Proton Therapy and Gliomas: A Systematic Review
Abstract
:1. Background
2. Methods
3. Results
3.1. Low-Grade Gliomas
3.1.1. Children
Disease Outcomes
Toxicity Outcomes
Pseudoprogression
3.1.2. Adults
Disease Outcomes
Toxicity Outcomes
Pseudoprogression
3.1.3. Dosimetry Data
3.2. High-Grade Gliomas
3.2.1. Children
3.2.2. Adults
3.2.3. Dosimetry Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3D-CRT | Conventional three-dimensional RT |
CTV | Clinical target volume |
DIPG | Diffuse intrinsic pontine glioma |
EUD | Equivalent uniform dose |
FLAIR | Fluid-attenuated inversion recovery |
GBM | Glioblastoma multiforme |
Gy RBE | Gray radiobiological equivalent |
GTV | Gross tumor volume |
HGGs | High-grade gliomas |
IMPT | Intensity-modulated proton therapy |
IMRT | Intensity-modulated RT |
IDH | Isocitrate dehydrogenase |
LET | Linear energy transfer |
LC | Local control |
LGGs | Low-grade gliomas |
MGMT | Methyl-guanine methyl transferase |
NTCP | Normal tissue complication probability |
OAR | Organs at risk |
OS | Overall survival |
PTV | Planning target volume |
PFS | Progression-free survival |
PRT | Proton therapy |
PsP | Pseudoprogression |
QoL | Quality of life |
RT | Radiation therapy |
RBE | Relative biological effectiveness |
SOBP | Spread-out Bragg peak |
TMZ | Temozolomide |
TOMO | Tomotherapy |
VMAT | Volumetric modulated arc therapy |
WHO | World Health Organization |
References
- Stupp, R.; Brada, M.; van den Bent, M.J.; Tonn, J.-C.; Pentheroudakis, G. ESMO Guidelines Working Group High-Grade Glioma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2014, 25 (Suppl. 3), iii93–iii101. [Google Scholar] [CrossRef] [PubMed]
- Kleihues, P.; Burger, P.C.; Scheithauer, B.W. The New WHO Classification of Brain Tumours. Brain Pathol. Zurich Switz. 1993, 3, 255–268. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [Green Version]
- Reifenberger, G.; Wirsching, H.-G.; Knobbe-Thomsen, C.B.; Weller, M. Advances in the Molecular Genetics of Gliomas—Implications for Classification and Therapy. Nat. Rev. Clin. Oncol. 2017, 14, 434–452. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Tseng, Y.; Halasz, L. Description of Proton Therapy. In Principles of Neurological Surgery; Ellenbogen, R.G., Sekhar, L.N., Kitchen, N., Eds.; Elsevier Health: Amsterdam, The Netherlands, 2018; pp. 736–744.e3. ISBN 978-0-323-43140-8. [Google Scholar]
- Eaton, B.R.; Yock, T. The Use of Proton Therapy in the Treatment of Benign or Low-Grade Pediatric Brain Tumors. Cancer J. Sudbury Mass 2014, 20, 403–408. [Google Scholar] [CrossRef]
- Noël, G.; Antoni, D. [Proton therapy]. Cancer Radiother. J. Soc. Francaise Radiother. Oncol. 2016, 20, 508–512. [Google Scholar] [CrossRef]
- van der Weide, H.L.; Kramer, M.C.A.; Scandurra, D.; Eekers, D.B.P.; Klaver, Y.L.B.; Wiggenraad, R.G.J.; Méndez Romero, A.; Coremans, I.E.M.; Boersma, L.; van Vulpen, M.; et al. Proton Therapy for Selected Low Grade Glioma Patients in the Netherlands. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2020, 154, 283–290. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Journy, N.; Indelicato, D.J.; Withrow, D.R.; Akimoto, T.; Alapetite, C.; Araya, M.; Chang, A.; Chang, J.H.-C.; Chon, B.; Confer, M.E.; et al. Patterns of Proton Therapy Use in Pediatric Cancer Management in 2016: An International Survey. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2019, 132, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Zetterling, M.; Roodakker, K.R.; Berntsson, S.G.; Edqvist, P.-H.; Latini, F.; Landtblom, A.-M.; Pontén, F.; Alafuzoff, I.; Larsson, E.-M.; Smits, A. Extension of Diffuse Low-Grade Gliomas beyond Radiological Borders as Shown by the Coregistration of Histopathological and Magnetic Resonance Imaging Data. J. Neurosurg. 