Correlation between Ground 222Rn and 226Ra and Long-Term Risk Assessment at the at the Bauxite Bearing Area of Fongo-Tongo, Western Cameroon
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Natural Radioactivity Measurements
2.2.1. Radioactivity Measurements in Laboratory
2.2.2. In Situ Radioactivity Measurements
2.2.3. In Situ 222Rn in Soil Measurements
2.3. Radiological Hazards
2.3.1. Ambient Equivalent Dose Rates and External Effective Dose
2.3.2. External and Internal Hazard Index
External Hazard Index (Hex)
Internal Hazard Index (Hin)
2.4. Excess Lifetime Cancer Risk (ELCR)
2.5. Excess Cancer Risk (ECR) Computer Using RESRAD-ONSITE and RESRAD-BUILD Codes
2.6. Radiation Hazard Index
2.6.1. Gamma Radiation Hazard Index (Iγ)
2.6.2. Alpha Radiation Hazard Index (Iα)
3. Results and Discussion
3.1. 226Ra, 232Th, and 40K Activity Concentrations
3.2. In Situ 222Rn Concentration in Soil
3.3. Correlation between 222Rn and 226Ra in Soil
3.4. Radiological Hazards
3.4.1. Ambien Equivalent Dose Rate (AEDR) and Annual External Effective Dose (AEED)
3.4.2. External and Internal Radiation Hazard Index
External Hazard Index
Internal Hazard Index
3.4.3. Excess Lifetime Cancer Risk (ELCR)
3.5. Long-Term ECR Analysis Using RESRAD-ONSITE and RESRAD-BUILD Computer Codes
3.6. Radiation Hazard Index
3.6.1. Gamma Radiation Hazard Index, Iγ
3.6.2. Alpha Radiation Hazard Index, Iα
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNSCEAR. Sources and Effects of Ionizing Radiation: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes; United Nations: Vienna, Austria, 2000. [Google Scholar]
- Barbarand, J.; Beaufort, D.; Benedicto, A.; Caillat, C.; Calas, G.; Cathelineau, M.; Cheilletz, A.; Cote, G.; Cuney, M.; Dacheux, N.; et al. Géologie et Chimie de l’ Uranium Programme et volume des résumés. In Proceedings of the Réunion de la Société Géologique de France avec le concours d’AREVA, CNRS—INSU, PACEN, GUTEC, IDES, Université de Paris-Sud, Paris, France, 29–30 November 2011. [Google Scholar]
- Holmes, A. Petrogenesis of katungite and its associates. Am. Mineral. 1950, 35, 772–792. [Google Scholar]
- Bariand, J.G.P.; Cesbron, F. Métamorphiques et leurs produits d’ altération, par P. Bariand, F. Bull. Minér. Cristallogr. 1978, 2, 356. [Google Scholar]
- Paquet, F.; Bailey, M.; Leggett, R.; Lipsztein, J.; Marsh, J.; Fell, T.; Smith, T.; Nosske, D.; Eckerman, K.; Berkovski, V.; et al. ICRP Publication 137: Occupational Intakes of Radionuclides: Part 3. Ann. ICRP 2017, 46, 1–486. [Google Scholar] [CrossRef]
- Clement, C.; Tirmarche, M.; Harrison, J.; Laurier, D.; Paquet, F.; Blanchardon, E.; Marsh, J. Part 1: Lung Cancer Risk from Radon and Progeny. Ann. ICRP 2010, 40, 11. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, R.; Newman, R.; Speelman, W. A study of airborne radon levels in Paarl houses (South Africa) and associated source terms, using electret ion chambers and gamma-ray spectrometry. Appl. Radiat. Isot. 2008, 66, 1611–1614. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.M.; Ishikawa, T.; Hosoda, M.; Sorimachi, A.; Tokonami, S.; Fukushi, M.; Sahoo, S.K. Assessment of the natural radioactivity using two techniques for the measurement of radionuclide concentration in building materials used in Japan. J. Radioanal. Nucl. Chem. Artic. 2010, 283, 15–21. [Google Scholar] [CrossRef]
- Mohammed, R.S.; Ahmed, R.S. Estimation of excess lifetime cancer risk and radiation hazard indices in southern Iraq. Environ. Earth Sci. 2017, 76, 303. [Google Scholar] [CrossRef]
- Trevisi, R.; Leonardi, F.; Risica, S.; Nuccetelli, C. Updated database on natural radioactivity in building materials in Europe. J. Environ. Radioact. 2018, 187, 90–105. [Google Scholar] [CrossRef]
- Abiama, P.E.; Tokonami, S.; Patrice, E.A. Natural Radiation Survey in the Uranium and Thorium Bearing Regions of Cameroon. 2016. Available online: https://www.researchgate.net/publication/293593746_Natural_radiation_survey_in_the_uranium_and_thorium_bearing_regions_of_Cameroon (accessed on 5 September 2022).
