LiF Nanoparticles Enhance Targeted Degradation of Organic Material under Low Dose X-ray Irradiation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juers, D.H.; Weik, M. Similarities and Differences in Radiation Damage at 100 K versus 160 K in a Crystal of Thermolysin. J. Synchrotron Rad. 2011, 18, 329–337. [Google Scholar] [CrossRef]
- Reisz, J.A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C.M. Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection. Antioxid. Redox Signal. 2014, 21, 260–292. [Google Scholar] [CrossRef] [PubMed]
- Leermakers, P.A.; Vesley, G.F. Organic Photochemistry and the Excited State. J. Chem. Educ. 1964, 41, 535. [Google Scholar] [CrossRef]
- Faber, C.; Boulanger, P.; Attaccalite, C.; Duchemin, I.; Blase, X. Excited States Properties of Organic Molecules: From Density Functional Theory to the GW and Bethe–Salpeter Green’s Function Formalisms. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20130271. [Google Scholar] [CrossRef] [Green Version]
- Michl, J.; Klessinger, M. Excited States and Photo-Chemistry of Organic Molecules, 1st ed.; Wiley-VCH: New York, NY, USA, 1995. [Google Scholar]
- Smith, H.I.; Schattenburg, M.L. X-ray Lithography from 500 to 30 Nm: X-ray Nanolithography. IBM J. Res. Dev. 1993, 37, 319–329. [Google Scholar] [CrossRef]
- Bonfigli, F.; Faenov, A.Y.; Flora, F.; Marolo, T.; Montereali, R.M.; Nichelatti, E.; Pikuz, T.A.; Reale, L.; Baldacchini, G. Point Defects in Lithium Fluoride Films for Micro-Radiography, X-ray Microscopy and Photonic Applications. Phys. Status Solidi A 2005, 202, 250–255. [Google Scholar] [CrossRef]
- Gillaspy, J.D.; Pomeroy, J.M.; Perrella, A.C.; Grube, H. The Potential of Highly Charged Ions: Possible Future Applications. J. Phys. Conf. Ser. 2007, 58, 104. [Google Scholar] [CrossRef]
- Schuemann, J.; Bagley, A.F.; Berbeco, R.; Bromma, K.; Butterworth, K.T.; Byrne, H.L.; Chithrani, B.D.; Cho, S.H.; Cook, J.R.; Favaudon, V.; et al. Roadmap for Metal Nanoparticles in Radiation Therapy: Current Status, Translational Challenges, and Future Directions. Phys. Med. Biol. 2020, 65, 21RM02. [Google Scholar] [CrossRef] [PubMed]
- Kuncic, Z.; Lacombe, S. Nanoparticle Radio-Enhancement: Principles, Progress and Application to Cancer Treatment. Phys. Med. Biol. 2018, 63, 02TR01. [Google Scholar] [CrossRef]
- Luo, Y.; Hossain, M.; Wang, C.; Qiao, Y.; An, J.; Ma, L.; Su, M. Targeted Nanoparticles for Enhanced X-ray Radiation Killing of Multidrug-Resistant Bacteria. Nanoscale 2012, 5, 687–694. [Google Scholar] [CrossRef]
- McMahon, S.J.; Mendenhall, M.H.; Jain, S.; Currell, F. Radiotherapy in the Presence of Contrast Agents: A General Figure of Merit and Its Application to Gold Nanoparticles. Phys. Med. Biol. 2008, 53, 5635. [Google Scholar] [CrossRef]