2016, 125, 1155–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smoll, N.R.; Gautschi, O.P.; Schatlo, B.; Schaller, K.; Weber, D.C. Relative Survival of Patients with Supratentorial Low-Grade Gliomas. Neuro-Oncology 2012, 14, 1062–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Indelicato, D.J.; Rotondo, R.L.; Uezono, H.; Sandler, E.S.; Aldana, P.R.; Ranalli, N.J.; Beier, A.D.; Morris, C.G.; Bradley, J.A. Outcomes Following Proton Therapy for Pediatric Low-Grade Glioma. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Greenberger, B.A.; Pulsifer, M.B.; Ebb, D.H.; MacDonald, S.M.; Jones, R.M.; Butler, W.E.; Huang, M.S.; Marcus, K.J.; Oberg, J.A.; Tarbell, N.J.; et al. Clinical Outcomes and Late Endocrine, Neurocognitive, and Visual Profiles of Proton Radiation for Pediatric Low-Grade Gliomas. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Le Fèvre, C.; Lhermitte, B.; Ahle, G.; Chambrelant, I.; Cebula, H.; Antoni, D.; Keller, A.; Schott, R.; Thiery, A.; Constans, J.-M.; et al. Pseudoprogression versus True Progression in Glioblastoma Patients: A Multiapproach Literature Review: Part 1—Molecular, Morphological and Clinical Features. Crit. Rev. Oncol. Hematol. 2020, 157, 103188. [Google Scholar] [CrossRef] [PubMed]
- Mannina, E.M.; Bartlett, G.K.; McMullen, K.P. Extended Volumetric Follow-up of Juvenile Pilocytic Astrocytomas Treated with Proton Beam Therapy. Int. J. Part. Ther. 2016, 3, 291–299. [Google Scholar] [CrossRef]
- Ludmir, E.B.; Mahajan, A.; Paulino, A.C.; Jones, J.Y.; Ketonen, L.M.; Su, J.M.; Grosshans, D.R.; McAleer, M.F.; McGovern, S.L.; Lassen-Ramshad, Y.A.; et al. Increased Risk of Pseudoprogression among Pediatric Low-Grade Glioma Patients Treated with Proton versus Photon Radiotherapy. Neuro-Oncol. 2019, 21, 686–695. [Google Scholar] [CrossRef]
- Shih, H.A.; Sherman, J.C.; Nachtigall, L.B.; Colvin, M.K.; Fullerton, B.C.; Daartz, J.; Winrich, B.K.; Batchelor, T.T.; Thornton, L.T.; Mancuso, S.M.; et al. Proton Therapy for Low-Grade Gliomas: Results from a Prospective Trial. Cancer 2015, 121, 1712–1719. [Google Scholar] [CrossRef]
- Tabrizi, S.; Yeap, B.Y.; Sherman, J.C.; Nachtigall, L.B.; Colvin, M.K.; Dworkin, M.; Fullerton, B.C.; Daartz, J.; Royce, T.J.; Oh, K.S.; et al. Long-Term Outcomes and Late Adverse Effects of a Prospective Study on Proton Radiotherapy for Patients with Low-Grade Glioma. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2019, 137, 95–101. [Google Scholar] [CrossRef]
- Bronk, J.K.; Guha-Thakurta, N.; Allen, P.K.; Mahajan, A.; Grosshans, D.R.; McGovern, S.L. Analysis of Pseudoprogression after Proton or Photon Therapy of 99 Patients with Low Grade and Anaplastic Glioma. Clin. Transl. Radiat. Oncol. 2018, 9, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Dworkin, M.; Mehan, W.; Niemierko, A.; Kamran, S.C.; Lamba, N.; Dietrich, J.; Martinez-Lage, M.; Oh, K.S.; Batchelor, T.T.; Wen, P.Y.; et al. Increase of Pseudoprogression and Other Treatment Related Effects in Low-Grade Glioma Patients Treated with Proton Radiation and Temozolomide. J. Neurooncol. 2019, 142, 69–77. [Google Scholar] [CrossRef]
- Dennis, E.R.; Bussiere, M.R.; Niemierko, A.; Lu, M.W.; Fullerton, B.C.; Loeffler, J.S.; Shih, H.A. A Comparison of Critical Structure Dose and Toxicity Risks in Patients with Low Grade Gliomas Treated with IMRT versus Proton Radiation Therapy. Technol. Cancer Res. Treat. 2013, 12, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Harrabi, S.B.; Bougatf, N.; Mohr, A.; Haberer, T.; Herfarth, K.; Combs, S.E.; Debus, J.; Adeberg, S. Dosimetric Advantages of Proton Therapy over Conventional Radiotherapy with Photons in Young Patients and Adults with Low-Grade Glioma. Strahlenther. Onkol. Organ Dtsch. Rontgenges. Al 2016, 192, 759–769. [Google Scholar] [CrossRef] [Green Version]