- Didier, T.S.S.; Saïdou; Tokonami, S.; Hosoda, M.; Suzuki, T.; Kudo, H.; Bouba, O. Simultaneous measurements of indoor radon and thoron and inhalation dose assessment in Douala City. Cameroon. Isot. Environ. Health Stud. 2019, 55, 499–510. [Google Scholar] [CrossRef]
- Yimele, B.C.; Ekobena, H.P.F.; Nguelem, E.J.M.; Ndontchueng, M.M.; Ben-Bolie, G.H.; Ateba, P.O. Radiation hazard of naturally occurring soil in FONGO TONGO-Cameroon. Arab. J. Geosci. 2019, 12, 233. [Google Scholar] [CrossRef]
- Mekongtso Nguelem, E.J.M.; Ndontchueng, M.M.; Motapon, O. Determination of 226Ra, 232Th, 40K, 235U and 238U activity concentration and public dose assessment in soil samples from bauxite core deposits in Western Cameroon. SpringerPlus 2016, 5, 1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachirou, S.; Joseph, I.I.; Ndjana, E.; Haman, F.; Godfroy, M.; Njock, K. Natural Radiation Exposure and Radiological Hazard Analysis in a Radon-Prone Area of the Adamawa Region, Cameroon. Radiat. Prot. Dosim. 2022, 198, 74–85. [Google Scholar]
- Saïdou; Modibo, O.B.; Emmanuel, N.N.I.J.; German, O.; Michaux, K.N.; Abba, H.Y. Indoor Radon Measurements Using Radon Track Detectors and Electret Ionization Chambers in the Bauxite-Bearing Areas of Southern Adamawa, Cameroon. Int. J. Environ. Res. Public Health 2020, 17, 6776. [Google Scholar] [CrossRef] [PubMed]
- Saïdou; Shinji, T.; Hosoda, M.; Flore, T.S.Y.; Emmanuel, N.N.J.; Naofumi, A.; Modibo, O.B.; Joseph, P. Natural radiation exposure to the public in the uranium bearing region of Poli, Cameroon: From radioactivity measurements to external and inhalation dose assessment. J. Geochem. Explor. 2019, 205, 106350. [Google Scholar] [CrossRef]
- Ndjana Nkoulou, J.E.; Ngoa Engola, L.; Hosoda, M.; Bongue, D.; Suzuki, T.; Kudo, H.; Kwato Njock, M.G.; Tokonami, S. Simultaneous indoor radon, thoron and thoron progeny measurements in betare-oya gold mining areas, eastern Cameroon. Radiat. Prot. Dosim. 2019, 185, 391–401. [Google Scholar] [CrossRef]
- Bineng, G.S.; Saïdou; Tokonami, S.; Hosoda, M.; Siaka, Y.F.T.; Issa, H.; Suzuki, T.; Kudo, H.; Bouba, O. The Importance of Direct Progeny Measurements for Correct Estimation of Effective Dose Due to Radon and Thoron. Front. Public Health 2020, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Saïdou; Tokonami, S.; Janik, M.; Samuel, B.G.; Abdourahimi; Emmanuel, N.N.I.J. Radon-thoron discriminative measurements in the high natural radiation areas of southwestern Cameroon. J. Environ. Radioact. 2015, 150, 242–246. [Google Scholar] [CrossRef]
- Saïdou; Abiama, P.E.; Tokonami, S. Comparative study of natural radiation exposure to the public in three uranium and oil regions of Cameroon. Radioprotection 2015, 50, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Jiomeneck, P.S.T.; Tematio, P.; Wilson, M.A.; Yemefack, M. Andosolization of Soils on a Strombolian Cone at Mount Bambouto, Cameroon. Open J. Soil Sci. 2011, 1, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Tedonkeng, P.E. Rainfall Variability along the Southern Flank of the Bambouto Mountain (West-Cameroon). J. Cameroon Acad. Sci. 2008, 8, 45–52. [Google Scholar]
- Tematio, P.; Kengni, L.; Bitom, D.; Hodson, M.; Fopoussi, J.; Leumbe, O.; Mpakam, H.; Tsozué, D. Soils and their distribution on Bambouto volcanic mountain, West Cameroon highland, Central Africa. J. Afr. Earth Sci. 2004, 39, 447–457. [Google Scholar] [CrossRef]
- Kenfack, P.L.; Tematio, P.; Kwekam, M.; Ngueutchoua, G.; Njike, P.R. Evidence of a Miocene volcano-sedimentary lithostratigraphic sequence at Ngwa (Dschang Region, West Cameroon): Preliminary analyses and geodynamic interpretation. J. Pet. Technol. Altern. Fuels. 2011, 2, pp. 25–34. Available online: http://www.academicjournals.org/JPTAF (accessed on 1 September 2022).
