Evaluating the Utility of Iron Oxide Nanoparticles for Pre-Clinical Radiation Dose Estimation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Preparation and Radiation Delivery
2.2. Electron Paramagnetic Resonance Spectroscopy
3. Results
3.1. Evaluation of Xylenol Orange Changes Following Nanoparticle Irradiation
3.2. Electron Paramagnetic Resonance Evaluation of Nanoparticle Irradiation
3.3. Linearity of Electron Paramagnetic Resonance Spectroscopic Analysis
3.4. Evaluating FMX Radiation Dose Prediction with a Pre-Clinical Irradiation System
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fricke, H.; Morse, S. The Chemical Action of Roentgen Rays on Dilute Ferrosulphate Solutions as a Measure of Dose. Am. J. Roentgenol. Radium Ther. Nucl. Med. 1927, 18, 430–432. [Google Scholar]
- Mehdi, Z.; Petronek, M.S.; Stolwijk, J.M.; Mapuskar, K.A.; Kalen, A.L.; Buettner, G.R.; Cullen, J.J.; Spitz, D.R.; Buatti, J.M.; Allen, B.G. Utilization of Pharmacological Ascorbate to Enhance Hydrogen Peroxide-Mediated Radiosensitivity in Cancer Therapy. Int. J. Mol. Sci. 2021, 22, 10880. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, L.J. Review of Fricke Gel Dosimeters. J. Phys. Conf. Ser. 2004, 3, 9–21. [Google Scholar] [CrossRef]
- Alpen, E.L. Chapter 6—Radiation Chemistry. In Radiation Biophysics, 2nd ed.; Alpen, E.L., Ed.; Academic Press: San Diego, CA, USA, 1998; pp. 104–131. ISBN 978-0-12-053085-4. [Google Scholar]
- Yang, Z.; Vrielinck, H.; Jacobsohn, L.G.; Smet, P.F.; Poelman, D. Passive Dosimeters for Radiation Dosimetry: Materials, Mechanisms, and Applications. Adv. Funct. Mater. 2024, 2406186. [Google Scholar] [CrossRef]
- deAlmeida, C.E.; Ochoa, R.; de Lima, M.C.; David, M.G.; Pires, E.J.; Peixoto, J.G.; Salata, C.; Bernal, M.A. A Feasibility Study of Fricke Dosimetry as an Absorbed Dose to Water Standard for 192Ir HDR Sources. PLoS ONE 2014, 9, e115155. [Google Scholar] [CrossRef]
- Liosi, G.M.; Dondi, D.; Vander Griend, D.A.; Lazzaroni, S.; D’Agostino, G.; Mariani, M. Fricke-Gel Dosimeter: Overview of Xylenol Orange Chemical Behavior. Radiat. Phys. Chem. 2017, 140, 74–77. [Google Scholar] [CrossRef]
- Valente, M.; Molina, W.; Silva, L.C.; Figueroa, R.; Malano, F.; Pérez, P.; Santibañez, M.; Vedelago, J. Fricke Gel Dosimeter with Improved Sensitivity for Low-Dose-Level Measurements. J. Appl. Clin. Med. Phys. 2016, 17, 402–417. [Google Scholar] [CrossRef]
- Buglewicz, D.J.; Banks, A.B.; Hirakawa, H.; Fujimori, A.; Kato, T.A. Monoenergetic 290 MeV/n Carbon-Ion Beam Biological Lethal Dose Distribution Surrounding the Bragg Peak. Sci. Rep. 2019, 9, 6157. [Google Scholar] [CrossRef]
- Toth, G.B.; Varallyay, C.G.; Horvath, A.; Bashir, M.R.; Choyke, P.L.; Daldrup-Link, H.E.; Dosa, E.; Finn, J.P.; Gahramanov, S.; Harisinghani, M.; et al. Current and Potential Imaging Applications of Ferumoxytol for Magnetic Resonance Imaging. Kidney Int. 2017, 92, 47–66. [Google Scholar] [CrossRef]
- Neuwelt, E.A.; Fu, R.; Gahramanov, S.; Gultekin, S.H.; Lacy, C.; Nasseri, M.; Prola Netto, J.; Tyson, R.M.; White, T.; Woltjer, R.L.; et al. Diagnosis of Pseudoprogression Using Ferumoxytol Perfusion MRI in Patients with Glioblastoma to Predict Better Outcome. J. Clin. Oncol. 2014, 32, 2010. [Google Scholar] [CrossRef]
- Gahramanov, S.; Varallyay, C.; Tyson, R.M.; Lacy, C.; Fu, R.; Netto, J.P.; Nasseri, M.; White, T.; Woltjer, R.L.; Gultekin, S.H.; et al. Diagnosis of Pseudoprogression Using MRI Perfusion in Patients with Glioblastoma Multiforme May Predict Improved Survival. CNS Oncol. 2014, 3, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, R.K.; Korn, R.L.; Raghunand, N.; Sachdev, J.C.; Newbold, R.G.; Jameson, G.; Fetterly, G.J.; Prey, J.; Klinz, S.G.; Kim, J.; et al. Correlation between Ferumoxytol Uptake in Tumor Lesions by MRI and Response to Nanoliposomal Irinotecan in Patients with Advanced Solid Tumors: A Pilot Study. Clin. Cancer Res. 2017, 23, 3638. [Google Scholar] [CrossRef] [PubMed]
