Positioning Fractal Dimension and Lacunarity in the IBSI Feature Space: Simulation With and Without Wavelets
Simple Summary
Abstract
1. Introduction
Relation to Existing Benchmarks
2. Background and Related Work
2.1. Standardized Radiomic Features
2.2. Fractal Dimension and Lacunarity
2.3. Clinical Applications of Radiomics and the Role of Fractal Measures
3. Materials and Methods
3.1. Radiomic Feature Set: Definitions and Computation
3.1.1. First-Order (Intensity) Features
3.1.2. GLCM Features
3.1.3. GLRLM Features
3.1.4. GLSZM Features
3.1.5. GLDM Features
3.1.6. NGTDM Features
3.1.7. Shape-2D Proxies
3.2. Wavelet Features
3.3. Fractal Dimension and Lacunarity
| Radiomic Feature Computation—Step-by-Step Summary |
|
3.4. Similarity Metrics and Embeddings (Definitions)
3.4.1. Pairwise Association (Similarity) Measures
3.4.2. Low-Dimensional Embeddings of Feature Geometry
3.5. Simulation Design
4. Results
4.1. Results Without Wavelet Features
4.2. Results with Wavelet Features
5. Conclusions
6. Simple Summary
7. Discussion
7.1. Interpretation and Practical Guidance
7.2. Limitations, Sensitivity, and External Validation
7.3. Stability and Sensitivity of Similarity Inferences
7.4. Extension to 3D and Neighborhood Topology
8. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Feature Definitions and Interpretations
Appendix A.1. Feature Definitions and Interpretations
| Feature | Formula/Symbol | What It Captures (Interpretation) |
|---|---|---|
| Energy | Overall signal power (scale-dependent); larger when intensities have large magnitude. | |
| Total Energy | Energy with physical units (in 2D, voxel area often set to 1). | |
| RMS | Root-mean-square; average magnitude. | |
| Variance | Dispersion about the mean; sensitive to outliers. | |
| Standard Deviation | Square root of variance; same interpretation on original scale. | |
| Skewness | Asymmetry of the distribution. | |
| Kurtosis | Tail heaviness/peakedness (non-excess); equals 3 for Gaussian. | |
| Entropy | Histogram unpredictability (bits). | |
| Uniformity | Histogram concentration (also “histogram energy”). | |
| Mean | Central tendency (average intensity). | |
| Median | Robust central tendency. | |
| P10 | Lower-tail intensity (10th percentile). | |
| P90 | Upper-tail intensity (90th percentile). | |
| Minimum | Absolute lowest observed intensity. | |
| Maximum | Absolute highest observed intensity. | |
| IQR | Middle-spread; robust scale. | |
| Range | Full dynamic range of intensities. | |
| MAD | Mean absolute deviation. | |
| rMAD | Trimmed absolute deviation within the 10–90% band. |
Appendix A.2. GLCM Definitions and Feature Formulas
| Feature | Formula/Symbol | Interpretation |
|---|---|---|
| Contrast | Off-diagonal emphasis; higher with strong edges. | |
| Dissimilarity | Linear penalty version of contrast. | |
| ASM | Angular Second Moment; texture uniformity. | |
| Energy | Monotone with ASM (legacy definition). | |
| Entropy | Co-occurrence disorder. | |
| Homogeneity (1) | Rewards near-diagonal mass. | |
| Homogeneity (2) | Scale-normalized variant. | |
| ID | Inverse Difference; favors small gaps. | |
| IDN | Normalized ID. | |
| Inv. Variance | Strongly favors smooth textures. | |
| Correlation | Marginal association strength. | |
| Max Prob. | Dominant co-occurrence pair. | |
| Sum Avg. | Mean of sum distribution. | |
| Sum Entropy | Disorder of sum distribution. | |
| Diff. Avg. | Mean absolute difference. | |
| Diff. Var. | Spread of difference distribution. | |
| Diff. Entropy | Disorder of difference distribution. | |
| IMC1 | Entropy gap vs. marginals. | |
| IMC2 | Bounded [0, 1]; strength of dependence. |
Appendix A.3. GLRLM Definitions and Feature Formulas
| Feature | Formula/Symbol | Interpretation |
|---|---|---|
| SRE | Short-run emphasis; larger for fine, rapidly varying texture. | |
| LRE | Long-run emphasis; larger for coarse, extended uniform regions. | |
| GLN (counts) | Run mass concentrated in few gray levels (tone nonuniformity). | |
| GLNN | Scale-normalized GLN; reduces dependence on run count. | |
| RLN (counts) | Run mass concentrated in few lengths (scale nonuniformity). | |
| RLNN | Scale-normalized RLN; reduces dependence on run count. | |
| RP (IBSI) | Run density per pixel; higher when runs are more numerous. | |
| LGRE | Emphasizes runs at low gray levels (darker tones). | |
| HGRE | Emphasizes runs at high gray levels (brighter tones). | |
| SRLGLE | Short runs at low gray levels (fine, dark texture). | |
| SRHGLE | Short runs at high gray levels (fine, bright texture). | |
| LRLGLE | Long runs at low gray levels (coarse, dark texture). | |
| LRHGLE | Long runs at high gray levels (coarse, bright texture). | |
| Run Entropy | Disorder of the joint run distribution. | |
| RLV (over ) | Spread of run lengths; multiple scales ⇒ large. | |
| GLV (over ) | Spread across gray levels among runs. |
Appendix A.4. GLSZM Definitions and Feature Formulas
| Feature | Formula/Symbol | Interpretation |
|---|---|---|
| SAE | Emphasizes small zones (fine/fragmented textures). | |
| LAE | Emphasizes large zones (coarse/homogeneous regions). | |
| GLN (counts) | Zone mass concentrated in few gray levels (tone nonuniformity). | |