- Dongmo, F.W.N.; Yongue, R.F.; Bolarinwa, A.T.; Ngatcha, R.B.; Fuanya, C.; Kamga, M.A. Contribution to the Study of Bauxites’ Formation in the Fongo-Tongo (Western Cameroon) Sites; Springer International Publishing: Cham, Switzerland, 2019; pp. 241–244. [Google Scholar] [CrossRef]
- Dongmo, F.W.N.; Fouateu, R.Y.; Ntouala, R.F.D.; Lemdjou, Y.B.; Ledoux, D.C.; Bolarinwa, A.T. Geochemical, mineralogical and macroscopic facies of the Fongo-Tongo bauxite deposit western Cameroon. Appl. Earth Sci. Trans. Inst. Min. Metall. 2021, 130, 23–41. [Google Scholar] [CrossRef]
- Tchamba, A.B.; Yongue, R.; Melo, U.C.; Kamseu, E.; Njoya, D. Caractérisation de la bauxite de HaléoDanielle (MinimMartap, Cameroun) en vue de son utilisation industrielle dans les matériaux à haute teneur en alumine. Silic. Ind. 2008, 73, 77–84. [Google Scholar]
- Mehra, R.; Sonkawade, R.G.; Badhan, K.; Singh, S. Measurement of natural radioactivity in rock samples using gamma ray spectrometry. Asian J. Chem. 2009, 21, 212–215. [Google Scholar] [CrossRef]
- Livens, F. Measurement of radionuclides in food and the environment. A guidebook. J. Environ. Radioact. 1990, 11, 201–202. [Google Scholar] [CrossRef]
- Ademola, A.K.; Bello, A.K.; Adejumobi, A.C. Determination of natural radioactivity and hazard in soil samples in and around gold mining area in Itagunmodi, south-western, Nigeria. J. Radiat. Res. Appl. Sci. 2014, 7, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Mbonu, C.C.; Essiett, A.A.; Ben, U.C. Geospatial assessment of radiation hazard indices in soil samples from Njaba, Imo State, South-Eastern Nigeria. Environ. Challenges 2021, 4, 100117. [Google Scholar] [CrossRef]
- Mirion Technologies (Canberra). Genie TM 2000 Software, Basic Spectroscopy. 2016. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwirucvf0qb7AhUUEVkFHczAD-gQFnoECAoQAQ&url=https%3A%2F%2Fwww3.nd.edu%2F~wzech%2FGenie%25202000%2520Operations%2520Manual.pdf&usg=AOvVaw0a4Hg7xAEMTZPukRCd3oLp (accessed on 23 September 2022).