- Nakayama, M.; Sasaki, R.; Ogino, C.; Tanaka, T.; Morita, K.; Umetsu, M.; Ohara, S.; Tan, Z.; Nishimura, Y.; Akasaka, H.; et al. Titanium Peroxide Nanoparticles Enhanced Cytotoxic Effects of X-ray Irradiation against Pancreatic Cancer Model through Reactive Oxygen Species Generation in Vitro and in Vivo. Radiat. Oncol. 2016, 11, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teraoka, S.; Kakei, Y.; Akashi, M.; Iwata, E.; Hasegawa, T.; Miyawaki, D.; Sasaki, R.; Komori, T. Gold Nanoparticles Enhance X-ray Irradiation-Induced Apoptosis in Head and Neck Squamous Cell Carcinoma in Vitro. Biomed. Rep. 2018, 9, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Liu, S.; Zhang, N.; Kuang, Y.; Li, W.; Gai, S.; He, F.; Gulzar, A.; Yang, P. X-ray-Triggered NO-Released Bi–SNO Nanoparticles: All-in-One Nano-Radiosensitizer with Photothermal/Gas Therapy for Enhanced Radiotherapy. Nanoscale 2020, 12, 19293–19307. [Google Scholar] [CrossRef] [PubMed]
- Baldacchini, G.; Goncharova, O.; Kalinov, V.S.; Montereali, R.M.; Nichelatti, E.; Vincenti, A.; Voitovich, A.P. Optical Properties of Coloured LiF Crystals with given Content of Oxygen, Hydroxyl and Metal Impurities. Phys. Status Solidi C 2007, 4, 744–748. [Google Scholar] [CrossRef]
- Montereali, R.M.; Almaviva, S.; Bonfigli, F.; Cricenti, A.; Faenov, A.; Flora, F.; Gaudio, P.; Lai, A.; Martellucci, S.; Nichelatti, E.; et al. Lithium Fluoride Thin-Film Detectors for Soft X-ray Imaging at High Spatial Resolution. Nuc. Instr. Meth. Phys. Res. A Accel. Spectro. Detect. Assoc. Equip. 2010, 623, 758–762. [Google Scholar] [CrossRef]
- Baldacchini, G.; Bollanti, S.; Bonfigli, F.; Flora, F.; Di Lazzaro, P.; Lai, A.; Marolo, T.; Montereali, R.M.; Murra, D. Soft X-ray Submicron Imaging Detector Based on Point Defects in LiF. Rev. Sci. Instruments 2005, 76, 113104. [Google Scholar] [CrossRef]
- Cosset, F.; Celerier, A.; Barelaud, B.; Vareille, J.C. Thin Reactive LiF Films for Nuclear Sensors. Thin Solid Films 1997, 303, 191–195. [Google Scholar] [CrossRef]
- Pedersen, K.; Andersen, T.D.; Rødal, J.; Olsen, D.R. Sensitivity and Stability of LiF Thermoluminescence Dosimeters. Med. Dosim. 1995, 20, 263–267. [Google Scholar] [CrossRef]
- Flora, F.; Baldacchini, G.; Bonfigli, F.; Lai, A.; Marolo, T.; Mezi, L.; Montereali, R.M.; Murra, D.; Lisi, N.; Nichelatti, E.; et al. Lithium Fluoride Coloration by Laser-Plasma Soft X-rays: A Promising Tool for X-ray Microscopy and Photonics. In Laser-Generated and Other Laboratory X-ray and EUV Sources, Optics, and Applications; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2004; Volume 5196, pp. 298–310. [Google Scholar] [CrossRef]
- Van den Bosch, A. γ-Radiolysis of LiF. Radiat. Eff. 1973, 19, 129–133. [Google Scholar] [CrossRef]
- Kubo, K. Radiation Effects in LiF Crystals. J. Phys. Soc. Jpn. 1961, 16, 2294–2306. [Google Scholar] [CrossRef]
- Baldacchini, G.; Montereali, R.M.; Scacco, A.; Cremona, M.; D’Auria, G. Point Defects Induced in LiF by Low Energy Electrons; Technical Report; Ente per le Nuove Technologie, L’Energia e L’Ambiente (ENEA): Rome, Italy, 1997. [Google Scholar]
- Montereali, R.M.; Bonfigli, F.; Menchini, F.; Vincenti, M.A. Optical Spectroscopy and Microscopy of Radiation-Induced Light-Emitting Point Defects in Lithium Fluoride Crystals and Films. Low Temp. Phys. 2012, 38, 779. [Google Scholar] [CrossRef] [Green Version]