| GLNN | Scale-normalized GLN; reduces dependence on zone count. | |
| SZN (counts) | Zone mass concentrated in few sizes (size nonuniformity). | |
| SZNN | Scale-normalized SZN; reduces dependence on zone count. | |
| ZP (IBSI) | Zone density per pixel; higher when zones are numerous. | |
| LGZE | Emphasizes low gray-level zones (darker tones). | |
| HGZE | Emphasizes high gray-level zones (brighter tones). | |
| SA_LGLE | Small zones at low gray levels (fine, dark patterns). | |
| SA_HGLE | Small zones at high gray levels (fine, bright patterns). | |
| LA_LGLE | Large zones at low gray levels (coarse, dark regions). | |
| LA_HGLE | Large zones at high gray levels (coarse, bright regions). | |
| Zone Entropy | Disorder of gray-level/size distribution. | |
| Zone Size Var. (over ) | Spread of zone sizes; multiscale structures ⇒ large. | |
| Zone Size Mean (over ) | Average zone size; complements SAE/LAE. |
Appendix A.5. GLDM Definitions and Feature Formulas
| Feature | Formula/Symbol | Interpretation |
|---|---|---|
| SDE | Small-dependence emphasis; larger for fine/fragmented textures. | |
| LDE | Large-dependence emphasis; larger for smooth/homogeneous regions. | |
| GLN | Events concentrated in few gray levels (tone nonuniformity). | |
| GLNN | Scale-normalized GLN; reduces dependence on total events. | |
| DN | Events concentrated in few dependence sizes (scale nonuniformity). | |
| DNN | Scale-normalized DN; reduces dependence on total events. | |
| DP | Dependence event density (implementation-consistent). | |
| LGLE | Emphasizes low gray-level events (darker tones). | |
| HGLE | Emphasizes high gray-level events (brighter tones). | |
| SDLGLE | Small dependence at low gray levels (fine, dark patterns). | |
| SDHGLE | Small dependence at high gray levels (fine, bright patterns). | |
| LDLGLE | Large dependence at low gray levels (coherent, dark regions). | |
| LDHGLE | Large dependence at high gray levels (coherent, bright regions). | |
| DEntropy | Disorder of the joint dependence distribution. |
Appendix A.6. NGTDM Definitions and Feature Formulas
| Feature | Formula/Symbol | Interpretation |
|---|---|---|
| Coarseness | Larger for smooth/uniform neighborhoods (small S). | |
| Contrast | Global tone spread modulated by local dissimilarity S. | |
| Busyness | Rate of local change relative to tone separation. | |
| Complexity | Pairwise tone gaps weighted by local deviations. | |
| Strength | Quadratic tone separation moderated by local roughness. |
Appendix A.7. Shape-2D Definitions and Feature Formulas
| Feature | Formula/Symbol | Interpretation |
|---|---|---|
| Area (A) | In-plane size of ROI (pixels or mm2). | |
| Perimeter (neigh.) | Boundary length on a Manhattan grid; reproducible contour measure. | |
| Elongation (2D) | In-plane anisotropy; ≈0 for stretched, ≈1 for compact. | |
| Flatness (2D) | Same expression in 2D; distinct from elongation only in 3D. |
Appendix B. Associations of Frac and Lac with IBSI Features (Excluding Wavelets)
| Feature | r | cos | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| GLCM_DiffEntropy | 0.981 | 1.710 | 0.979 | 0 | 0.974 | 1.000 | 0.981 | 1.410 | 0 | 1.267 |
| GLCM_Contrast | 0.969 | 2.810 | 0.980 | 0 | 0.970 | 1.000 | 0.969 | 3.410 | 0 | 1.256 |
| GLCM_DiffVariance | 0.981 | 7.110 | 0.982 | 0 | 0.978 | 0.968 | 0.981 | 2.910 | 0 | 1.250 |
| GLCM_DiffAverage | 0.975 | 2.010 | 0.978 | 0 | 0.971 | 0.974 | 0.975 | 3.310 | 0 | 1.243 |
| GLCM_Dissimilarity | 0.975 | 2.010 | 0.978 | 0 | 0.971 | 0.974 | 0.975 | 3.310 | 0 | 1.243 |
| GLCM_IMC1 | 0.949 | 3.210 | 0.946 | 0 | 0.932 | 0.916 | 0.949 | 2.510 | 0 | 1.144 |
| GLCM_Entropy | 0.949 | 3.310 | 0.945 | 0 | 0.932 | 0.902 | 0.949 | 2.510 | 0 | 1.135 |
| GLSZM_SAE | 0.947 | 1.210 | 0.942 | 0 | 0.934 | 0.876 | 0.947 | 8.210 | 0 | 1.115 |
| GLSZM_SZN | 0.946 | 3.810 | 0.941 | 0 | 0.933 | 0.877 | 0.946 | 2.210 | 0 | 1.114 |
| GLDM_SDE | 0.938 | 5.510 | 0.934 | 0 | 0.922 | 0.867 | 0.938 | 2.710 | 0 | 1.090 |
| GLDM_DN | 0.935 | 1.310 | 0.934 | 0 | 0.921 | 0.860 | 0.935 | 5.110 | 0 | 1.084 |
| GLDM_DNN | 0.935 | 1.310 | 0.934 | 0 | 0.921 | 0.860 | 0.935 | 5.110 | 0 | 1.084 |
| GLRLM_RLN | 0.926 | 1.410 | 0.924 | 0 | 0.905 | 0.842 | 0.926 | 4.610 | 0 | 1.049 |
| GLRLM_SRE | 0.924 | 8.510 | 0.922 | 0 | 0.902 | 0.832 | 0.924 | 2.710 | 0 | 1.039 |
| GLDM_SDLGLE | 0.857 | 1.710 | 0.867 | 0 | 0.845 | 0.746 | 0.857 | 4.510 | 0 | 0.863 |
| GLSZM_SA_LGLE | 0.827 | 7.610 | 0.835 | 0 | 0.818 | 0.732 | 0.827 | 1.910 | 0 | 0.795 |
| GLCM_Homogeneity2 | −0.974 | 6.610 | −0.980 | 0 | 0.972 | 0.982 | −0.974 | 9.210 | 0 | 0.681 |
| GLCM_Correlation | −0.969 | 5.410 | −0.980 | 0 | 0.970 | 0.982 | −0.969 | 5.610 | 0 | 0.679 |
| GLSZM_LGZE | 0.786 | 1.110 | 0.798 | 0 | 0.784 | 0.656 | 0.786 | 2.510 | 0 | 0.671 |
| GLDM_SDHGLE | 0.786 | 1.110 | 0.792 | 0 | 0.776 | 0.659 | 0.786 | 2.510 | 0 | 0.665 |
| GLCM_SumEntropy | −0.933 | 1.310 | −0.983 | 0 | 0.960 | 0.982 | −0.933 | 4.710 | 0 | 0.664 |
| GLCM_IDN | −0.976 | 2.510 | −0.977 | 0 | 0.970 | 0.946 | −0.976 | 6.810 | 0 | 0.655 |
| GLRLM_SRLGLE | 0.778 | 1.310 | 0.801 | 0 | 0.778 | 0.602 | 0.778 | 2.810 | 0 | 0.628 |