- Bineng, G.S.; Hosoda, M.; Siaka, Y.F.T.; Akata, N.; Talla, S.F.; Abiama, P.E.; Tokonami, S. External radiation exposure to the public using car-borne survey method in the uranium and thorium bearing region of Lolodorf, Cameroon External Radiation Exposure to the Public Using Car-borne Survey Method in the Uranium and Thorium Bearing Region of L. Radiat. Environ. Med. 2020, 9, 13–20. [Google Scholar]
- Bobbo, M.O.; Saïdou; Ii, J.E.N.N.; Suzuki, T.; Kudo, H.; Hosoda, M.; Owono, L.C.O.; Tokonami, S. Occupational Natural Radiation Exposure at the Uranium Deposit of Kitongo, Cameroon. Radioisotopes 2019, 68, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Shouop, C.J.G.; Moyo, M.N.; Chene, G.; Mekontso, E.J.N.; Motapon, O.; Kayo, S.A.; Strivay, D. Assessment of natural radioactivity and associated radiation hazards in sand building material used in Douala Littoral Region of Cameroon, using gamma spectrometry. Environ. Earth Sci. 2017, 76, 164. [Google Scholar] [CrossRef]
- Raghu, Y.; Ravisankar, R.; Chandrasekaran, A.; Vijayagopal, P.; Venkatraman, B. Assessment of natural radioactivity and radiological hazards in building materials used in the Tiruvannamalai District, Tamilnadu, India, using a statistical approach. J. Taibah Univ. Sci. 2017, 11, 523–533. [Google Scholar] [CrossRef] [Green Version]
- SARAD GmbH. Nuc Scout, Portable Gamma Identifier—Quantifier—Dose Rate Meter. 2018. Available online: www.sarad.de/[email protected] (accessed on 8 September 2022).
- SARAD GmbH. Manual Software dVISION. Wiesbadener Straße 10 D-01159 Dresden Germany. 2015. Available online: https://www.sarad.de/cms/media/docs/handbuch/Manual_dVISION_EN_16-10-15.pdf (accessed on 8 September 2022).
- SARAD GmbH. Manual Software dCONFIG. Wiesbadener Straße 10 D-01159 Dresden DEUTSCHLAND. 2009. Available online: http://www.sarad.de/cms/media/docs/handbuch/Manual_dCONFIG_EN_21-12-12.pdf (accessed on 8 September 2022).
- Gammadata. User’s Guide MARKUS 10 The Instrument for Determining the Radon Content in the Soil; Gammadata: Uppsala, Sweden, 2019. [Google Scholar]
- Agbalagba, E.; Avwiri, G.; Chad-Umoreh, Y. γ-Spectroscopy measurement of natural radioactivity and assessment of radiation hazard indices in soil samples from oil fields environment of Delta State, Nigeria. J. Environ. Radioact. 2012, 109, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Soh, S.T.; Saïdou; Hosoda, M.; Ii, J.N.N.; Akata, N.; Bouba, O.; Tokonami, S. Natural radioactivity measurements and external dose estimation by car-borne survey in Douala city, Cameroon. Radioprotection 2018, 53, 255–263. [Google Scholar] [CrossRef]
- Penabei, S.; Bongue, D.; Maleka, P.; Dlamini, T.; Saïdou; Shouop, C.G.; Halawlaw, Y.; Ebongue, A.N.; Njock, M.K. Assessment of natural radioactivity levels and the associated radiological hazards in some building materials from Mayo-Kebbi region. Chad. Radioprotection 2018, 53, 265–278. [Google Scholar] [CrossRef]
- Ndontchueng, M.M.; Nguelem, E.J.M.; Motapon, O.; Njinga, R.L.; Simo, A.; Guembou, J.C.S.; Yimele, B. Radiological Hazards in Soil from the Bauxite Deposits Sites in Dschang Region of Cameroon. Br. J. Appl. Sci. Technol. 2015, 5, 342–352. [Google Scholar] [CrossRef]
- Saleh, H.; Abu Shayeb, M. Natural radioactivity distribution of southern part of Jordan (Ma′an) Soil. Ann. Nucl. Energy 2014, 65, 184–189. [Google Scholar] [CrossRef]
- Pisapak, P.; Todorovic, N.; Bhongsuwan, T. Correlation between radon and radium concentrations in soil and estimation of natural radiation hazards in Namom district, Songkhla province (Southern Thailand). Environ. Earth Sci. 2017, 76, 139. [Google Scholar] [CrossRef]
- Yu, C.; Zielen, A.J.; Cheng, J.J.; LePoire, D.J.; Gnanapragasam, E.; Kamboj, S.; Arnish, J.; Wallo, A., III; Williams, W.A. User’s Manual for RESRAD Version 6; Environmental Assessment Division, Argonne National Laboratory (ANL): Lemont, IL, USA, 2001; p. 458. Available online: http://resrad.evs.anl.gov/docs/resrad6.pdf (accessed on 17 September 2022).