- Eekers, D.B.P.; Roelofs, E.; Cubillos-Mesías, M.; Niël, C.; Smeenk, R.J.; Hoeben, A.; Minken, A.W.H.; Granzier, M.; Janssens, G.O.; Kaanders, J.H.A.M.; et al. Intensity-Modulated Proton Therapy Decreases Dose to Organs at Risk in Low-Grade Glioma Patients: Results of a Multicentric in Silico ROCOCO Trial. Acta Oncol. Stockh. Swed. 2019, 58, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of Radiotherapy with Concomitant and Adjuvant Temozolomide versus Radiotherapy Alone on Survival in Glioblastoma in a Randomised Phase III Study: 5-Year Analysis of the EORTC-NCIC Trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Hartmann, C.; Hentschel, B.; Simon, M.; Westphal, M.; Schackert, G.; Tonn, J.C.; Loeffler, M.; Reifenberger, G.; Pietsch, T.; von Deimling, A.; et al. Long-Term Survival in Primary Glioblastoma with versus without Isocitrate Dehydrogenase Mutations. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 5146–5157. [Google Scholar] [CrossRef] [Green Version]
- Preusser, M.; Charles Janzer, R.; Felsberg, J.; Reifenberger, G.; Hamou, M.-F.; Diserens, A.-C.; Stupp, R.; Gorlia, T.; Marosi, C.; Heinzl, H.; et al. Anti-O6-Methylguanine-Methyltransferase (MGMT) Immunohistochemistry in Glioblastoma Multiforme: Observer Variability and Lack of Association with Patient Survival Impede Its Use as Clinical Biomarker. Brain Pathol. Zurich Switz. 2008, 18, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Muroi, A.; Mizumoto, M.; Ishikawa, E.; Ihara, S.; Fukushima, H.; Tsurubuchi, T.; Sakurai, H.; Matsumura, A. Proton Therapy for Newly Diagnosed Pediatric Diffuse Intrinsic Pontine Glioma. Childs Nerv. Syst. ChNS Off. J. Int. Soc. Pediatr. Neurosurg. 2020, 36, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Petr, J.; Platzek, I.; Hofheinz, F.; Mutsaerts, H.J.M.M.; Asllani, I.; van Osch, M.J.P.; Seidlitz, A.; Krukowski, P.; Gommlich, A.; Beuthien-Baumann, B.; et al. Photon vs. Proton Radiochemotherapy: Effects on Brain Tissue Volume and Perfusion. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2018, 128, 121–127. [Google Scholar] [CrossRef]
- Brown, P.D.; Chung, C.; Liu, D.D.; McAvoy, S.; Grosshans, D.; Al Feghali, K.; Mahajan, A.; Li, J.; McGovern, S.L.; McAleer, M.-F.; et al. A Prospective Phase II Randomized Trial of Proton Radiotherapy vs Intensity-Modulated Radiotherapy for Patients with Newly Diagnosed Glioblastoma. Neuro-Oncology 2021, 23, 1337–1347. [Google Scholar] [CrossRef]
- Adeberg, S.; Harrabi, S.B.; Bougatf, N.; Bernhardt, D.; Rieber, J.; Koerber, S.A.; Syed, M.; Sprave, T.; Mohr, A.; Abdollahi, A.; et al. Intensity-Modulated Proton Therapy, Volumetric-Modulated Arc Therapy, and 3D Conformal Radiotherapy in Anaplastic Astrocytoma and Glioblastoma: A Dosimetric Comparison. Strahlenther. Onkol. Organ Dtsch. Rontgenges. Al 2016, 192, 770–779. [Google Scholar] [CrossRef]
- van den Bent, M.J.; Afra, D.; de Witte, O.; Ben Hassel, M.; Schraub, S.; Hoang-Xuan, K.; Malmström, P.-O.; Collette, L.; Piérart, M.; Mirimanoff, R.; et al. Long-Term Efficacy of Early versus Delayed Radiotherapy for Low-Grade Astrocytoma and Oligodendroglioma in Adults: The EORTC 22845 Randomised Trial. Lancet Lond. Engl. 2005, 366, 985–990. [Google Scholar] [CrossRef]
- Cherlow, J.M.; Shaw, D.W.W.; Margraf, L.R.; Bowers, D.C.; Huang, J.; Fouladi, M.; Onar-Thomas, A.; Zhou, T.; Pollack, I.F.; Gajjar, A.; et al. Conformal Radiation Therapy for Pediatric Patients with Low-Grade Glioma: Results from the Children’s Oncology Group Phase 2 Study ACNS0221. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 861–868. [Google Scholar] [CrossRef] [Green Version]