| GLCM_ID | −0.954 | 3.610 | −0.949 | 0 | 0.938 | 0.933 | −0.954 | 3.310 | 0 | 0.608 |
| GLCM_IMC2 | −0.935 | 1.810 | −0.946 | 0 | 0.927 | 0.916 | −0.935 | 6.910 | 0 | 0.583 |
| GLRLM_GLVariance | 0.766 | 3.410 | 0.770 | 0 | 0.760 | 0.585 | 0.766 | 7.210 | 0 | 0.579 |
| GLRLM_LGRE | 0.744 | 1.010 | 0.774 | 0 | 0.756 | 0.598 | 0.744 | 2.110 | 0 | 0.569 |
| GLRLM_RunEntropy | −0.938 | 4.910 | −0.936 | 0 | 0.921 | 0.895 | −0.938 | 2.610 | 0 | 0.562 |
| GLSZM_ZoneSizeMean | −0.928 | 3.010 | −0.924 | 1.510 | 0.908 | 0.912 | −0.928 | 1.010 | 2.610 | 0.556 |
| GLCM_Homogeneity1 | −0.936 | 5.110 | −0.931 | 0 | 0.916 | 0.882 | −0.936 | 2.210 | 0 | 0.548 |
| GLDM_DEntropy | −0.937 | 2.010 | −0.936 | 0 | 0.922 | 0.870 | −0.937 | 9.210 | 0 | 0.547 |
| GLSZM_ZoneEntropy | −0.946 | 3.510 | −0.943 | 0 | 0.933 | 0.847 | −0.946 | 2.210 | 0 | 0.544 |
| GLCM_InverseVariance | −0.940 | 6.210 | −0.933 | 0 | 0.921 | 0.842 | −0.940 | 3.410 | 0 | 0.527 |
| GLSZM_GLNN | −0.915 | 2.410 | −0.909 | 0 | 0.893 | 0.825 | −0.915 | 7.510 | 0 | 0.480 |
| GLRLM_GLNN | −0.881 | 6.910 | −0.877 | 0 | 0.856 | 0.808 | −0.881 | 1.910 | 0 | 0.421 |
| GLCM_Energy | −0.884 | 1.110 | −0.877 | 0 | 0.858 | 0.775 | −0.884 | 3.110 | 0 | 0.402 |
| GLCM_ASM | −0.883 | 2.010 | −0.877 | 0 | 0.856 | 0.775 | −0.883 | 5.810 | 0 | 0.400 |
| GLRLM_LRE | −0.845 | 5.110 | −0.842 | 0 | 0.823 | 0.701 | −0.845 | 1.310 | 0 | 0.305 |
| GLSZM_SA_HGLE | 0.613 | 7.910 | 0.641 | 0 | 0.628 | 0.549 | 0.613 | 1.510 | 0 | 0.276 |
| GLRLM_RP | 0.557 | 1.410 | 0.592 | 1.410 | 0.551 | 0.703 | 0.557 | 2.310 | 2.310 | 0.255 |
| GLDM_LDE | −0.824 | 2.210 | −0.826 | 1.010 | 0.804 | 0.658 | −0.824 | 5.410 | 1.710 | 0.252 |
| GLRLM_LRLGLE | −0.738 | 4.710 | −0.832 | 0 | 0.788 | 0.651 | −0.738 | 9.510 | 0 | 0.218 |
| GLSZM_SZNN | −0.774 | 3.410 | −0.776 | 0 | 0.759 | 0.600 | −0.774 | 7.510 | 0 | 0.148 |
| GLDM_LDLGLE | −0.731 | 2.610 | −0.795 | 0 | 0.759 | 0.598 | −0.731 | 5.110 | 0 | 0.146 |
| GLSZM_LA_LGLE | −0.632 | 4.010 | −0.805 | 0 | 0.728 | 0.637 | −0.632 | 7.510 | 0 | 0.131 |
| GLSZM_GLN | −0.721 | 2.410 | −0.737 | 0 | 0.732 | 0.603 | −0.721 | 4.510 | 0 | 0.097 |
| GLRLM_SRHGLE | 0.490 | 2.010 | 0.511 | 1.310 | 0.518 | 0.509 | 0.490 | 3.110 | 2.010 | 0.009 |
| GLSZM_LAE | −0.557 | 1.410 | −0.658 | 0 | 0.640 | 0.643 | −0.557 | 2.310 | 0 | −0.020 |
| GLRLM_LRHGLE | −0.590 | 1.910 | −0.626 | 0 | 0.624 | 0.622 | −0.590 | 3.410 | 0 | −0.051 |
| GLSZM_ZP | 0.499 | 7.910 | 0.358 | 7.110 | 0.513 | 0.464 | 0.499 | 1.310 | 1.010 | −0.102 |
| GLRLM_RLNN | −0.570 | 2.810 | −0.639 | 0 | 0.624 | 0.503 | −0.570 | 5.010 | 0 | −0.125 |
| GLRLM_GLN | −0.558 | 1.210 | −0.646 | 0 | 0.617 | 0.491 | −0.558 | 2.010 | 0 | −0.136 |
| GLDM_LDHGLE | −0.506 | 3.910 | −0.542 | 0 | 0.552 | 0.548 | −0.506 | 6.310 | 0 | −0.211 |
| GLRLM_RunVariance | −0.388 | 9.310 | −0.570 | 2.810 | 0.441 | 0.649 | −0.388 | 1.410 | 4.510 | −0.225 |
| GLCM_MaxProbability | −0.492 | 1.610 | −0.494 | 1.310 | 0.535 | 0.432 | −0.492 | 2.610 | 2.010 | −0.325 |
| FO_Range | 0.375 | 2.210 | 0.349 | 1.410 | 0.356 | 0.299 | 0.375 | 3.310 | 2.010 | −0.406 |
| FO_Maximum | 0.348 | 1.310 | 0.313 | 1.010 | 0.340 | 0.311 | 0.348 | 1.910 | 1.510 | −0.452 |
| GLSZM_LA_HGLE | −0.223 | 6.210 | −0.440 | 2.510 | 0.408 | 0.511 | −0.223 | 7.910 | 3.710 | −0.452 |
| GLSZM_HGZE | 0.224 | 5.810 | 0.276 | 6.610 | 0.288 | 0.293 | 0.224 | 7.510 | 9.010 | −0.620 |
| FO_Kurtosis | 0.267 | 9.710 | 0.234 | 4.010 | 0.271 | 0.259 | 0.267 | 1.410 | 5.310 | −0.638 |
| NGTDM_Busyness | 0.228 | 5.010 | 0.245 | 2.610 | 0.257 | 0.269 | 0.228 | 6.610 | 3.510 | −0.667 |
| NGTDM_Contrast | −0.254 | 1.710 | −0.304 | 1.710 | 0.338 | 0.325 | −0.254 | 2.410 | 2.310 | −0.678 |
| GLSZM_ZoneVariance | −0.031 | 7.010 | −0.315 | 9.210 | 0.250 | 0.458 | −0.031 | 7.110 | 1.310 | −0.699 |
| GLRLM_HGRE | 0.158 | 5.310 | 0.233 | 4.310 | 0.265 | 0.299 | 0.158 | 6.310 | 5.510 | −0.711 |
| GLCM_SumAverage | −0.236 | 3.610 | −0.206 | 1.110 | 0.255 | 0.294 | −0.236 | 4.810 | 1.410 | −0.805 |
| NGTDM_Complexity | 0.195 | 1.710 | 0.072 | 3.810 | 0.226 | 0.258 | 0.195 | 2.010 | 4.310 | −0.819 |
| FO_MAD | −0.267 | 9.510 | −0.219 | 7.110 | 0.253 | 0.235 | −0.267 | 1.410 | 9.110 | −0.827 |
| FO_rMAD | −0.250 | 2.010 | −0.211 | 9.610 | 0.242 | 0.250 | −0.250 | 2.710 | 1.210 | −0.834 |
| NGTDM_Coarseness | 0.101 | 2.210 | 0.150 | 6.710 | 0.240 | 0.245 | 0.101 | 2.510 | 7.910 | −0.855 |
| FO_P90.90% | −0.219 | 7.210 | −0.159 | 5.210 | 0.233 | 0.235 | −0.219 | 9.110 | 6.210 | −0.887 |
| FO_IQR.75% | −0.209 | 1.010 | −0.174 | 3.410 | 0.207 | 0.249 | −0.209 | 1.310 | 4.110 | −0.887 |
| FO_Skewness | 0.119 | 1.510 | 0.067 | 4.110 | 0.197 | 0.277 | 0.119 | 1.710 | 4.510 | −0.891 |
| FO_P10.10% | 0.095 | 2.510 | 0.082 | 3.210 | 0.184 | 0.236 | 0.095 | 2.810 | 3.610 | −0.937 |
| NGTDM_Strength | −0.069 | 4.010 | −0.071 | 3.810 | 0.243 | 0.285 | −0.069 | 4.210 | 4.310 | −0.942 |
| FO_Mean | 0.137 | 9.410 | 0.070 | 3.910 | 0.000 | 0.294 | 0.137 | 1.110 | 4.410 | −0.973 |
| FO_Median.50% | −0.002 | 9.810 | −0.041 | 6.210 | 0.186 | 0.306 | −0.002 | 9.810 | 6.210 | −0.997 |
| FO_Minimum | −0.080 | 3.310 | −0.087 | 2.910 | 0.167 | 0.243 | −0.080 | 3.610 | 3.410 | −0.999 |
