Latitudinal and Seasonal Variation in Exploratory Behavior in Rufous-Collared Sparrow
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Locations and Bird Sampling
2.3. Open-Field Test (OFT)
2.4. Statistical Tests
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dingemanse, N.J.; De Goede, P. The relation between dominance and exploratory behavior is context-dependent in wild great tits. Behav. Ecol. 2004, 15, 1023–1030. [Google Scholar] [CrossRef]
- Auersperg, A.M.I.; Gajdon, G.K.; von Bayern, A.M.P. A new approach to comparing problem solving, flexibility and innovation. Commun. Integr. Biol. 2012, 5, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, L.; Reader, S.M.; Sol, D. Brains, innovations and evolution in birds and primates. Brain Behav. Evol. 2004, 63, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Jokimäki, J.; Ramos-Chernenko, A. Innovative Foraging Behavior of Urban Birds: Use of Insect Food Provided by Cars. Birds 2024, 5, 469–486. [Google Scholar] [CrossRef]
- Mettke-Hofmann, C.; Winkler, H.; Leisler, B. The significance of ecological factors for exploration and neophobia in parrots. Ethology 2002, 108, 249–272. [Google Scholar] [CrossRef]
- Gilmour, M.E.; Castillo-Guerrero, J.A.; Fleishman, A.B.; Hernández-Vázquez, S.; Young, H.S.; Shaffer, S.A. Plasticity of foraging behaviors in response to diverse environmental conditions. Ecosphere 2018, 9, e02301. [Google Scholar] [CrossRef]
- Brown, C. Familiarity with the test environment improves escape responses in the crimson spotted rainbowfish, Melanotaenia duboulayi. Anim. Cogn. 2001, 4, 109–113. [Google Scholar] [CrossRef]
- Minderman, J.; Reid, J.M.; Evans, P.G.H.; Whittingham, M.J. Personality traits in wild starlings: Exploration behavior and environmental sensitivity. Behav. Ecol. 2009, 20, 830–837. [Google Scholar] [CrossRef]
- Réale, D.; Reader, S.M.; Sol, D.; McDougall, P.T.; Dingemanse, N.J. Integrating animal temperament within ecology and evolution. Biol. Rev. 2007, 82, 291–318. [Google Scholar] [CrossRef]
- Poblete, Y.; Contreras, C.; Ávila, M.; Carmona, M.P.; Fernández, C.; Flores, C.R.; Sabat, P. Haemosporidian Infection Is Associated with the Oxidative Status in a Neotropical Bird. Birds 2024, 5, 604–615. [Google Scholar] [CrossRef]
- Remacha, C.; Ramírez, Á.; Arriero, E.; Pérez-Tris, J. Haemosporidian Infections Influence Risk-Taking Behaviours in Young Male Blackcaps, Sylvia Atricapilla. Anim. Behav. 2023, 196, 113–126. [Google Scholar] [CrossRef]
- García-longoria, L.; Garamszegi, L.Z.; Moller, A.P. Host escape behavior and blood parasite infections in birds. Behav. Ecol. 2014, 25, 890–900. [Google Scholar] [CrossRef]
- Abbey-Lee, R.N.; Mathot, K.J.; Dingemanse, N.J. Behavioral and morphological responses to perceived predation risk: A field experiment in passerines. Behav. Ecol. 2016, 27, 857–864. [Google Scholar] [CrossRef]
- Abbey-Lee, R.N.; Dingemanse, N.J. Adaptive individual variation in phenological responses to perceived predation levels. Nat. Commun. 2019, 10, 1601. [Google Scholar] [CrossRef]
- Payzan-LeNestour, É.; Bossaerts, P. Do Not Bet on the Unknown Versus Try to Find Out More: Estimation Uncertainty and “Unexpected Uncertainty” Both Modulate Exploration. Front. Neurosci. 2012, 6, 31851. [Google Scholar] [CrossRef]
- Sih, A.; Bell, A.; Johnson, J.C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 2004, 19, 372–378. [Google Scholar] [CrossRef]
- Dingemanse, N.J.; Both, C.; Drent, P.J.; Tinbergen, J.M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. B Biol. Sci. 2004, 271, 847–852. [Google Scholar] [CrossRef]
- Carere, C.; Maestripieri, D. Animal Personalities: Behavior, Physiology, and Evolution; University of Chicago Press: Chicago, IL, USA, 2013. [Google Scholar]