- Gnekow, A.K.; Falkenstein, F.; von Hornstein, S.; Zwiener, I.; Berkefeld, S.; Bison, B.; Warmuth-Metz, M.; Driever, P.H.; Soerensen, N.; Kortmann, R.-D.; et al. Long-Term Follow-up of the Multicenter, Multidisciplinary Treatment Study HIT-LGG-1996 for Low-Grade Glioma in Children and Adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro-Oncol. 2012, 14, 1265–1284. [Google Scholar] [CrossRef]
- Jhaveri, J.; Cheng, E.; Tian, S.; Buchwald, Z.; Chowdhary, M.; Liu, Y.; Gillespie, T.W.; Olson, J.J.; Diaz, A.Z.; Voloschin, A.; et al. Proton vs. Photon Radiation Therapy for Primary Gliomas: An Analysis of the National Cancer Data Base. Front. Oncol. 2018, 8, 440. [Google Scholar] [CrossRef]
- Proton Radiation Therapy for Gliomas—Tabular View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/record/NCT01358058 (accessed on 9 January 2021).
- Jalali, R.; Mallick, I.; Dutta, D.; Goswami, S.; Gupta, T.; Munshi, A.; Deshpande, D.; Sarin, R. Factors Influencing Neurocognitive Outcomes in Young Patients with Benign and Low-Grade Brain Tumors Treated with Stereotactic Conformal Radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 974–979. [Google Scholar] [CrossRef] [PubMed]
- NRG Oncology. A Phase II Randomized Trial of Proton vs. Photon Therapy (IMRT) for Cognitive Preservation in Patients With IDH Mutant, Low to Intermediate Grade Gliomas. 2020. Available online: clinicaltrials.gov (accessed on 3 September 2021).
- Merchant, T.E.; Conklin, H.M.; Wu, S.; Lustig, R.H.; Xiong, X. Late Effects of Conformal Radiation Therapy for Pediatric Patients with Low-Grade Glioma: Prospective Evaluation of Cognitive, Endocrine, and Hearing Deficits. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 3691–3697. [Google Scholar] [CrossRef] [Green Version]
- Taphoorn, M.J.; Heimans, J.J.; van der Veen, E.A.; Karim, A.B. Endocrine Functions in Long-Term Survivors of Low-Grade Supratentorial Glioma Treated with Radiation Therapy. J. Neurooncol. 1995, 25, 97–102. [Google Scholar] [CrossRef]
- Paganetti, H.; Athar, B.S.; Moteabbed, M.; Adams, J.; Schneider, U.; Yock, T.I. Assessment of Radiation-Induced Second Cancer Risks in Proton Therapy and IMRT for Organs inside the Primary Radiation Field. Phys. Med. Biol. 2012, 57, 6047–6061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, C.S.; Yock, T.I.; Nelson, K.; Xu, Y.; Keating, N.L.; Tarbell, N.J. Incidence of Second Malignancies among Patients Treated with Proton versus Photon Radiation. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Lu, V.M.; Welby, J.P.; Laack, N.N.; Mahajan, A.; Daniels, D.J. Pseudoprogression after Radiation Therapies for Low Grade Glioma in Children and Adults: A Systematic Review and Meta-Analysis. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2020, 142, 36–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Fèvre, C.; Constans, J.-M.; Chambrelant, I.; Antoni, D.; Bund, C.; Leroy-Freschini, B.; Schott, R.; Cebula, H.; Noël, G. Pseudoprogression versus True Progression in Glioblastoma Patients: A Multiapproach Literature Review. Part 2—Radiological Features and Metric Markers. Crit. Rev. Oncol. Hematol. 2021, 159, 103230. [Google Scholar] [CrossRef] [PubMed]
- NRG Oncology. Randomized Phase II Trial of Hypofractionated Dose-Escalated Photon IMRT or Proton Beam Therapy Versus Conventional Photon Irradiation with Concomitant and Adjuvant Temozolomide in Patients with Newly Diagnosed Glioblastoma. 2021. Available online: clinicaltrials.gov (accessed on 3 September 2021).