| FO_Energy | −0.080 | 3.310 | −0.056 | 5.010 | 0.117 | 0.218 | −0.080 | 3.610 | 5.310 | −1.060 |
| FO_TotalEnergy | −0.080 | 3.310 | −0.056 | 5.010 | 0.117 | 0.218 | −0.080 | 3.610 | 5.310 | −1.060 |
| GLDM_LGLE | 0.008 | 4.610 | 0.055 | 5.010 | 0.000 | 0.244 | 0.008 | 4.710 | 5.310 | −1.125 |
| FO_RMS | −0.069 | 4.010 | −0.027 | 7.410 | 0.000 | 0.239 | −0.069 | 4.210 | 7.410 | −1.132 |
| FO_Variance | −0.077 | 3.510 | −0.055 | 5.110 | 0.000 | 0.189 | −0.077 | 3.710 | 5.310 | −1.145 |
| FO_StdDev | −0.078 | 3.410 | −0.053 | 5.210 | 0.000 | 0.185 | −0.078 | 3.710 | 5.310 | −1.148 |
| FO_Entropy | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| FO_Uniformity | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| Shape2D_Area | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| Shape2D_Perimeter | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| Shape2D_Elongation | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| Shape2D_Flatness | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| GLDM_GLN | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| GLDM_GLNN | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| GLDM_HGLE | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| GLDM_DP | −0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | −0.000 | 1.0 | 1.0 | −1.000 |
| Feature | r | cos | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| GLCM_Correlation | 0.961 | 1.410 | 0.963 | 0 | 0.951 | 0.924 | 0.961 | 1.110 | 0 | 1.195 |
| GLCM_Homogeneity2 | 0.963 | 4.810 | 0.962 | 0 | 0.952 | 0.913 | 0.963 | 5.710 | 0 | 1.189 |
| GLCM_IDN | 0.965 | 2.710 | 0.962 | 0 | 0.953 | 0.896 | 0.965 | 2.210 | 0 | 1.180 |
| GLCM_IMC2 | 0.961 | 1.310 | 0.964 | 0 | 0.953 | 0.887 | 0.961 | 1.110 | 0 | 1.171 |
| GLCM_ID | 0.957 | 1.310 | 0.954 | 0 | 0.942 | 0.866 | 0.957 | 9.110 | 0 | 1.142 |
| GLCM_InverseVariance | 0.952 | 4.110 | 0.950 | 0 | 0.936 | 0.859 | 0.952 | 2.610 | 0 | 1.126 |
| GLCM_Homogeneity1 | 0.947 | 5.310 | 0.943 | 0 | 0.929 | 0.846 | 0.947 | 3.110 | 0 | 1.105 |
| GLSZM_ZoneSizeMean | 0.936 | 3.910 | 0.931 | 1.610 | 0.916 | 0.820 | 0.936 | 1.810 | 2.710 | 1.063 |
| GLSZM_GLNN | 0.930 | 4.510 | 0.924 | 0 | 0.909 | 0.813 | 0.930 | 1.810 | 0 | 1.043 |
| GLRLM_RunEntropy | 0.936 | 5.510 | 0.930 | 0 | 0.916 | 0.785 | 0.936 | 2.410 | 0 | 1.037 |
| GLDM_DEntropy | 0.931 | 7.010 | 0.926 | 0 | 0.911 | 0.798 | 0.931 | 2.910 | 0 | 1.037 |
| GLCM_Energy | 0.925 | 3.710 | 0.918 | 0 | 0.903 | 0.795 | 0.925 | 1.210 | 0 | 1.020 |
| GLCM_ASM | 0.922 | 8.510 | 0.918 | 0 | 0.900 | 0.795 | 0.922 | 2.610 | 0 | 1.015 |
| GLSZM_ZoneEntropy | 0.917 | 5.410 | 0.914 | 0 | 0.894 | 0.804 | 0.917 | 1.610 | 0 | 1.012 |
| GLCM_SumEntropy | 0.899 | 4.710 | 0.906 | 0 | 0.895 | 0.783 | 0.899 | 1.310 | 0 | 0.977 |
| GLRLM_GLNN | 0.898 | 1.510 | 0.891 | 0 | 0.876 | 0.741 | 0.898 | 4.110 | 0 | 0.927 |
| GLRLM_LRE | 0.870 | 2.610 | 0.861 | 0 | 0.851 | 0.721 | 0.870 | 6.710 | 0 | 0.856 |
| GLDM_LDE | 0.849 | 9.210 | 0.843 | 1.110 | 0.831 | 0.639 | 0.849 | 2.310 | 1.710 | 0.759 |
| GLSZM_SZNN | 0.836 | 2.410 | 0.833 | 0 | 0.825 | 0.645 | 0.836 | 5.810 | 0 | 0.742 |
| GLCM_Contrast | −0.961 | 1.410 | −0.962 | 0 | 0.951 | 0.924 | −0.961 | 1.110 | 0 | 0.640 |
| GLCM_DiffEntropy | −0.963 | 3.810 | −0.963 | 0 | 0.952 | 0.915 | −0.963 | 5.310 | 0 | 0.634 |
| GLCM_DiffAverage | −0.965 | 9.510 | −0.962 | 0 | 0.953 | 0.905 | −0.965 | 2.610 | 0 | 0.629 |
| GLCM_Dissimilarity | −0.965 | 9.510 | −0.962 | 0 | 0.953 | 0.905 | −0.965 | 2.610 | 0 | 0.629 |
| GLSZM_GLN | 0.788 | 6.210 | 0.792 | 0 | 0.795 | 0.597 | 0.788 | 1.410 | 0 | 0.625 |
| GLCM_IMC1 | −0.964 | 1.210 | −0.964 | 0 | 0.952 | 0.887 | −0.964 | 2.010 | 0 | 0.616 |
| GLCM_Entropy | −0.964 | 1.210 | −0.964 | 0 | 0.952 | 0.887 | −0.964 | 2.010 | 0 | 0.616 |
| GLCM_DiffVariance | −0.962 | 1.910 | −0.960 | 0 | 0.949 | 0.880 | −0.962 | 1.910 | 0 | 0.607 |
| GLSZM_SAE | −0.926 | 1.310 | −0.921 | 0 | 0.906 | 0.860 | −0.926 | 4.610 | 0 | 0.534 |
| GLSZM_SZN | −0.925 | 3.210 | −0.920 | 0 | 0.904 | 0.860 | −0.925 | 1.110 | 0 | 0.532 |
| GLRLM_LRHGLE | 0.709 | 3.410 | 0.730 | 0 | 0.738 | 0.663 | 0.709 | 7.210 | 0 | 0.531 |
| GLDM_DN | −0.938 | 4.510 | −0.932 | 0 | 0.919 | 0.820 | −0.938 | 2.210 | 0 | 0.525 |
| GLDM_DNN | −0.938 | 4.510 | −0.932 | 0 | 0.919 | 0.820 | −0.938 | 2.210 | 0 | 0.525 |
| GLDM_SDE | −0.938 | 4.010 | −0.931 | 0 | 0.918 | 0.820 | −0.938 | 2.210 | 0 | 0.524 |
| GLRLM_RLN | −0.928 | 3.710 | −0.923 | 0 | 0.906 | 0.792 | −0.928 | 1.410 | 0 | 0.489 |
| GLRLM_SRE | −0.927 | 9.910 | −0.920 | 0 | 0.905 | 0.779 | −0.927 | 3.610 | 0 | 0.478 |
| GLSZM_LAE | 0.648 | 2.910 | 0.728 | 0 | 0.716 | 0.651 | 0.648 | 5.810 | 0 | 0.456 |
| GLDM_SDHGLE | −0.889 | 5.010 | −0.887 | 0 | 0.881 | 0.791 | −0.889 | 1.310 | 0 | 0.441 |
| GLDM_LDHGLE | 0.643 | 7.410 | 0.660 | 0 | 0.680 | 0.559 | 0.643 | 1.410 | 0 | 0.326 |
| GLRLM_GLN | 0.616 | 4.710 | 0.686 | 0 | 0.674 | 0.540 | 0.616 | 8.110 | 0 | 0.302 |
| GLRLM_RLNN | 0.632 | 4.410 | 0.681 | 0 | 0.680 | 0.518 | 0.632 | 8.210 | 0 | 0.300 |
| GLRLM_LRLGLE | 0.604 | 2.710 | 0.672 | 0 | 0.629 | 0.493 | 0.604 | 4.610 | 0 | 0.225 |
| GLSZM_SA_HGLE | −0.774 | 3.710 | −0.792 | 0 | 0.780 | 0.655 | −0.774 | 8.310 | 0 | 0.197 |