- Golek, F.; Sobolewski, W.J. Electron Beam Induced Alteration of LiF Thin Films Monitored by EELS. Solid State Commun. 1999, 110, 143–146. [Google Scholar] [CrossRef]
- Zabels, R.; Manika, I.; Schwartz, K.; Maniks, J.; Dauletbekova, A.; Grants, R.; Baizhumanov, M.; Zdorovets, M. Formation of Dislocations and Hardening of LiF under High-Dose Irradiation with 5–21 MeV 12C Ions. Appl. Phys. A 2017, 123, 320. [Google Scholar] [CrossRef]
- Entani, S.; Mizuguchi, M.; Watanabe, H.; Antipina, L.Y.; Sorokin, P.; Avramov, P.V.; Naramoto, H.; Sakai, S. Effective Fluorination of Single-Layer Graphene by High-Energy Ion Irradiation through a LiF Overlayer. RSC Adv. 2016, 6, 68525–68529. [Google Scholar] [CrossRef]
- Somma, F.; Montereali, R.; Vincenti, M.; Polosan, S.; Secu, M. Radiation Induced Defects in Pb2+-Doped LiF Crystals. Phys. Procedia 2009, 2, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, C.P.; Ponce, F.; Friedrich, S.; Cramer, S.P.; Vinson, J.; Prendergast, D. Temperature and Radiation Effects at the Fluorine K-Edge in LiF. J. Electron Spectrosc. Relat. Phenom. 2017, 218, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Nadeau, J.S.; Johnston, W.G. Hardening of Lithium Fluoride Crystals by Irradiation. J. Appl. Phys. 1961, 32, 2563–2565. [Google Scholar] [CrossRef]
- Pomeroy, R. The Reactivity of Fluorine. Chem. Educ. 2015, 20, 260–264. [Google Scholar]
- Lee, S.I.; Liang, K.; Hui, L.S.; Arbi, R.; Munir, M.; Lee, S.J.; Kim, J.W.; Kim, K.J.; Kim, W.Y.; Turak, A. Necessity of Submonolayer LiF Anode Interlayers for Improved Device Performance in Blue Phosphorescent OLEDs. J. Mater. Sci. Mater. Electron. 2021, 32, 1161–1177. [Google Scholar] [CrossRef]
- Maye, F. Morphological and Structural Study of Ultrathin Lithium Floride Films on Organic Molecule Surfaces. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2011. [Google Scholar]
- Gołek, F.; Mazur, P. LiF Thin Layers on Si(100) Studied by ESD, LEED, AES, and AFM. Surf. Sci. 2003, 541, 173–181. [Google Scholar] [CrossRef]
- Montereali, R.M.; Baldacchini, G.; Martelli, S.; Do Carmo, L.S. LiF Films: Production and Characterization. Thin Solid Films 1991, 196, 75–83. [Google Scholar] [CrossRef]
- Di Nunzio, P.E.; Fornarini, L.; Martelli, S.; Montereali, R.M. Texture Analysis of LiF Thin Films Evaporated onto Amorphous Substrates at Different Temperatures. Phys. Status Solidi Appl. Res. 1997, 164, 747–756. [Google Scholar] [CrossRef]
- Stierle, A.; Steinhauser, A.; Ruhm, A.; Renner, F.U.; Weigel, R.; Kasper, N.; Dosch, H. Dedicated Max-Planck Beamline for the in Situ Investigation of Interfaces and Thin Films. Rev. Sci. Instrum. 2004, 75, 5302–5307. [Google Scholar] [CrossRef]
- Delheusy, M.; Major, J.; Rühm, A.; Stierle, A. Dedicated Beamlines for In-Situ Investigations of Materials in Reduced Dimensions. Int. J. Mater. Res. 2011, 102, 913–924. [Google Scholar] [CrossRef]
- Nannarone, S.; Borgatti, F.; DeLuisa, A.; Doyle, B.P.; Gazzadi, G.C.; Giglia, A.; Finetti, P.; Mahne, N.; Pasquali, L.; Pedio, M.; et al. The BEAR Beamline at Elettra. In Proceedings of the AIP Conference Proceedings, Sacramento, CA, USA, 4–5 August 2004; Volume 705, pp. 450–453. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef]