- Orosun, M.M.; Usikalu, M.R.; Oyewumi, K.J.; Achuka, J.A. Radioactivity levels and transfer factor for granite mining field in Asa, North-central Nigeria. Heliyon 2020, 6, e04240. [Google Scholar] [CrossRef]
- European Commission. Report on Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials, Radiation Protection No. 112. Directorate-General Environment, Nuclear Safety and Civil Protection; European Commission: Brussels, Belgium, 1999. [Google Scholar]
- Aladeniyi, K.; Olowookere, C.; Oladele, B.B. Measurement of natural radioactivity and radiological hazard evaluation in the soil samples collected from Owo, Ondo State, Nigeria. J. Radiat. Res. Appl. Sci. 2019, 12, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Darwish, D.; Abul-Nasr, K.; El-Khayatt, A. The assessment of natural radioactivity and its associated radiological hazards and dose parameters in granite samples from South Sinai, Egypt. J. Radiat. Res. Appl. Sci. 2015, 8, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Hiéronymus, B. Etude minéralogique et géochimique des formations bauxitiques de l’Ouest du Cameroun. Cah. ORSTOM Sér. Géologie 1973, 5, 97–112. [Google Scholar]
- Curien, H. La Radioactivité des Roches, par R. Coppens, Collection « Que Sais-Je ? » N°741, 1957; Presses Universitaires de France: Paris, France, 1957; Volume 1. [Google Scholar]
- Waterways, I.N. Sediments and pollution General Considerations; IAEA: Vienna, Austria, 1984; p. 33. [Google Scholar]
- Boukhenfouf, W.; Boucenna, A. The radioactivity measurements in soils and fertilizers using gamma spectrometry technique. J. Environ. Radioact. 2011, 102, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Ngachin, M.; Garavaglia, M.; Giovani, C.; Njock, M.K.; Nourreddine, A. Radioactivity level and soil radon measurement of a volcanic area in Cameroon. J. Environ. Radioact. 2008, 99, 1056–1060. [Google Scholar] [CrossRef] [PubMed]
- Nguelem, E.; Ndontchueng, M.M.; Motapon, O.; Darko, E.O.; Simo, A. Determination of226Ra,232Th,40K and235U in soil samples from bauxite core deposits in western Cameroon. Radioprotection 2016, 51, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Esan, D.T.; Sridhar, M.K.C.; Obed, R.; Ajiboye, Y.; Afolabi, O.; Olubodun, B.; Oni, O.M. Determination of Residential Soil Gas Radon Risk Indices Over the Lithological Units of a Southwestern Nigeria University. Sci. Rep. 2020, 10, 7368. [Google Scholar] [CrossRef]
- Merdanoğlu, B.; Altınsoy, N. Radioactivity concentrations and dose assessment for soil samples from Kestanbol granite area, Turkey. Radiat. Prot. Dosim. 2006, 121, 399–405. [Google Scholar] [CrossRef]
- Sannappa, J.; Ningappa, C.; Narasimha, K.N.P. Natural radioactivity levels in granite regions of Karnataka State. Indian J. Pure Appl. Phys. 2010, 48, 817–819. [Google Scholar]
- Nguyen, P.T.H.; Nguyen, V.T.; Vu, N.B.; Le Cong, H. Soil radon gas in some soil types in the rainy season in Ho Chi Minh City. Vietnam. J. Environ. Radioact. 2018, 193–194, 27–35. [Google Scholar] [CrossRef]