- McEvoy, J.F.; Roshier, D.A.; Ribot, R.F.H.; Bennett, A.T.D. Proximate cues to phases of movement in a highly dispersive waterfowl, Anas superciliosa. Mov. Ecol. 2015, 3, 13–15. [Google Scholar] [CrossRef]
- Moyers, S.C.; Adelman, J.S.; Farine, D.R.; Moore, I.T.; Hawley, D.M. Exploratory behavior is linked to stress physiology and social network centrality in free-living house finches (Haemorhous mexicanus) Hormones and Behavior Exploratory behavior is linked to stress physiology and social network centrality in free-living. Horm. Behav. 2018, 102, 105–113. [Google Scholar] [CrossRef]
- Sih, A.; Mathot, K.J.; Moirón, M.; Montiglio, P.O.; Wolf, M.; Dingemanse, N.J. Animal personality and state-behaviour feedbacks: A review and guide for empiricists. Trends Ecol. Evol. 2015, 30, 50–60. [Google Scholar] [CrossRef]
- Lee, Y.F.; Kuo, Y.M.; Chu, W.C. Energy state affects exploratory behavior of tree sparrows in a group context under differential food-patch distributions. Front. Zool. 2016, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.L.K.; Nilsson, J.Å.; Mettke-Hofmann, C. Energy reserves, information need and a pinch of personality determine decision-making on route in partially migratory blue tits. PLoS ONE 2016, 11, e0163213. [Google Scholar] [CrossRef] [PubMed]
- Poblete, Y.; Contreras, C.; Fernández, C.; Flores, C.R.; Vega, P.; Ávila, M.; Sabat, P. Geographic variation in the altitudinal migration patterns, body size, oxidative status and exploratory behavior in a neotropical bird. Ecol. Evol. 2023, 13, e9941. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.L.F.; Roberts, M.L.; Giblin, I.; Huxham, R.; Evans, M.R. Speed of exploration and risk-taking behavior are linked to corticosterone titres in zebra finches. Horm. Behav. 2007, 52, 445–453. [Google Scholar] [CrossRef]
- Jacques-Hamilton, R.; Hall, M.L.; Buttemer, W.A.; Matson, K.D.; Gonҫalves da Silva, A.; Mulder, R.A.; Peters, A. Personality and innate immune defenses in a wild bird: Evidence for the pace-of-life hypothesis. Horm. Behav. 2017, 88, 31–40. [Google Scholar] [CrossRef]
- Biondi, L.M.; Bó, M.S.; Vassallo, A.I. Inter-individual and age differences in exploration, neophobia and problem-solving ability in a Neotropical raptor (Milvago chimango). Anim. Cogn. 2010, 13, 701–710. [Google Scholar] [CrossRef]
- Breck, S.W.; Poessel, S.A.; Mahoney, P.; Young, J.K. The intrepid urban coyote: A comparison of bold and exploratory behavior in coyotes from urban and rural environments. Sci. Rep. 2019, 9, 2104. [Google Scholar] [CrossRef]
- Dingemanse, N.J.; Réale, D. Natural selection and animal personality. Behaviour 2005, 142, 1159–1184. [Google Scholar] [CrossRef]
- Biondi, L.M.; Medina, A.; Bonetti, E.A.; Paterlini, C.A.; Bó, M.S. Cognitive flexibility in a generalist raptor: A comparative analysis along an urbanization gradient. Behav. Ecol. 2024, 35, arae025. [Google Scholar] [CrossRef]
- Verbeek, M.; Drent, P.J.; Piet, W. Consistent individual differences in early exploratory behavior of male great tits. Anim. Behav. 1994, 48, 1113–1121. [Google Scholar] [CrossRef]
- Dingemanse, N.J.; Both, C.; Drent, P.J.; Van Oers, K.; Van Noordwijk, A.J. Repeatability and heritability of exploratory behaviour in great tits from the wild. Anim. Behav. 2002, 64, 929–938. [Google Scholar] [CrossRef]
- Drent, P.J.; Van Oers, K.; Van Noordwijk, A.J. Realized heritability of personalities in the great tit (Parus major). Proc. R. Soc. B Biol. Sci. 2003, 270, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.L.; van Asten, T.; Katsis, A.C.; Dingemanse, N.J.; Magrath, M.J.L.; Mulder, R.A. Animal personality and pace-of-life syndromes: Do fast-exploring fairy-wrens die young? Front. Ecol. Evol. 2015, 3, 28. [Google Scholar] [CrossRef]
