffee Industry Waste on Sunscreen Product Performance" Dermato 1, no. 1: 2-17. https://doi.org/10.3390/dermato1010002
APA StyleChiari-Andréo, B. G., Marto, J., Ascenso, A., Carneiro, C., Rodríguez, L., Guillot, A. J., Garrigues, T. M., Ribeiro, H. M., Melero, A., & Isaac, V. (2021). The Impact of Titanium Dioxide Type Combined with Coffee Oil Obtained from Coffee Industry Waste on Sunscreen Product Performance. Dermato, 1(1), 2-17. https://doi.org/10.3390/dermato1010002