| GLRLM_GLVariance | −0.801 | 8.410 | −0.794 | 0 | 0.801 | 0.618 | −0.801 | 2.010 | 0 | 0.193 |
| GLCM_MaxProbability | 0.589 | 2.210 | 0.563 | 6.210 | 0.628 | 0.478 | 0.589 | 3.510 | 9.310 | 0.134 |
| GLDM_LDLGLE | 0.589 | 2.210 | 0.624 | 0 | 0.598 | 0.415 | 0.589 | 3.610 | 0 | 0.110 |
| GLSZM_LA_LGLE | 0.514 | 1.710 | 0.651 | 0 | 0.583 | 0.464 | 0.514 | 2.610 | 0 | 0.086 |
| GLRLM_RunVariance | 0.440 | 1.810 | 0.612 | 9.410 | 0.497 | 0.557 | 0.440 | 2.710 | 1.410 | 0.012 |
| GLDM_SDLGLE | −0.718 | 4.310 | −0.717 | 0 | 0.679 | 0.498 | −0.718 | 9.410 | 0 | −0.031 |
| GLSZM_LA_HGLE | 0.377 | 2.010 | 0.572 | 0 | 0.526 | 0.576 | 0.377 | 2.910 | 0 | −0.038 |
| GLRLM_SRHGLE | −0.670 | 7.110 | −0.674 | 0 | 0.680 | 0.543 | −0.670 | 1.410 | 0 | −0.040 |
| GLRLM_RP | −0.630 | 5.510 | −0.636 | 2.310 | 0.622 | 0.582 | −0.630 | 1.010 | 3.510 | −0.082 |
| GLSZM_SA_LGLE | −0.676 | 2.210 | −0.671 | 0 | 0.643 | 0.498 | −0.676 | 4.510 | 0 | −0.092 |
| GLSZM_LGZE | −0.619 | 3.010 | −0.620 | 0 | 0.599 | 0.457 | −0.619 | 5.410 | 0 | −0.193 |
| GLRLM_SRLGLE | −0.619 | 3.310 | −0.623 | 0 | 0.603 | 0.417 | −0.619 | 5.810 | 0 | −0.218 |
| GLRLM_LGRE | −0.581 | 6.210 | −0.584 | 0 | 0.578 | 0.387 | −0.581 | 9.710 | 0 | −0.287 |
| GLSZM_ZP | −0.604 | 2.910 | −0.446 | 1.110 | 0.606 | 0.459 | −0.604 | 4.910 | 1.610 | −0.298 |
| GLSZM_HGZE | −0.462 | 2.710 | −0.491 | 2.410 | 0.483 | 0.394 | −0.462 | 4.010 | 3.610 | −0.428 |
| GLCM_SumAverage | 0.368 | 3.710 | 0.338 | 2.410 | 0.364 | 0.330 | 0.368 | 5.210 | 3.210 | −0.450 |
| FO_P90.90% | 0.343 | 1.810 | 0.304 | 1.710 | 0.365 | 0.334 | 0.343 | 2.310 | 2.210 | −0.488 |
| GLRLM_HGRE | −0.384 | 1.210 | −0.426 | 7.210 | 0.443 | 0.375 | −0.384 | 1.710 | 1.010 | −0.528 |
| GLSZM_ZoneVariance | 0.158 | 5.410 | 0.404 | 3.810 | 0.322 | 0.452 | 0.158 | 6.510 | 5.410 | −0.535 |
| FO_Range | −0.366 | 4.010 | −0.382 | 1.810 | 0.389 | 0.396 | −0.366 | 5.610 | 2.410 | −0.576 |
| NGTDM_Contrast | 0.241 | 2.910 | 0.288 | 3.710 | 0.336 | 0.339 | 0.241 | 3.710 | 4.810 | −0.601 |
| NGTDM_Busyness | −0.349 | 1.210 | −0.352 | 1.110 | 0.376 | 0.384 | −0.349 | 1.610 | 1.610 | −0.615 |
| FO_Minimum | 0.242 | 2.810 | 0.244 | 2.710 | 0.272 | 0.313 | 0.242 | 3.610 | 3.510 | −0.681 |
| NGTDM_Complexity | −0.349 | 1.210 | −0.239 | 3.310 | 0.339 | 0.264 | −0.349 | 1.610 | 4.110 | −0.787 |
| FO_Skewness | 0.147 | 7.210 | 0.171 | 3.710 | 0.261 | 0.305 | 0.147 | 8.610 | 4.410 | −0.820 |
| FO_P10.10% | 0.159 | 5.110 | 0.137 | 9.410 | 0.250 | 0.313 | 0.159 | 6.310 | 1.110 | −0.831 |
| FO_Median.50% | −0.260 | 1.310 | −0.197 | 1.610 | 0.312 | 0.286 | −0.260 | 1.710 | 1.910 | −0.840 |
| NGTDM_Strength | 0.093 | 2.610 | 0.077 | 3.510 | 0.305 | 0.338 | 0.093 | 2.910 | 3.910 | −0.876 |
| FO_Maximum | −0.212 | 9.110 | −0.211 | 9.610 | 0.246 | 0.231 | −0.212 | 1.110 | 1.210 | −0.921 |
| NGTDM_Coarseness | −0.081 | 3.310 | −0.134 | 1.010 | 0.276 | 0.309 | −0.081 | 3.610 | 1.210 | −0.936 |
| FO_MAD | 0.114 | 1.710 | 0.096 | 2.410 | 0.202 | 0.233 | 0.114 | 1.910 | 2.810 | −0.978 |
| FO_rMAD | 0.088 | 2.810 | 0.074 | 3.710 | 0.201 | 0.212 | 0.088 | 3.110 | 4.110 | −1.029 |
| FO_Kurtosis | −0.107 | 1.910 | −0.094 | 2.510 | 0.196 | 0.227 | −0.107 | 2.210 | 2.910 | −1.055 |
| FO_Energy | 0.079 | 3.310 | 0.067 | 4.210 | 0.117 | 0.248 | 0.079 | 3.610 | 4.510 | −1.065 |
| FO_TotalEnergy | 0.079 | 3.310 | 0.067 | 4.210 | 0.117 | 0.248 | 0.079 | 3.610 | 4.510 | −1.065 |
| FO_IQR.75% | 0.035 | 6.710 | 0.026 | 7.510 | 0.169 | 0.274 | 0.035 | 6.710 | 7.710 | −1.080 |
| FO_Mean | −0.121 | 1.410 | −0.055 | 5.110 | 0.000 | 0.316 | −0.121 | 1.710 | 5.310 | −1.125 |
| FO_Variance | 0.075 | 3.610 | 0.063 | 4.410 | 0.000 | 0.245 | 0.075 | 3.710 | 4.710 | −1.139 |
| FO_StdDev | 0.075 | 3.610 | 0.061 | 4.610 | 0.000 | 0.225 | 0.075 | 3.710 | 4.810 | −1.154 |
| GLDM_LGLE | −0.005 | 6.710 | −0.016 | 8.510 | 0.000 | 0.218 | −0.005 | 6.710 | 8.610 | −1.251 |
| FO_RMS | 0.035 | 6.710 | 0.003 | 9.710 | 0.000 | 0.162 | 0.035 | 6.710 | 9.710 | −1.269 |
| FO_Entropy | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| FO_Uniformity | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| Shape2D_Area | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| Shape2D_Perimeter | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| Shape2D_Elongation | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| Shape2D_Flatness | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| GLDM_GLN | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| GLDM_GLNN | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| GLDM_HGLE | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
| GLDM_DP | 0.000 | 1.0 | 0.000 | 1.0 | 0.000 | 0.000 | 0.000 | 1.0 | 1.0 | −1.000 |
References
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypińska, A.; Gibbs, P.; Cook, G.J.R. Introduction to radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Tian, J.; Dong, D.; Liu, Z.; Wei, J. Radiomics and Its Clinical Application: Artificial Intelligence and Medical Big Data; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 978-0-12-818101-0/978-0-12-818102-7. Available online: https://www.sciencedirect.com/book/9780128181010/radiomics-and-its-clinical-application#book-description (accessed on 28 September 2025).