- Morgan, D.; Auclair, Y.; Giraldeuau, L.-A.; Cézilly, F. Personality and body condition have additive effects on motivation to feed in Zebra Finches Taeniopygia guttata. Ibis 2012, 154, 372–378. [Google Scholar] [CrossRef]
- Coomes, J.R.; Davidson, G.L.; Reichert, M.S.; Kulahci, I.G.; Troisi, C.A.; Quinn, J.L. Inhibitory control, exploration behaviour and manipulated ecological context are associated with foraging flexibility in the great tit. J. Anim. Ecol. 2022, 91, 320–333. [Google Scholar] [CrossRef]
- Dingemanse, N.J.; Both, C.; Van Noordwijk, A.J.; Rutten, A.L.; Drent, P.J. Natal dispersal and personalities in great tits (Parus major). Proc. R. Soc. B Biol. Sci. 2003, 270, 741–747. [Google Scholar] [CrossRef]
- Botero-Delgadillo, E.; Quirici, V.; Poblete, Y.; Cuevas, É.; Kuhn, S.; Girg, A.; Teltscher, K.; Poulin, E.; Kempenaers, B.; Vásquez, R.A. Variation in fine-scale genetic structure and local dispersal patterns between peripheral populations of a South American passerine bird. Ecol. Evol. 2017, 7, 8363–8378. [Google Scholar] [CrossRef]
- Patrick, S.C.; Chapman, J.R.; Dugdale, H.L.; Quinn, J.L.; Sheldon, B.C. Promiscuity, paternity and personality in the great tit. Proc. R. Soc. B Biol. Sci. 2012, 279, 1724–1730. [Google Scholar] [CrossRef]
- Poblete, Y.; Botero-Delgadillo, E.; Espíndola-Hernández, P.; Vásquez, R.A. Risk-taking behaviour relates to timing of breeding in a sub-Antarctic rainforest bird. Ibis 2021, 163, 812–823. [Google Scholar] [CrossRef]
- Royle, N.J.; Schuett, W.; Dall, S.R.X. Behavioral consistency and the resolution of sexual conflict over parental investment. Behav. Ecol. 2010, 21, 1125–1130. [Google Scholar] [CrossRef]
- Ruf, T.; Bieber, C.; Arnold, W.; Millesi, E. Living in a Seasonal World: Thermoregul Metab Adapt; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Williams, T.D. Physiological Adaptations for Breeding in Birds; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Dawson, A.; King, V.M.; Bentley, G.E.; Ball, G.F. Photoperiodic control of seasonality in birds. J. Biol. Rhythm. 2001, 16, 365–380. [Google Scholar] [CrossRef] [PubMed]
- Medina-García, A.; Jawor, J.M.; Wright, T.F. Cognition, personality, and stress in budgerigars, Melopsittacus undulatus. Behav. Ecol. 2017, 28, 1504–1516. [Google Scholar] [CrossRef] [PubMed]
- Mutzel, A.; Dingemanse, N.J.; Araya-Ajoy, Y.G.; Kempenaers, B. Parental provisioning behaviour plays a key role in linking personality with reproductive success. Proc. R. Soc. B Biol. Sci. 2013, 280, 20131019. [Google Scholar] [CrossRef] [PubMed]
- Bharucha, B.; Padate, G.S. Glycogen metabolism in a sub-tropical, social bird: White-headed jungle babbler during breeding and non-breeding states. Biochemistry 2005, 14, 234–242. [Google Scholar]
- Lind, J.; Cresswell, W. Determining the fitness consequences of antipredation behavior. Behav. Ecol. 2005, 16, 945–956. [Google Scholar] [CrossRef]
- Mettke-Hofmann, C. Object exploration of garden and Sardinian warblers peaks in spring. Ethology 2007, 113, 174–182. [Google Scholar] [CrossRef]
- Vessem, J.; Draulaks, D.; Bont, A. Movements of radio-tagged Grey Herons Ardea cinerea during the breeding season in a large pond area. Ibis 1984, 126, 576–587. [Google Scholar] [CrossRef]
- Poblete, Y.; Gutiérrez, V.; Cid, V.; Newsome, S.D.; Sabat, P.; Vasquez, R.A. Intraspecific variation in exploratory behavior and elevational affinity in a widely distributed songbird. Oecologia 2018, 186, 931–938. [Google Scholar] [CrossRef]
- Maldonado, K.; van Dongen, W.F.D.; Vásquez, R.; Sabat, P. Geographic variation in the association between exploratory behavior and physiology in rufous-collared sparrows. Physiol. Biochem. Zool. 2012, 85, 618–624. [Google Scholar] [CrossRef]