- Barajas, R.F., Jr.; Hamilton, B.E.; Schwartz, D.; McConnell, H.L.; Pettersson, D.R.; Horvath, A.; Szidonya, L.; Varallyay, C.G.; Firkins, J.; Jaboin, J.J.; et al. Combined Iron Oxide Nanoparticle Ferumoxytol and Gadolinium Contrast Enhanced MRI Define Glioblastoma Pseudoprogression. Neuro-Oncology 2018, 21, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Coyne, D.W. Ferumoxytol for Treatment of Iron Deficiency Anemia in Patients with Chronic Kidney Disease. Expert Opin. Pharmacother. 2009, 10, 2563–2568. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Alonso, V.; Pratt, E.C.; Zong, H.; Lara-Martinez, A.; Kaittanis, C.; Rabie, M.O.; Longo, V.; Becker, M.W.; Roboz, G.J.; Grimm, J.; et al. FDA-Approved Ferumoxytol Displays Anti-Leukaemia Efficacy against Cells with Low Ferroportin Levels. Nat. Nanotechnol. 2019, 14, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J.S.; Nejadnik, H.; Goodman, S.; Moseley, M.; et al. Iron Oxide Nanoparticles Inhibit Tumour Growth by Inducing Pro-Inflammatory Macrophage Polarization in Tumour Tissues. Nat. Nanotechnol. 2016, 11, 986–994. [Google Scholar] [CrossRef]
- Petronek, M.S.; Spitz, D.R.; Buettner, G.R.; Allen, B.G. Oxidation of Ferumoxytol by Ionizing Radiation Releases Iron. An Electron Paramagnetic Resonance Study. J. Radiat. Res. 2022, 63, 378–384. [Google Scholar] [CrossRef]
- Petronek, M.S.; Teferi, N.; Caster, J.M.; Stolwijk, J.M.; Zaher, A.; Buatti, J.M.; Hasan, D.; Wafa, E.I.; Salem, A.K.; Gillan, E.G.; et al. Magnetite Nanoparticles as a Kinetically Favorable Source of Iron to Enhance GBM Response to Chemoradiosensitization with Pharmacological Ascorbate. Redox Biol. 2023, 62, 102651. [Google Scholar] [CrossRef]
- Gambarini, G.; Liosi, G.M.; Artuso, E.; Giacobbo, F.; Mariani, M.; Brambilla, L.; Castiglioni, C.; Carrara, M.; Pignoli, E. Study of the Absorption Spectra of Fricke Xylenol Orange Gel Dosimeters. In Proceedings of the 2015 4th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), Lisbon, Portugal, 20–24 April 2015; pp. 1–5. [Google Scholar]
- Scotti, M.; Arosio, P.; Brambilla, E.; Gallo, S.; Lenardi, C.; Locarno, S.; Orsini, F.; Pignoli, E.; Pedicone, L.; Veronese, I. How Xylenol Orange and Ferrous Ammonium Sulphate Influence the Dosimetric Properties of PVA–GTA Fricke Gel Dosimeters: A Spectrophotometric Study. Gels 2022, 8, 204. [Google Scholar] [CrossRef]
- Zaher, A.; Duchman, B.; Ivanovic, M.; Spitz, D.R.; Furqan, M.; Allen, B.G.; Petronek, M.S. Exploratory Analysis of Image-Guided Ionizing Radiation Delivery to Induce Long-Term Iron Accumulation and Ferritin Expression in a Lung Injury Model: Preliminary Results. Bioengineering 2024, 11, 182. [Google Scholar] [CrossRef]
- Rousseau, A.; Stien, C.; Bordy, J.-M.; Blideanu, V. Fricke-Xylenol Orange-Gelatin Gel Characterization with Dual Wavelength Cone-Beam Optical CT Scanner for Applications in Stereotactic and Dynamic Radiotherapy. Phys. Medica Eur. J. Med. Phys. 2022, 97, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Javanbakht, T.; Laurent, S.; Stanicki, D.; Frenette, M. Correlation between Physicochemical Properties of Superparamagnetic Iron Oxide Nanoparticles and Their Reactivity with Hydrogen Peroxide. Can. J. Chem. 2020, 98, 601–608. [Google Scholar] [CrossRef]
- Höfel-Pessies, S.; Stehle, M.; Zwicker, F.; Fix, M.; Drescher, M. A Practical EPR Dosimetry System for Routine Use in Radiotherapy: Uncertainty Analysis of Lithium Formate Dosimeters at the Therapeutic Dose Level. Phys. Med. Biol. 2021, 66, 045005. [Google Scholar] [CrossRef]
- Helt-Hansen, J.; Rosendal, F.; Kofoed, I.M.; Andersen, C.E. Medical Reference Dosimetry Using EPR Measurements of Alanine: Development of an Improved Method for Clinical Dose Levels. Acta Oncol. 2009, 48, 216–222. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamau, N.R.; Petronek, M.S. Evaluating the Utility of Iron Oxide Nanoparticles for Pre-Clinical Radiation Dose Estimation. Radiation 2024, 4, 253-260. https://doi.org/10.3390/radiation4030020
Kamau NR, Petronek MS. Evaluating the Utility of Iron Oxide Nanoparticles for Pre-Clinical Radiation Dose Estimation. Radiation. 2024; 4(3):253-260. https://doi.org/10.3390/radiation4030020
Chicago/Turabian StyleKamau, Njenga R., and Michael S. Petronek. 2024. "Evaluating the Utility of Iron Oxide Nanoparticles for Pre-Clinical Radiation Dose Estimation" Radiation 4, no. 3: 253-260. https://doi.org/10.3390/radiation4030020
APA StyleKamau, N. R., & Petronek, M. S. (2024). Evaluating the Utility of Iron Oxide Nanoparticles for Pre-Clinical Radiation Dose Estimation. Radiation, 4(3), 253-260. https://doi.org/10.3390/radiation4030020