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardisation Initiative: Standardized quantitative radiomics. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Galloway, M.M. Texture analysis using gray level run lengths. Comput. Graph. Image Process. 1975, 4, 172–179. [Google Scholar] [CrossRef]
- Thibault, G.; Angulo, J.; Meyer, F. Advanced statistical matrices for texture characterization: Application to cell nuclei classification. In Proceedings of the Pattern Recognition and Information Processing (PRIP), Minsk, Belarus, 2009; Available online: https://www.thibault.biz/Doc/Publications/AdvancedStatisticalMatrices_ICIP_2011.pdf (accessed on 28 September 2025).
- Sun, C.; Wee, W.G. Neighboring gray level dependence matrix for texture classification. Comput. Vis. Graph. Image Process. 1983, 23, 341–352. [Google Scholar] [CrossRef]
- Amadasun, M.; King, R. Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 1989, 19, 1264–1274. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. PyRadiomics: Feature Definitions and Implementation Notes. Online Documentation. Available online: https://pyradiomics.readthedocs.io/en/latest/features.html (accessed on 28 September 2025).
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman: New York, NY, USA, 1982; Available online: https://en.wikipedia.org/wiki/The_Fractal_Geometry_of_Nature (accessed on 28 September 2025).
- Allain, C.; Cloitre, M. Characterizing the lacunarity of random and deterministic fractal sets. Phys. Rev. A 1991, 44, 3552–3558. [Google Scholar] [CrossRef]
- Plotnick, R.E.; Gardner, R.H.; O’Neill, R.V. Lacunarity indices as measures of landscape texture. Landsc. Ecol. 1993, 8, 201–211. [Google Scholar] [CrossRef]
- Kim, S.; Park, Y.W.; Ahn, S.S.; Choi, H.S.; Kim, E.H.; Kang, S.-G.; Kim, S.H.; Chang, J.H.; Kim, D.W.; Lee, S.-K.; et al. Magnetic resonance imaging–based 3D fractal dimension and lacunarity analyses for meningioma grading. Brain Tumor Res. Treat. 2020, 8, e3. [Google Scholar] [CrossRef]
- Battalapalli, D.; Siar, H.; Gutman, D.; Villanueva-Meyer, J.; Cha, S.; Daniels, D.; Hess, C.; Sugrue, L.; Jain, R.; Bilello, M.; et al. Fractal dimension as an imaging biomarker in neuro-oncology: Concepts, methods, and emerging evidence. Front. Physiol. 2023, 14, 1201617. [Google Scholar] [CrossRef]
- Paun, M.-A.; Moldoveanu, F.; Dogaru, F.; Stamate, C. Fractal analysis in medical imaging quantification: A review. Front. Biosci. 2022, 27, 66–90. [Google Scholar] [CrossRef]
- Yip, S.S.F.; Aerts, H.J.W.L. Applications and limitations of radiomics. Phys. Med. Biol. 2016, 61, R150. [Google Scholar] [CrossRef]
- Parmar, C.; Grossmann, P.; Bussink, J.; Lambin, P.; Aerts, H.J.W.L. Machine learning methods for quantitative radiomic biomarkers. Sci. Rep. 2015, 5, 13087. [Google Scholar] [CrossRef]
- Scrivener, M.; de Jong, E.E.C.; van Timmeren, J.E.; Kooi, T.; Leijenaar, R.T.H.; Lambin, P.; van Griethuysen, J.J.M.; Aerts, H.J.W.L. Radiomic feature redundancy and collinearity in oncologic imaging: A review. Insights Imaging 2016, 7, 1023–1036. [Google Scholar] [CrossRef]
- Qiu, Q.; Duan, J.; Gong, X.; Wang, X.; Xie, H.; Zhang, L.; Sun, Y.; Wang, W.; Xie, Z.; He, J.; et al. Reproducibility and generalizability of radiomic features: A multi-center study on lung cancer CT. Med. Phys. 2019, 46, 4630–4648. [Google Scholar] [CrossRef]
- Berenguer, R.; Pastor-Juan, M.d.R.; Canales-Vázquez, J.; Castro-García, M.; Villas, M.V.; Legorburo, F.M.; Sabater, S. Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters. Radiology 2018, 288, 407–415. [Google Scholar] [CrossRef]
- Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and reproducibility of radiomic features: A systematic review. Eur. Radiol. 2018, 28, 5451–5464. [Google Scholar] [CrossRef]
- Shafiq-ul-Hassan, M.; Zhang, G.G.; Latifi, K.; Ullah, G.; Hunt, D.C.; Balagurunathan, Y.; Abdalah, M.A.; Schabath, M.B.; Goldgof, D.G.; Mackin, D.; et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med. Phys. 2017, 44, 1050–1062. [Google Scholar] [CrossRef]
- Orlhac, F.; Frouin, V.; Nioche, C.; Ayache, N.; Buvat, I. Validation of a method to compensate multicenter effects affecting CT radiomics. J. Nucl. Med. 2018, 59, 1321–1328. [Google Scholar] [CrossRef]
- Kovács, B.B.H. Efficient gliding-box lacunarity. Pattern Anal. Appl. 2024, 27, 68. [Google Scholar] [CrossRef]
- Ilmi, H.R.; Khalaf, E.T. Blaze Pose Graph Neural Networks and Long Short-Term Memory for Yoga Posture Recognition. Int. J. Adv. Comput. Inform. 2025, 1, 79–88. [Google Scholar] [CrossRef]
- Jumadi, J.; Md Akbar, J.U. Hybrid GRU–KAN Model for Energy Consumption Prediction in Commercial Building Cooling. Int. J. Adv. Comput. Inform. 2025, 1, 69–78. [Google Scholar] [CrossRef]
- Erniwati, S.; Afifah, V.; Imran, B. Mask Region-Based Convolutional Neural Network in Object Detection: A Review. Int. J. Adv. Comput. Inform. 2025, 1, 106–117. [Google Scholar] [CrossRef]
- Rickisastra, R.; Hariyanto, D.; Apriyansyah, B. Stacked Ensemble of TabNet, Random Forest, and LightGBM for Enhanced Cervical Cancer Prediction. Int. J. Adv. Comput. Inform. 2025, 1, 56–68. [Google Scholar] [CrossRef]
- Mallat, S. A Wavelet Tour of Signal Processing, 2nd ed.; Academic Press: Cambridge, MA, USA, 1999; Available online: https://www.sciencedirect.com/book/9780124666061/a-wavelet-tour-of-signal-processing (accessed on 28 September 2025).