- Chapman, F.M. The Post-Glacial History of Zonotrichia capensis. Bull. Am. Mus. Nat. Hist. 1940, 78, 381–438. [Google Scholar]
- Sabat, P.; Gonzalez-Vejares, S.; Maldonado, K. Diet and habitat aridity affect osmoregulatory physiology: An intraspecific field study along environmental gradients in the Rufous-collared sparrow. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 152, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, G.; Novoa, F.F.; Sabat, P. Hematological parameters and stress index in Rufous-collared Sparrows dwelling in urban environments. Condor 2002, 104, 162–166. [Google Scholar] [CrossRef]
- Poblete, Y.; Gutierrez, V.; González, P.L.; Wingfield, J.C.; Vásquez, R.A. Differences in circulating corticosterone levels associated with elevation of breeding sites in Rufous-collared Sparrows Zonotrichia capensis. J. Ornithol. 2020, 162, 487–496. [Google Scholar] [CrossRef]
- Fernández, C.; Villaseñor, N.R.; Contreras, C.; Ávila, M.; Sabat, P.; Poblete, Y. Intra-urban variation in body condition, body size and oxidative status of Rufous-collared sparrow relate to urban green space attributes in a Latin American metropolis. Urban Ecosyst. 2023, 26, 575–586. [Google Scholar] [CrossRef]
- Lopez-Calleja, M.V. Dieta de Zonotrichia capensis (Emberizidae) Y Diuca diuca (Fringillidae): Efecto de la variación estacional de los recursos tróficos y la riqueza de aves granívoras en Chile central. Rev. Chil. Hist. Nat. 1995, 68, 321–331. [Google Scholar]
- Van Dongen, W.F.D.; Maldonado, K.; Sabat, P.; Vásquez, R.A. Geographic variation in the repeatability of a personality trait. Behav. Ecol. 2010, 21, 1243–1250. [Google Scholar] [CrossRef]
- Miller, A.H.; Miller, V.D. The behavioral ecology and breeding biology of the andean sparrow, Zonotrichia Capensis The behavioral ecology and breeding biology of the andean sparrow, Zonotrichia Capensis. Caldasia 1968, 10, 83–154. [Google Scholar]
- Rubenstein, D.I.; Barnett, R.J.; Ridgely, R.S.; Klopfer, P.H. Adaptive advantages of mixed-species feeding flocks among seed-eating finches in Costa Rica. Ibis 1977, 119, 10–21. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the K¨oppen-Geiger climate classificatio. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Clark, A.D.; Addis, E.A.; Vásquez, R.A.; Wingfield, J.C. Seasonal modulation of the adrenocortical stress responses in Chilean populations of Zonotrichia capensis. J. Ornithol. 2019, 160, 61–70. [Google Scholar] [CrossRef]
- Fridolfsson, A.K.; Ellegren, H. A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol. 1999, 30, 116–121. [Google Scholar] [CrossRef]
- Botero-delgadillo, E.; Quirici, V.; Poblete, Y.; Poulin, E.; Kempenaers, B.; Vásquez, R.A. Exploratory behavior, but not aggressiveness, is correlated with breeding dispersal propensity in the highly philopatric thorn-tailed rayadito. J. Avian Biol. 2020, 51, 1–12. [Google Scholar] [CrossRef]
- Poblete, Y.; Cuevas, É.; Botero-Delgadillo, E.; Espíndola-Hernández, P.; Quirici, V.; Vásquez, R.A. Risk-taking behavior relates to Leucocytozoon spp. infection in a sub-Antarctic rainforest bird. Acta Ethol. 2024, 27, 113–123. [Google Scholar] [CrossRef]
- Blumstein, D.T.; Daniel, J.C. Quantifying Behavior the JWatcher Way; Sinauer Associates: Sunderland, MA, USA, 2007. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio Team: Boston, MA, USA, 2024. [Google Scholar]
- Brooks, M.; Bolker, B.; Kristensen, K.; Maechler, M.; Magnusson, A.; McGillycuddy, M.; Skaug, H.; Nielsen, A.; Berg, C. glmmTMB: Generalized Linear Mixed Models Using Template Model Builder (R Package Version 1.7). 2023. Available online: https://cran.r-project.org/package=glmmTMB (accessed on 1 February 2025).