- Yalim, H.A.; Akkurt, I.; Ozdemir, F.B.; Unal, R.; Sandikcioglu, A.; Akkurt, A. The Measurement of Radon and Radium Concentrations in Well Water in the Afyonkarahisar area of Turkey. Indoor Built Environ. 2007, 16, 77–81. [Google Scholar] [CrossRef]
- Petropoulos, N.; Anagnostakis, M.; Simopoulos, S. Photon attenuation, natural radioactivity content and radon exhalation rate of building materials. J. Environ. Radioact. 2002, 61, 257–269. [Google Scholar] [CrossRef]
- Souffit, G.D.; Saïdou, S.; Modibo, O.B.; Lepoire, D.; Tokonami, S. Risk Assessment of Exposure to Natural Radiation in Soil Using RESRAD-ONSITE and RESRAD-BIOTA in the Cobalt-Nickel Bearing Areas of Lomié in Eastern Cameroon. Radiation 2022, 2, 177–192. [Google Scholar] [CrossRef]
- Ii, J.E.N.N.; Manga, A.; Saïdou; German, O.; Sainz-Fernandez, C.; Kwato Njock, M.G. Natural radioactivity in building materials, indoor radon measurements, and assessment of the associated risk indicators in some localities of the Centre Region. Cameroon. Environ. Sci. Pollut. Res. 2022, 29, 54842–54854. [Google Scholar] [CrossRef]
- Risica, S.; Bolzan, C.; Nuccetelli, C. Radioactivity in building materials: Room model analysis and experimental methods. Sci. Total Environ. 2001, 272, 119–126. [Google Scholar] [CrossRef]
- Souffit, G.D.; Valdes, M.J.; Modibo, O.B.; Flore, T.S.Y.; Félix, B.A.J.; Saïdou; Tokonami, S. Radon Risk Assessment and Correlation Study of Indoor Radon, Radium-226, and Radon in Soil at the Cobalt–Nickel Bearing Area of Lomié, Eastern Cameroon. Water Air Soil Pollut. 2022, 233, 196. [Google Scholar] [CrossRef]
RESRAD-ONSITE | |
---|---|
Parameters | Site-Specific Data |
Site-specific data | 25,000 m2 |
Cover depth | 1 m |
Density of contaminated zone | 1.8 cm3 g−1 |
Precipitation rate | 0.4473 m y−1 |
Wind speed | 1.2 m s−1 |
Well pump intake | 8 m |
RESRAD-BULD | |
Indoor/time fraction | 0.6 |
Number of room/occupants | 1 |
Deposition velocity | 0.01 m s−1 |
Resuspension rate | 5 × 10−7 s−1 |
Room surface area and volume | 16 m2 and 40 m3 |
Breathing rate | 18 m3 d−1 |
Ingestion rate | 44,661 |
Occupant location in the room | Centered |
Shielding thickness | 0 |
Type of source | Volume |
Source geometry | Rectangular |
Release air fraction | 0.1 |
Radon diffusion rate | 2 × 10−5 m s−1 |
Porosity | 0.1 |
Locality | Parameters | Activity Concentration (Bq kg−1) | 222Rn (kBq m−3) | |||||
---|---|---|---|---|---|---|---|---|
Laboratory | In situ | |||||||
226Ra | 232Th | 40K | 226Ra | 232Th | 40K | |||
Fongo-Tongo | Min–Max | 106–170 | 119–295 | 188–458 | 93–201 | 94–327 | 49–321 | 35–202 |
Median | 151 | 209 | 234 | 126 | 229 | 239 | 53 | |
AM ± SD | 148 ± 23 | 212 ± 54 | 230 ± 28 | - | - | - | - | |
GM(GSD) | - | - | - | 129 (16) | 214 (67) | 229 (54) | 69 (8) | |
Dschang | Min–Max | 99–167 | 100–275 | 198–297 | 98–181 | 139–309 | 151–280 | 48–255 |