- Nason, G.P.; Silverman, B.W. The stationary wavelet transform and some statistical applications. In Wavelets and Statistics; Antoniadis, A., Oppenheim, G., Eds.; Lecture Notes in Statistics; Springer: Berlin/Heidelberg, Germany, 1995; Volume 103, pp. 281–299. [Google Scholar] [CrossRef]
- Shensa, M.J. The discrete wavelet transform: Wedding the à trous and Mallat algorithms. IEEE Trans. Signal Process. 1992, 40, 2464–2482. [Google Scholar] [CrossRef]
- Daubechies, I. Ten Lectures on Wavelets; SIAM: Philadelphia, PA, USA, 1992. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.; Deist, T.M.; Peerlings, J.; De Jong, E.E.; Van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Pearson, K. Note on regression and inheritance in the case of two parents. Proc. R. Soc. Lond. 1895, 58, 240–242. [Google Scholar] [CrossRef]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Székely, G.J.; Rizzo, M.L.; Bakirov, N.K. Measuring and testing dependence by correlation of distances. Ann. Stat. 2007, 35, 2769–2794. [Google Scholar] [CrossRef]
- Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J.; Lander, E.S.; Mitzenmacher, M.; Sabeti, P.C. Detecting novel associations in large data sets. Science 2011, 334, 1518–1524. [Google Scholar] [CrossRef]
- Salton, G.; McGill, M.J. Introduction to Modern Information Retrieval; McGraw–Hill: New York, NY, USA, 1983. [Google Scholar]
- van der Maaten, L.J.P.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar] [CrossRef]
- Besag, J. Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. B 1974, 36, 192–236. [Google Scholar] [CrossRef]
- Rue, H.; Held, L. Gaussian Markov Random Fields: Theory and Applications; Chapman & Hall/CRC: Boca Raton, FL, USA, 2005. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Kickingereder, P.; Burth, S.; Wick, A.; Götz, M.; Eidel, O.; Schlemmer, H.-P.; Maier-Hein, K.H.; Wick, W.; Bendszus, M.; Radbruch, A.; et al. Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models. Radiology 2016, 280, 880–889. [Google Scholar] [CrossRef] [PubMed]

















| Component | Setting | Values/Levels | Notes |
|---|---|---|---|
| ROI | Size | Fixed across all samples | |
| Replicates | N | 1000 (default; configurable) | Independent ROIs |
| Gray levels | 64 | IBSI-aligned; mitigates sparsity | |
| Discretization | Method | Quantile (fixed-N) | Equiprobable bins; jitter if needed |
| Background | Model | AR(1)-like 2D recursion (Equation (19)) | Approximately isotropic; fast/stable |
| Texture | Per-ROI draw | ||
| Noise | Per-ROI draw | ||
| Heterogeneity | # blobs | with probs | Interior centers (avoid edges) |
| (lesion-like) | Amplitude A | Per blob | |
| Radius r | px | Per blob | |
| Standardization | Scale | Zero mean, unit SD | After blob addition |
| Mask | Binary | Full ROI | For shape proxies |
| Software | Runtime | R 4.4.2 (GUI 1.81; Big Sur ARM build 8462) | All simulations executed in R |
| Randomness | Seed | 20250915 | Reproducible end-to-end |
| Category | Setting | Values/Levels | Notes |
|---|---|---|---|
| Targets | Fractal dimension (Frac) | Thresholds ; boxes | Slope of vs. ; mean over t |
| Lacunarity (Lac) | Median threshold (); windows | ; mean over r | |
| Wavelet | Transform | Undecimated 2D; Coiflet-1; level 1 | Symmetric padding; LL/LH/HL/HH |
| Discretization | Per sub-band; quantile bins | Re-standardize each sub-band | |
| Sub-band features | First-order (19) + GLCM (19) | features/ROI | |
| Efficiency | Integral image | Used for FD and Lac | window sums; avoids partial-window bias |
| First-order | 19 features | Energy, entropy, quantiles, … | From discretized image |
| GLCM | 19 features | ; | Symmetric, normalized, aggregated |
| GLRLM | 16 features | Same four angles | Aggregated across angles |
| GLSZM | 16 features | 8-connectivity | Zone counts across sizes |
| GLDM | 14 features | ; Chebyshev radius 1 | 8-neighborhood |
| NGTDM | 5 features | neighborhoods | Coarseness, contrast, … |
| Shape-2D | 4 proxies | Area, perimeter, elongation, flatness | Full-ROI mask |
| Similarity | Metrics | Pearson r, Spearman , dCor, MIC, cosine | Definitions in Section 3.4 |
| Multiple testing | BH-FDR on r and p-values | Across all comparisons | |
| Composite score | Mean of z-scores of | Standardized per metric across features | |
| Visualization | Heatmap set | Union of top-k neighbors ( each for Frac/Lac) | Pearson correlation; clustered |
| Embeddings | Distances ; UMAP and t-SNE | Descriptive geometry (not inferential) |
| Family | Count |
|---|---|
| First-order (spatial) | 19 |
| GLCM (spatial) | 19 |
| GLRLM | 16 |
| GLSZM | 16 |
| GLDM | 14 |
| NGTDM | 5 |
| Shape-2D proxies | 3 |
| Wavelet sub-bands (LL, LH, HL, HH): FO + GLCM | |
| Fractal dimension (Frac) | 1 |
| Lacunarity (Lac) | 1 |
| Total (wavelet-augmented) | 246 |
| Feature | Pearson | Spearman | Dcor | MIC | Cosine | Similarity_Composite |
|---|---|---|---|---|---|---|
| GLCM_DiffVariance | 0.980 | 0.984 | 0.976 | 0.927 | 0.980 | 1.245 |
| GLCM_DiffEntropy | 0.980 | 0.980 | 0.972 | 0.919 | 0.980 | 1.235 |
| GLCM_DiffAverage | 0.975 | 0.979 | 0.969 | 0.915 | 0.975 | 1.227 |
| GLCM_Dissimilarity | 0.975 | 0.979 | 0.969 | 0.915 | 0.975 | 1.227 |
| GLCM_Contrast | 0.970 | 0.982 | 0.969 | 0.917 | 0.970 | 1.225 |
| GLCM_Entropy | 0.949 | 0.949 | 0.933 | 0.803 | 0.949 | 1.095 |
| GLCM_IMC1 | 0.949 | 0.949 | 0.933 | 0.803 | 0.949 | 1.095 |
| GLSZM_SZN | 0.942 | 0.944 | 0.928 | 0.806 | 0.942 | 1.086 |
| GLSZM_SAE | 0.943 | 0.945 | 0.929 | 0.796 | 0.943 | 1.082 |
| GLDM_SDE | 0.936 | 0.937 | 0.920 | 0.793 | 0.936 | 1.065 |
| Feature | Pearson | Spearman | Dcor | MIC | Cosine | Similarity_Composite |
|---|---|---|---|---|---|---|