- Heidkamp, J.; Maye, F.; Turak, A.Z. Stabilization Methods for Small Molecule Dewetting on Indium Tin Oxide Substrates for Organic Photovoltaics. Procceedings of Photonics North 2013, Ottawa, ON, Canada, 3–5 June 2013; Cheben, P., Schmid, J., Boudoux, C., Chen, L.R., Delâge, A., Janz, S., Kashyap, R., Lockwood, D.J., Loock, H.P., Mi, Z., Eds.; SPIE: Ottawa, ON, Canada, 2013; Volume 8915, p. 891508. [Google Scholar] [CrossRef]
- Heinemeyer, U.; Scholz, R.; Gisslén, L.; Alonso, M.I.; Ossó, J.O.; Garriga, M.; Hinderhofer, A.; Kytka, M.; Kowarik, S.; Gerlach, A.; et al. Exciton-Phonon Coupling in Diindenoperylene Thin Films. Phys. Rev. B 2008, 78. [Google Scholar] [CrossRef] [Green Version]
- Turak, A.; Nguyen, M.; Maye, F.; Heidkamp, J.; Lienerth, P.; Wrachtrup, J.; Dosch, H. Nanoscale Engineering of Exciton Dissociating Interfaces in Organic Photovoltaics. J. Nano Res. 2011, 14, 125–136. [Google Scholar] [CrossRef]
- Huang, Y.L.; Chen, W.; Huang, H.; Qi, D.C.; Chen, S.; Gao, X.Y.; Pflaum, J.; Wee, A.T.S. Ultrathin Films of Diindenoperylene on Graphite and SiO2. J. Phys. Chem. C 2009, 113, 9251–9255. [Google Scholar] [CrossRef]
- Dürr, A.C.; Schreiber, F.; Münch, M.; Karl, N.; Krause, B.; Kruppa, V.; Dosch, H. High Structural Order in Thin Films of the Organic Semiconductor Diindenoperylene. Appl. Phys. Lett. 2002, 81, 2276–2278. [Google Scholar] [CrossRef] [Green Version]
- Dürr, A.; Nickel, B.; Sharma, V.; Täffner, U.; Dosch, H. Observation of Competing Modes in the Growth of Diindenoperylene on SiO2. Thin Solid Films 2006, 503, 127–132. [Google Scholar] [CrossRef]
- Zhang, X.N.; Barrena, E.; de Oteyza, D.G.; Dosch, H. Transition from Layer-by-Layer to Rapid Roughening in the Growth of DIP on SiO2. Surf. Sci. 2007, 601, 2420–2425. [Google Scholar] [CrossRef]
- Dürr, A.C.; Schreiber, F.; Ritley, K.A.; Kruppa, V.; Krug, J.; Dosch, H.; Struth, B. Rapid Roughening in Thin Film Growth of an Organic Semiconductor (Diindenoperylene). Phys. Rev. Lett. 2003, 90, 16104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiessig, H. Untersuchungen Zur Totalreflexion von Röntgenstrahlen. Ann. Phys. 1931, 402, 715–768. [Google Scholar] [CrossRef]
- Münch, M. Strukturelle Beeinflussung der Elektrischen Transporteigenschaften dünner Organischer Schichten. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2001. [Google Scholar]
- Dosch, H.; Batterman, B.W.; Wack, D.C. Depth-Controlled Grazing-Incidence Diffraction of Synchrotron X Radiation. Phys. Rev. Lett. 1986, 56, 1144–1147. [Google Scholar] [CrossRef] [PubMed]
- Vaselabadi, S.A.; Shakarisaz, D.; Ruchhoeft, P.; Strzalka, J.; Stein, G.E. Radiation Damage in Polymer Films from Grazing-Incidence X-ray Scattering Measurements. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 1074–1086. [Google Scholar] [CrossRef]
- Dürr, A.C.; Koch, N.; Kelsch, M.; Rühm, A.; Ghijsen, J.; Johnson, R.; Pireaux, J.J.; Schwartz, J.; Schreiber, F.; Dosch, H.; et al. Interplay between Morphology, Structure, and Electronic Properties at Diindenoperylene-Gold Interfaces. Phys. Rev. B 2003, 68, 115428. [Google Scholar] [CrossRef] [Green Version]