Median | 116 | 185 | 224 | 132 | 240 | 238 | 62 | |
AM ± SD | 118 ± 17 | 175 ± 46 | 230 ± 28 | - | - | - | - | |
GM(GSD) | - | - | - | 138 (19) | 231 (35) | 237 (26) | 82 (14) |
Country | Activity Concentration (Bq kg−1) | 222Rn (kBq m−3) | References | ||
---|---|---|---|---|---|
226Ra | 232Th | 40K | |||
Jordan | 57.7 ± 5.4 | 18.1 ± 1.4 | 138.1 ± 40.8 | [46] | |
Egypt | 134.7 ± 24.1 | 131.8 ± 16.7 | 11,644 ± 550 | [59] | |
India | 116.1 | 43.51 | 300.07 | - | [37] |
Iraq | 58.44 | 19.38 | 321.76 | - | [9] |
45.71 | 20.33 | 337.02 | |||
Nigeria | 64.64 ± 28.10 | 110.18 ± 46.12 | 1190.10 ± 373.62 | [51] | |
Australia | 38 | 45 | 635 | - | [10] |
Germany | 84 | 72 | 463 | - | |
Sweden | 75 | 94 | 734 | ||
Japan | 38 ± 1 | 43 ± 1 | 590 | - | [8] |
Cameroon | 14 ± 2 | 30 ± 3 | 103 ± 12 | 9 ± 2 | [60] |
- | 390 | 850 | - | [14] | |
124.9 | 157.3 | 670.9 | [61] | ||
166.18 | 170.04 | 94.54 | [13] | ||
118 ± 17 (138 ± 19) | 175 ± 46 (231 ± 35) | 230 ± 28 (237 ± 26) | 82 ± 56 | Present study | |
148 ± 23 (129 ± 16) | 212 ± 54 (214 ± 67) | 230 ± 28 (229 ± 54) | 69 ± 40 |
Locality | Fongo-Tongo | Dschang | Limit | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | Min | Max | Med | AM | SD | Min | Max | Med | AM | SD | |
AEDR (nGy/y) | 130 | 265 | 211 | 207 | 37 | 119 | 238 | 172 | 170 | 31 | 1 |
AEED (mSv) | 0.8 | 1.62 | 1.29 | 1.27 | 0.22 | 0.73 | 1.46 | 1.05 | 1.04 | 0.19 | 1 |
Hin | 1.36 | 2.81 | 1.82 | 1.88 | 0.37 | 1.36 | 1.92 | 1.57 | 1.6 | 0.15 | 1 |
Hout | 1.07 | 2.35 | 1.41 | 1.48 | 0.33 | 1.29 | 1.58 | 1.29 | 1.29 | 1.02 | 1 |
ELCRin | 1.68 | 3.4 | 2.71 | 2.67 | 0.47 | 1.53 | 3.06 | 2.21 | 2.18 | 0.4 | |
ELCRout | 1.12 | 2.26 | 1.81 | 1.78 | 0.31 | 1.02 | 2.04 | 1.47 | 1.46 | 0.27 | |
ELCR | 2.59 | 5.66 | 4.52 | 4.44 | 0.78 | 2.55 | 5.11 | 3.69 | 3.64 | 0.66 | |
Iα | 0.53 | 0.85 | 0.76 | 0.74 | 0.08 | 0.49 | 0.84 | 0.58 | 0.59 | 0.09 | 1 |
Iγ | 1.02 | 2.11 | 1.66 | 1.64 | 0.3 | 0.93 | 1.9 | 1.36 | 1.34 | 0.25 | 1 |
Locality | Fongo-Tongo | Dschang | Limit | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | Min | Max | Med | AM | SD | Min | Max | Med | AM | SD | |
AEDR (nGy/y) | 95 | 264 | 210 | 198 | 45 | 69 | 126 | 94 | 96 | 14 | 1 |
AEED (mSv) | 0.58 | 1.62 | 1.27 | 1.22 | 0.28 | 0.42 | 0.77 | 0.58 | 0.59 | 0.08 | 1 |
Hin | 0.9 | 2.01 | 1.65 | 1.57 | 0.32 | 1.25 | 2.04 | 1.68 | 1.68 | 0.19 | 1 |
Hout | 0.56 | 1.64 | 1.3 | 1.22 | 0.29 | 0.92 | 1.64 | 1.32 | 1.31 | 0.16 | 1 |
ELCRin | 1.22 | 3.4 | 2.71 | 2.56 | 0.58 | 0.89 | 1.62 | 1.21 | 1.24 | 0.17 | |
ELCRout | 0.81 | 2.7 | 1.8 | 1.7 | 0.31 | 0.59 | 1.08 | 0.81 | 0.83 | 0.11 | |
ELCR | 2.03 | 5.67 | 4.51 | 4.26 | 0.97 | 1.48 | 2.7 | 2.01 | 2.07 | 0.28 | |
Iα | 0.47 | 1.01 | 0.63 | 0.64 | 0.11 | 0.49 | 0.9 | 0.66 | 0.69 | 0.09 | 1 |
Iγ | 0.72 | 2.12 | 1.67 | 1.58 | 0.37 | 1.19 | 2.12 | 1.7 | 1.69 | 0.21 | 1 |
T (Years) | Ground | Inhalation | Radon | Plant | Meat | Milk | Soil | Total |