- Vranken, S.; Wernberg, T.; Scheben, A.; Severn-Ellis, A.A.; Batley, J.; Bayer, P.E.; Edwards, D.; Wheeler, D.; Coleman, M.A. Genotype–Environment mismatch of kelp forests under climate change. Mol. Ecol. 2021, 30, 3730–3746. [Google Scholar] [CrossRef] [PubMed]
- Körner, C. The use of “altitude” in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Poblete, Y.; Contreras, C.; Fernández, C.; Ávila, M.; Sabat, P. Altitudinal variation in oxidative status between breeding and non-breeding seasons in a Neotropical bird. J. Ornithol. 2025. [Google Scholar] [CrossRef]
- Wirowska, M.; Iwińska, K.; Borowski, Z.; Brzeziński, M.; Solecki, P.; Boratyński, J.S. Does Explorative Behavior Allow the Successful Finding of Ephemeral Food Resources in the Wild? Mammal Res. 2023, 69, 89–98. [Google Scholar] [CrossRef]
- Smith, J.B.; Keiter, D.A.; Sweeney, S.J.; Miller, R.S.; Schlichting, P.E.; Beasley, J.C. Habitat Quality Influences Trade-Offs in Animal Movement Along the Exploration–exploitation Continuum. Sci. Rep. 2023, 13, 4814. [Google Scholar] [CrossRef]
- Boon, A.K.; Réale, D.; Boutin, S. The interaction between personality, offspring fitness and food abundance in North American red squirrels. Ecol. Lett. 2007, 10, 1094–1104. [Google Scholar] [CrossRef]
- Verhulst, S.; Nilsson, J.Å. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 399–410. [Google Scholar] [CrossRef]
- Williams, H.; Willemoes, M.; Klaassen, R.H.G.; Strandberg, R.; Thorup, K. Common Cuckoo Home Ranges Are Larger in the Breeding Season Than in the Non-Breeding Season and in Regions of Sparse Forest Cover. J. Ornithol. 2015, 157, 461–469. [Google Scholar] [CrossRef]
- Mwangi, J.; Klaassen, R.H.G.; Muchai, M.; Tieleman, B.I. Home-ranges of Tropical Red-capped Larks Are Influenced by Breeding Rather Than Vegetation, Rainfall or Invertebrate Availability. Ibis 2019, 162, 492–504. [Google Scholar] [CrossRef]
- Gross, M.R. The evolution of parental care. Q. Rev. Biol. 2005, 80, 37–45. [Google Scholar] [CrossRef] [PubMed]
- David, M.; Pinxten, R.; Martens, T.; Eens, M. Exploration behavior and parental effort in wild great tits: Partners matter. Behav. Ecol. Sociobiol. 2015, 69, 1085–1095. [Google Scholar] [CrossRef]
- Moss, R.L.; Parr, R.; Lambin, X. Effects of Testosterone on Breeding Density, Breeding Success and Survival of Red Grouse. Proc. R. Soc. B Biol. Sci. 1994, 258, 175–180. [Google Scholar] [CrossRef]
- Apfelbeck, B.A.; Flinks, H.; Goymann, W. Variation in Circulating Testosterone During Mating Predicts Reproductive Success in a Wild Songbird. Front. Ecol. Evol. 2016, 128, 104900. [Google Scholar] [CrossRef]
- Bevan, R.M.; Butler, P.J.; Woakes, A.J.; Boyd, I.L. The Energetics of Gentoo Penguins, Pygoscelis Papua, During the Breeding Season. Funct. Ecol. 2002, 16, 175–190. [Google Scholar] [CrossRef]