- Goncharova, O.; Montereali, R.M.; Baldacchini, G. Thin-Film Structures with Nanocrystals: An Origin of Enhanced Photo-Response. J. Phys. Conf. Ser. 2010, 249, 012063. [Google Scholar] [CrossRef] [Green Version]
- Turak, A.; Zgierski, M.Z.; Dharma-Wardana, M.W.C. LiF Doping of C60 Studied with X-ray Photoemission Shake-Up Analysis. ECS J. Solid State Sci. Technol. 2017, 6, M3116–M3121. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. C 1s Peak of Adventitious Carbon Aligns to the Vacuum Level: Dire Consequences for Material’s Bonding Assignment by Photoelectron Spectroscopy. ChemPhysChem 2017, 18, 1507–1512. [Google Scholar] [CrossRef]
- Casu, M.B. Growth, Structure, and Electronic Properties in Organic Thin Films Deposited on Metal Surfaces Investigated by Low Energy Electron Microscopy and Photoelectron Emission Microscopy. J. Electron Spectrosc. Relat. Phenom. 2015, 204, 39–48. [Google Scholar] [CrossRef]
- Schuster, B.E.; Casu, M.B.; Biswas, I.; Hinderhofer, A.; Gerlach, A.; Schreiber, F.; Chassé, T. Role of the Substrate in Electronic Structure, Molecular Orientation, and Morphology of Organic Thin Films: Diindenoperylene on Rutile TiO2(110). Phys. Chem. Chem. Phys. 2009, 11, 9000–9004. [Google Scholar] [CrossRef]
- Perea, A.; Gonzalo, J.; Afonso, C.N.; Martelli, S.; Montereali, R.M. On the Growth of LiF Films by Pulsed Laser Deposition. Appl. Surf. Sci. 1999, 138–139, 533–537. [Google Scholar] [CrossRef]
- Henley, S.; Ashfold, M.; Pearce, S. The Structure and Composition of Lithium Fluoride Films Grown by Off-Axis Pulsed Laser Ablation. Appl. Surf. Sci. 2003, 217, 68–77. [Google Scholar] [CrossRef]
- Neuhold, A.; Novák, J.; Flesch, H.G.; Moser, A.; Djuric, T.; Grodd, L.; Grigorian, S.; Pietsch, U.; Resel, R. X-ray Radiation Damage of Organic Semiconductor Thin Films during Grazing Incidence Diffraction Experiments. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2012, 284, 64–68. [Google Scholar] [CrossRef]
- Chapiro, A. Chemical Modifications in Irradiated Polymers. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1988, 32, 111–114. [Google Scholar] [CrossRef]
- Her, S.; Jaffray, D.A.; Allen, C. Gold Nanoparticles for Applications in Cancer Radiotherapy: Mechanisms and Recent Advancements. Adv. Drug Deliv. Rev. 2017, 109, 84–101. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maye, F.; Turak, A. LiF Nanoparticles Enhance Targeted Degradation of Organic Material under Low Dose X-ray Irradiation. Radiation 2021, 1, 131-144. https://doi.org/10.3390/radiation1020012
Maye F, Turak A. LiF Nanoparticles Enhance Targeted Degradation of Organic Material under Low Dose X-ray Irradiation. Radiation. 2021; 1(2):131-144. https://doi.org/10.3390/radiation1020012
Chicago/Turabian StyleMaye, Felix, and Ayse Turak. 2021. "LiF Nanoparticles Enhance Targeted Degradation of Organic Material under Low Dose X-ray Irradiation" Radiation 1, no. 2: 131-144. https://doi.org/10.3390/radiation1020012