---|---|---|---|---|---|---|---|---|
0 | 1.74 × 10−3 | 6.32 × 10−6 | 4.89 × 10−3 | 1.56 × 10−3 | 2.24 × 10−4 | 1.44 × 10−4 | 2.22 × 10−5 | 8.58 × 10−3 |
1 | 1.74 × 10−3 | 6.32 × 10−6 | 4.89 × 10−3 | 1.56 × 10−3 | 2.24 × 0−4 | 1.44 × 10−4 | 2.22 × 10−5 | 8.58 × 10−3 |
3 | 1.73 × 10−3 | 6.32 × 10−6 | 4.87 × 10−3 | 1.55 × 10−3 | 2.18 × 10−4 | 1.42 × 10−4 | 2.22 × 10−5 | 8.54 × 10−3 |
10 | 1.72 × 10−3 | 6.30 × 10−6 | 4.81 × 10−3 | 1.53 × 10−3 | 2.06 × 10−4 | 1.36 × 10−4 | 2.20 × 10−5 | 8.43 × 10−3 |
30 | 1.69 × 10−3 | 6.27 × 10−6 | 4.67 × 10−3 | 1.49 × 10−3 | 1.76 × 10−4 | 1.24 × 10−4 | 2.17 × 10−5 | 8.17 × 10−3 |
100 | 1.60 × 10−3 | 6.18 × 10−6 | 4.19 × 10−3 | 1.38 × 10−3 | 1.16 × 10−4 | 9.75 × 10−5 | 2.04 × 10−5 | 7.41 × 10−3 |
ELCR | |||||||
---|---|---|---|---|---|---|---|
Pathway Detail of Risks | T (Years) | ||||||
T = 0 | T = 1 | T = 3 | T = 10 | T = 30 | T = 70 | T = 100 | |
External | 1.57 × 10−2 | 1.59 × 10−2 | 1.63 × 10−2 | 1.76 × 10−2 | 2.33 × 10−2 | 2.32 × 10−2 | 2.30 × 10−2 |
Deposition | 5.15 × 10−9 | 5.22 × 10−9 | 5.31 × 10−9 | 5.64 × 10−9 | 3.68 × 10−3 | 3.66 × 10−3 | 3.63 × 10−3 |
Immersion | 4.50 × 10−11 | 4.54 × 10−11 | 4.65 × 10−11 | 5.06 × 10−10 | 3.68 × 10−3 | 3.66 × 10−3 | 3.63 × 10−3 |
Inhalation | 1.18 × 10−6 | 1.23 × 10−6 | 1.36 × 10−6 | 1.76 × 10−6 | 3.01 × 10−3 | 2.99 × 10−3 | 2.96 × 10−3 |
Radon | 2.20 × 10−4 | 2.27 × 10−4 | 2.49 × 10−4 | 3.30 × 10−4 | 4.08 × 10−3 | 4.06 × 10−3 | 4.03 × 10−3 |
Ingestion | 5.39 × 10−8 | 5.88 × 10−8 | 6.82 × 10−8 | 8.39 × 10−8 | 1.89 × 10−2 | 1.88 × 10−2 | 1.86 × 10−2 |
Total | 1.59 × 10−2 | 1.61 × 10−2 | 1.66 × 10−2 | 1.79 × 10−2 | 5.19 × 10−2 | 5.15 × 10−2 | 5.11 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djeufack, L.B.; Bineng, G.S.; Modibo, O.B.; Ndjana Nkoulou, J.E., II; Saïdou. Correlation between Ground 222Rn and 226Ra and Long-Term Risk Assessment at the at the Bauxite Bearing Area of Fongo-Tongo, Western Cameroon. Radiation 2022, 2, 387-404. https://doi.org/10.3390/radiation2040029
Djeufack LB, Bineng GS, Modibo OB, Ndjana Nkoulou JE II, Saïdou. Correlation between Ground 222Rn and 226Ra and Long-Term Risk Assessment at the at the Bauxite Bearing Area of Fongo-Tongo, Western Cameroon. Radiation. 2022; 2(4):387-404. https://doi.org/10.3390/radiation2040029
Chicago/Turabian StyleDjeufack, Léonard Boris, Guillaume Samuel Bineng, Oumar Bobbo Modibo, Joseph Emmanuel Ndjana Nkoulou, II, and Saïdou. 2022. "Correlation between Ground 222Rn and 226Ra and Long-Term Risk Assessment at the at the Bauxite Bearing Area of Fongo-Tongo, Western Cameroon" Radiation 2, no. 4: 387-404. https://doi.org/10.3390/radiation2040029
APA StyleDjeufack, L. B., Bineng, G. S., Modibo, O. B., Ndjana Nkoulou, J. E., II, & Saïdou. (2022). Correlation between Ground 222Rn and 226Ra and Long-Term Risk Assessment at the at the Bauxite Bearing Area of Fongo-Tongo, Western Cameroon. Radiation, 2(4), 387-404. https://doi.org/10.3390/radiation2040029