Database | MeSH Search Expression |
---|---|
PubMed | (Protons OR proton therapy) AND (glioma) |
ScienceDirect | Title, abstract, keywords: protons AND glioma AND brain tumors |
Author | Year | Type Of Study | Population | Median Age at RT (Years (Range)) | Grade | Number of Patients | Prescription | Median RT Dose (Gy RBE (Range)) | Volume | Number of Patients with Pre-RT Chemotherapy | Median Follow-Up (Years (Range)) | Clinical Outcomes | Toxicity Outcomes | PsP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Greenberger et al. | 2014 | Retrospective | Children | 11.0 (2.7–21.5) | LGG | 32 | NA | 52.2 | CTV = GTV + 3–5 mm PTV = CTV + 8–12 mm | 16 | 7.6 (3.2–18.2) | 8-year PFS and OS rates = 83% and 100%, respectively | Significant decline in children < 7 years and those with higher dose to the left temporal lobe and hippocampus | NA |
Mannina et al. | 2016 | Retrospective | Children | 10.9 (4–20) | LGG | 15 | NA | 54 (50.4–59.4) | NA | 9 | 4.6 | NA | NA | 3 patients (20%), the maximum volume was observed 3 to 8 months after PRT and regressed after 18 months |
Indelicato et al. | 2019 | Prospective | Children | 9 (2–21) | LGG | 174 | 129 treated with 54 Gy RBE45 treated with <54 Gy RBE | NA | CTV = GTV + 5 mm PTV = CTV + 3 mm | 74 | 4.4 (0.5–11.4) | 5-year PFS and OS rates = 84% and 92%, respectively | 12.6% nausea or vomiting; 1.1% headaches; 2.9% sensorineural troubles; 22% neuroendocrine deficiency | 56 patients (32%) |
Ludmir et al. | 2019 | Retrospective | Children | 10.0 (1.0–17.6) | LGG | 83 | NA | 50.4 (45–59.4) | NA | 32 | 5.6 | Improved local control for PBT patients (HR 0.34, 95% CI: 0.10–1.18, p = 0.099) | NA | RT modality was found to predict PsP, with a higher cumulative incidence of PsP among PBT patients (23/51, 45%) than IMRT patients (8/32, 25%) (p = 0.048) |
Shih et al. | 2015 | Prospective | Adult | 37.5 (22–56) | LGG | 20 | 54 GyRBE in 30 fractions | NA | CTV = GTV + 15 mm PTV = CTV + 8 mm | NA | 5.1 (3.3–5.2) | 5-year PFS and OS rates = 40% and 84%, respectively | Patients with LGG tolerate proton therapy well, and a subset develops neuroendocrine deficiencies. There is no evidence for overall decline in cognitive function or QOL | NA |
Bronk et al. | 2018 | Retrospective | Adult | 47 (24–71) Oligo 46 (26–53) Astro | LGG | 36 | NA | 54 (40–57) Oligo 50.4 (50.4–57) Astro | CTV = GTV + 10–15 mm | NA | NA | NA | NA | Same incidence of PsP in both groups (17%). The median time of PsP detection was 33 days (range, 18–116 days) |
Tabrizi et al. | 2019 | Prospective | Adult | 37.5 (22–56) | LGG | 20 | 54 GyRBE in 30 fractions | NA | CTV = GTV + 15 mm PTV = CTV + 8 mm | NA | 6.8 (1.8–11.5) | Median PFS = 4.5 years | The majority of patients with LGG who received proton therapy retained stable cognitive and neuroendocrine function | NA |
Dworkin et al. | 2019 | Retrospective | Adult | 37 (18–68) | LGG | 119 | NA | 54 (54–60) | NA | NA | 4.8 | NA | NA | 43.6%, the median time of PsP detection was 7.6 months (range 0.6–65.8 months). There was an increased risk of PsP following PRT + TMZ vs. PRT-alone (HR = 2.2, p = 0.006) |