- Fayet, A.L.; Freeman, R.; Anker-Nilssen, T.; Diamond, A.W.; Erikstad, K.E.; Fifield, D.; Fitzsimmons, M.G.; Hansen, E.S.; Harris, M.; Jessopp, M.; et al. Ocean-Wide Drivers of Migration Strategies and Their Influence on Population Breeding Performance in a Declining Seabird. Curr. Biol. 2017, 27, 3871–3878.e3. [Google Scholar] [CrossRef]
- Kresnik, R.J.; Stutchbury, B.J.M. Space-Use Strategies of Wintering Ovenbirds in Belize: Causes and Consequences. J. Field Ornithol. 2014, 85, 274–288. [Google Scholar] [CrossRef]
- Labocha, M.K.; Hayes, J.P. Morphometric indices of body condition in birds: A review. J. Ornithol. 2012, 153, 1–22. [Google Scholar] [CrossRef]
- Smith, R.J.; Moore, F.R. Arrival Fat and Reproductive Performance in a Long-Distance Passerine Migrant. Oecologia 2003, 134, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Salewski, V.; Schaub, M. Stopover Duration of Palearctic Passerine Migrants in the Western Sahara—Independent of Fat Stores? Ibis 2007, 149, 223–236. [Google Scholar] [CrossRef]
- Carere, C.; Drent, P.J.; Koolhaas, J.M.; Groothuis, T.G.G. Epigenetic effects on personality traits: Early food provisioning and sibling competition. Behaviour 2005, 142, 1329–1355. [Google Scholar] [CrossRef]
- Bell, A.M. Behavioural differences between individuals and two populations of stickleback (Gasterosteus aculeatus). J. Evol. Biol. 2005, 18, 464–473. [Google Scholar] [CrossRef]
Locations | Breeding | Non-Breeding | N | ||
---|---|---|---|---|---|
Female | Male | Female | Male | ||
Conguillío | 14 | 1 | 5 | 7 | 27 |
Lagunillas | 7 | 9 | 9 | 8 | 33 |
Rinconada | 5 | 11 | 16 | 10 | 42 |
Total | 26 | 21 | 30 | 25 | 102 |
Effect on Exploratory Behavior | Estimate | SE | z Value | p-Value |
---|---|---|---|---|
Intercept | 0.316 | 0.048 | 6.45 | 0.0001 |
Location:Lagunillas | 0.184 | 0.059 | 3.117 | 0.001 |
Location:Rinconada | 0.118 | 0.056 | 2.101 | 0.035 |
Season 1 | −0.118 | 0.045 | −2.604 | 0.009 |
Random effects | σ | |||
Location | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poblete, Y.; Fernández, C.; Flores, C.R.; Vega, P.; Ávila, M. Latitudinal and Seasonal Variation in Exploratory Behavior in Rufous-Collared Sparrow. Birds 2025, 6, 24. https://doi.org/10.3390/birds6020024
Poblete Y, Fernández C, Flores CR, Vega P, Ávila M. Latitudinal and Seasonal Variation in Exploratory Behavior in Rufous-Collared Sparrow. Birds. 2025; 6(2):24. https://doi.org/10.3390/birds6020024
Chicago/Turabian StylePoblete, Yanina, Carolina Fernández, Cristian R. Flores, Patricia Vega, and Miguel Ávila. 2025. "Latitudinal and Seasonal Variation in Exploratory Behavior in Rufous-Collared Sparrow" Birds 6, no. 2: 24. https://doi.org/10.3390/birds6020024
APA StylePoblete, Y., Fernández, C., Flores, C. R., Vega, P., & Ávila, M. (2025). Latitudinal and Seasonal Variation in Exploratory Behavior in Rufous-Collared Sparrow. Birds, 6(2), 24. https://doi.org/10.3390/birds6020024