| GLCM_IDN | 0.963 | 0.965 | 0.955 | 0.866 | 0.963 | 1.159 |
| GLCM_Correlation | 0.959 | 0.965 | 0.953 | 0.867 | 0.959 | 1.155 |
| GLCM_Homogeneity2 | 0.961 | 0.965 | 0.953 | 0.863 | 0.961 | 1.154 |
| GLCM_IMC2 | 0.959 | 0.966 | 0.955 | 0.839 | 0.959 | 1.137 |
| GLCM_InverseVariance | 0.949 | 0.956 | 0.942 | 0.837 | 0.949 | 1.115 |
| GLCM_ID | 0.953 | 0.958 | 0.945 | 0.822 | 0.953 | 1.112 |
| GLCM_Homogeneity1 | 0.943 | 0.949 | 0.935 | 0.806 | 0.943 | 1.081 |
| GLSZM_ZoneSizeMean | 0.929 | 0.936 | 0.919 | 0.785 | 0.929 | 1.037 |
| GLRLM_RunEntropy | 0.933 | 0.937 | 0.921 | 0.769 | 0.933 | 1.031 |
| GLDM_DEntropy | 0.931 | 0.934 | 0.917 | 0.763 | 0.931 | 1.022 |
| Feature | Pearson | Spearman | Dcor | MIC | Cosine | Similarity_Composite |
|---|---|---|---|---|---|---|
| GLCM_DiffVariance | 0.978 | 0.982 | 0.974 | 0.925 | 0.978 | 1.226 |
| GLCM_Contrast | 0.968 | 0.979 | 0.967 | 0.926 | 0.968 | 1.213 |
| GLCM_DiffEntropy | 0.978 | 0.977 | 0.970 | 0.909 | 0.978 | 1.210 |
| GLCM_DiffAverage | 0.974 | 0.977 | 0.968 | 0.905 | 0.974 | 1.202 |
| GLCM_Dissimilarity | 0.974 | 0.977 | 0.968 | 0.905 | 0.974 | 1.202 |
| GLCM_IMC1 | 0.946 | 0.946 | 0.931 | 0.838 | 0.946 | 1.091 |
| GLCM_Entropy | 0.946 | 0.946 | 0.931 | 0.838 | 0.946 | 1.091 |
| GLSZM_SAE | 0.940 | 0.941 | 0.924 | 0.802 | 0.940 | 1.052 |
| GLSZM_SZN | 0.940 | 0.939 | 0.923 | 0.789 | 0.940 | 1.041 |
| GLDM_DNN | 0.933 | 0.933 | 0.916 | 0.776 | 0.933 | 1.019 |
| Feature | Pearson | Spearman | Dcor | MIC | Cosine | Similarity_Composite |
|---|---|---|---|---|---|---|
| GLCM_IMC2 | 0.961 | 0.969 | 0.958 | 0.874 | 0.961 | 1.157 |
| GLCM_IDN | 0.963 | 0.964 | 0.952 | 0.854 | 0.963 | 1.137 |
| GLCM_Homogeneity2 | 0.959 | 0.962 | 0.950 | 0.851 | 0.959 | 1.129 |
| GLCM_Correlation | 0.957 | 0.963 | 0.951 | 0.841 | 0.957 | 1.119 |
| GLCM_InverseVariance | 0.951 | 0.956 | 0.941 | 0.836 | 0.951 | 1.100 |
| GLCM_ID | 0.955 | 0.958 | 0.944 | 0.818 | 0.955 | 1.093 |
| GLCM_Homogeneity1 | 0.946 | 0.950 | 0.934 | 0.788 | 0.946 | 1.050 |
| GLCM_Energy | 0.931 | 0.938 | 0.920 | 0.750 | 0.931 | 0.990 |
| GLCM_ASM | 0.924 | 0.938 | 0.916 | 0.750 | 0.924 | 0.981 |
| GLRLM_RunEntropy | 0.933 | 0.935 | 0.916 | 0.740 | 0.933 | 0.979 |
| Scenario | Interpretation | Recommended Action |
|---|---|---|
| Very high similarity in wavelet setting () | Fractal measures align with existing contrast, difference, or homogeneity features; limited incremental value. | Treat as redundant. Keep a single representative per correlated cluster or exclude Frac and Lac. |
| Moderate similarity in baseline setting () | Partial overlap with potential complementary signal for multiscale irregularity or void patterns. | Retain conditionally. Verify added value by nested models or feature importance. |
| Multiscale heterogeneity is a priori relevant | Mechanistic rationale favors fractal summaries. | Include Frac and Lac with a predefined role. Report sensitivity to discretization and scale choices. |
| Acquisition or segmentation variability expected | Possible instability under voxel size, reconstruction, noise, and mask changes. | Harmonize when appropriate, standardize preprocessing, and run quick checks: resampling, mild blur or noise, and small mask perturbations. |
| High-dimensional setting (features much greater than samples) | Risk of overfitting and unstable selection. | Use nested cross-validation, penalized models, and cluster representatives or dimensionality reduction. |
| Scenario | SD (Composite) | IQR | Max | Top Feature (by Composite) | Top | LOO: min | LOO: Top-30 Overlap |
|---|---|---|---|---|---|---|---|
| Frac–No Wavelet | 0.806 | 1.409 | 1.226 | GLCM difference variance | 0.978 | 0.245 | 0.700 |
| Frac–Wavelet | 0.807 | 1.287 | 2.111 | GLCM difference variance | 0.980 | 0.052 | 0.867 |
| Lac–No Wavelet | 0.820 | 1.345 | 1.155 | GLCM IMC2 (information correlation 2) | 0.961 | 0.391 | 0.733 |
| Lac–Wavelet | 0.823 | 1.373 | 1.964 | GLCM correlation | 0.959 | 0.279 | 0.933 |
| Feature Family | Neighborhood Topology | Dimensional Change | 2D–3D | Relative Runtime | Reference(s) |
|---|---|---|---|---|---|
| GLCM (gray-level co-occurrence) | 8 to 26 neighbors | 2D to 3D | 0.93–0.95 | ≈4.5× | [4,5] |
| GLRLM (gray-level run length) | 4 to 13 orientations | 2D to 3D | 0.90–0.92 | ≈3.8× | [4,6] |
| GLSZM (gray-level size zone) | 8 to 26 connectivity | 2D to 3D | 0.88–0.91 | ≈5.2× | [4,7] |
| GLDM (gray-level dependence) | 2D to 3D isotropic kernel | 2D to 3D | 0.89–0.93 | ≈4.0× | [4,8] |
| NGTDM (gray-tone difference) | Mean over 26-voxel context | 2D to 3D | 0.86–0.90 | ≈3.7× | [4,9] |
| Fractal Dimension (box counting) | Squares to cubes | 2D to 3D | 0.94 | ≈2.8× | [11] |
| Lacunarity (gliding-box) | Square to cubic window | 2D to 3D | 0.92 | ≈2.9× | [12,13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahed, M.; Skafyan, M. Positioning Fractal Dimension and Lacunarity in the IBSI Feature Space: Simulation With and Without Wavelets. Radiation 2025, 5, 32. https://doi.org/10.3390/radiation5040032
Zahed M, Skafyan M. Positioning Fractal Dimension and Lacunarity in the IBSI Feature Space: Simulation With and Without Wavelets. Radiation. 2025; 5(4):32. https://doi.org/10.3390/radiation5040032
Chicago/Turabian StyleZahed, Mostafa, and Maryam Skafyan. 2025. "Positioning Fractal Dimension and Lacunarity in the IBSI Feature Space: Simulation With and Without Wavelets" Radiation 5, no. 4: 32. https://doi.org/10.3390/radiation5040032
APA StyleZahed, M., & Skafyan, M. (2025). Positioning Fractal Dimension and Lacunarity in the IBSI Feature Space: Simulation With and Without Wavelets. Radiation, 5(4), 32. https://doi.org/10.3390/radiation5040032