Muroi et al. | 2020 | Retrospective | Children | 5.8 (4–9.9) | HGG | 12 | 54 GyRBE in 30 fractions | NA | CTV = GTV + 5–10 mm PTV = CTV + 2–3 mm | NA | NA | Median PFS = 5 months (range 1–11 months), and median OS = 9 months (range 4–48 months) | The most reported toxicities were grade ≤ 2 and included alopecia in the irradiated area (n = 12), nausea(n = 4), a decreased lymphocyte count (n = 4), vomiting (n = 2), bullous dermatitis (n = 1), and allergic reaction (n = 1) | NA |
Petr et al. | 2017 | Retrospective | Adult | (54.9 ±14.0 years) | HGG | 67 | 60 GyRBE in 30 fractions | NA | CTV = GTV + 20 mm PTV = CTV + 5 mm | NA | NA | NA | NA | NA |
Brown et al. | 2021 | Prospective | Adult | 53 (26–82) IMRT 54.5 (33–72) PRT | HGG | 67 | 60 Gy or GyRBE in 30 fractions | NA | CTV = GTV + 20 mm PTV50 = CTV + 3–5 mm and PTV60 = GTV + 3–5 mm | NA | 48.7 (7.1–66.7) | Median PFS = 8.9 months in IMRT vs. 6.6 months in PRT (p = 0.24), and médian OS = 21.2 months in IMRT vs. 24.5 months in PRT (p = 0.60) | There was no significant difference in time to cognitive failure between treatment arms. PRT was associated with a lower rate of fatigue | NA |
Author | Year | Type of Study | Population | Median Age at RT (Years (Range)) | Grade | Number of Patients | Prescription | Median RT Dose (GyRBE (Range)) | Volume | Target Volume | Conclusion |
---|---|---|---|---|---|---|---|---|---|---|---|
Harrabi et al. | 2016 | In silico | Children and adult | 31.2 (2.0–64.2) | LGG | 74 | 54 GyRBE in 30 fractions | 54.0 (50.4–60) | CTV = GTV + 10 mm | Median = 185.2 cc (range 11.8–709.6) | Reduction in dose in critical neurologic structures with PRT, with similar target volume coverage in both plans |
Eekers et al. | 2018 | In silico | Children | NA | LGG | 25 | 50.4 GyRBE in 30 fractions | NA | CTV = GTV + 10 mm PTV = CTV + 2 mm | Mean = 240 cc (range 92–456) | IMPT was better than the other modalities to spare OAR, especially those located contralateral to the target volume |
Dennis et al. | 2013 | In silico | Adult | NA | LGG | 11 | 54 GyRBE in 30 fractions | NA | CTV = GTV + 15 mm PTV = CTV + 3 mm | Mean = 162.2 cc (range 22.5–390.3) | Equivalent uniform dose (EUD) between 10 and 20 GyRBE lower with PRT to crucial neuronal structures, including optic nerves, hippocampus, cochlea, and pituitary |
Adeberg et al. | 2016 | In silico | Adult | 36.5 (26–63) | HGG | 12 | 60 GyRBE in 30 fractions | 60 (56.0–60.0) | CTV = GTV + 20–30 mm | NA | Statistically significant reductions of mean dose (Dmean) with IMPT in neurosensorial structures, neuroendocrine structures, and critical organs of neurocognition (p < 0.05) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chambrelant, I.; Eber, J.; Antoni, D.; Burckel, H.; Noël, G.; Auvergne, R. Proton Therapy and Gliomas: A Systematic Review. Radiation 2021, 1, 218-233. https://doi.org/10.3390/radiation1030019
Chambrelant I, Eber J, Antoni D, Burckel H, Noël G, Auvergne R. Proton Therapy and Gliomas: A Systematic Review. Radiation. 2021; 1(3):218-233. https://doi.org/10.3390/radiation1030019
Chicago/Turabian StyleChambrelant, Isabelle, Jordan Eber, Delphine Antoni, Hélène Burckel, Georges Noël, and Romane Auvergne. 2021. "Proton Therapy and Gliomas: A Systematic Review" Radiation 1, no. 3: 218-233. https://doi.org/10.3390/radiation1030019
APA StyleChambrelant, I., Eber, J., Antoni, D., Burckel, H., Noël, G., & Auvergne, R. (2021). Proton Therapy and Gliomas: A Systematic Review. Radiation, 1(3), 218-233. https://doi.org/10.3390/radiation1030019