Climate Change and the Future of Ski Tourism in Canada’s Western Mountains
Abstract
:1. Introduction
Study Area: Skiing in Canada’s Western Mountains
2. Materials and Methods
2.1. Baseline Climate Data and Climate Change Scenarios
2.2. Ski Season Simulation Model
3. Results
3.1. Ski Area Operational Impacts
3.2. Regional Market Capacity
3.3. Economic Viability
4. Discussion
4.1. Intra-Regional Climate Risk
4.2. Inter-Regional Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pepin, N.; Adler, C.; Kotlarski, S.; Palazzi, E. Mountains undergo enhanced impacts of climate change. Eos Earth Space Sci. News 2022, 103. [Google Scholar] [CrossRef]
- Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y.; Jackson, M.; Kääb, A.; Kang, S.; Kutuzov, S.; et al. High Mountain Areas. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 131–202. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Regional Fact Sheet—Mountains. Sixth Assessment Report, Working Group 1—The Physical Science Basis. 2022. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/factsheets/IPCC_AR6_WGI_Regional_Fact_Sheet_Mountains.pdf (accessed on 1 March 2023).
- Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Steiger, R.; Scott, D.; Abegg, B.; Pons, M.; Aall, C. A critical review of climate change risk for ski tourism. Curr. Issues Tour. 2019, 22, 1343–1379. [Google Scholar] [CrossRef]
- Steiger, R.; Knowles, N.; Pöll, K.; Rutty, M. Impacts of climate change on mountain tourism: A review. J. Sustain. Tour. 2022, 1–34. [Google Scholar] [CrossRef]
- Scott, D.; Steiger, R.; Knowles, N.; Fang, Y. Regional ski tourism risk to climate change: An inter-comparison of Eastern Canada and US Northeast markets. J. Sustain. Tour. 2021, 28, 568–586. [Google Scholar] [CrossRef]
- Lackner, C.; Geerts, B.; Wang, Y. Impact of Global Warming on Snow in Ski Areas: A case study using a regional cliamte simulation over the interior Western United States. J. Appl. Meteorol. Climatol. 2021, 60, 677–694. [Google Scholar] [CrossRef]
- Scott, D.; Steiger, R.; Rutty, M.; Knowles, N.; Rushton, B. Future climate change risk in the US Midwestern ski industry. Tour. Manag. Perspect. 2021, 40, 100875. [Google Scholar] [CrossRef]
- Rice, H.; Cohen, S.; Scott, D.; Steiger, R. Climate change risk in the Swedish ski industry. Curr. Issues Tour. 2022, 25, 2805–2820. [Google Scholar] [CrossRef]
- Steiger, R. The impact of climate change on ski season-length and snowmaking requirements in Tyrol, Austria. Clim. Res. 2010, 43, 251–262. [Google Scholar] [CrossRef]
- Scott, D.; Steiger, R.; Dannevig, H.; Aall, C. Climate change and the future of the Norwegian alpine ski industry. Curr. Issues Tour. 2019, 23, 2396–2409. [Google Scholar] [CrossRef]
- Morin, S.; Samacoits, R.; Francois, H.; Carmagnola, C.; Abegg, B.; Deiroglu, C.; Pons, M.; Soubeyroux, J.-M.; Lafaysse, M.; Franklin, S.; et al. Pan-European meteorological and snow indicators of cliamte change impact on ski tourism. Clim. Serv. 2021, 22, 100215. [Google Scholar] [CrossRef] [PubMed]
- Willibald, F.; Kotlarski, S.; Ebner, P.; Bavay, M.; Marty, C.; Trentini, F.; Ludwig, R.; Gret-Regamey, A. Vulnerability of ski tourism towards internal cliamte variability and climate change in the Swiss Alps. Sci. Total Environ. 2021, 784, 147054. [Google Scholar] [CrossRef]
- Tsilogianni, D.; Cartalis, C.; Philippopoulos, K. Climate change impact assessment on ski tourism in Greece: Case study of Parnassos Ski Resort. Climate 2023, 11, 140. [Google Scholar] [CrossRef]
- Fang, Y.; Scott, D.; Steiger, R. The impact of climate change on ski resorts in China. Int. J. Biometeorol. 2019, 65, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Che, T.; Hu, Y.; Yue, S.; Pan, J.; Dai, L. Climate change risk assessment for ski areas in China. Adv. Clim. Chang. Res. 2023, 14, 300–312. [Google Scholar] [CrossRef]
- Xu, X.; Wang, S.; Han, Z. Potential impacts of climate change on the spatial distribution of Chinese ski resorts. Adv. Clim. Chang. Res. 2023, 14, 420–428. [Google Scholar] [CrossRef]
- Rabassa, J. Impact of global climate change on glaciers and permafrost of South America, with emphasis on Patagonia, Tierra del Fuego, and the Antarctic Peninsula. Dev. Earth Surf. Process. 2009, 13, 415–438. [Google Scholar]
- Hendrikx, J.; Zammit, C.; Hreinsson, E.; Becken, S. A comparative assessment of the potential impact of climate change on the ski industry in New Zealand and Australia. Clim. Chang. 2013, 119, 965–978. [Google Scholar] [CrossRef]
- Knowles, N. The Future of Canada’s Ski and Mountain Destinations in an Era of Climate Change. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 26 September 2023. [Google Scholar]
- Canadian Ski Council. Facts + Stats. Annual Report; Canadian Ski Council: Woodbridge, ON, Canada, 2019. [Google Scholar]
- Canadian Ski Council. 2017/18 Model for Growth, Season Overview. National Preliminary Report; National Consumer Profile, Satisfaction & Segmentation Report; Canadian Ski Council: Woodbridge, ON, Canada, 2018. [Google Scholar]
- Moss, L.; Glorioso, R.; Krause, A. Understanding and Managing Amenity-led Migration in Mountain Regions. In Proceedings of the Mountain Culture at the Banff Centre Conference, Banff, AB, Canada, 15–19 May 2008. [Google Scholar]
- BC Ministry of Forest, Lands and Natural Resource Operations. The Value of Ski Areas to the British Columbia Economy; Phase Two All Alpine Ski Areas; Destination BC & Canada West Ski Areas Association: Kelowna, BC, Canada, 2015. [Google Scholar]
- Williams, P.; Fidgeon, P. Addressing participation constraint: A case study of potential skiers. Tour. Manag. 2000, 21, 379–393. [Google Scholar] [CrossRef]
- Aall, C.; Hall, C.M.; Groven, K. Tourism: Applying rebound theories and mechanisms to climate change mitigation and adaptation. In How to Improve Energy and Climate Policies. Understanding the Role of Rebound Effects; Aall, C., Santarius, T., Walnum, H.J., Eds.; Springer: London, UK, 2016; pp. 209–227. [Google Scholar]
- De Jong, C. Challenges for mountain hydrology in the third millennium. Front. Environ. Sci. 2015, 3, 38. [Google Scholar] [CrossRef]
- Dunstan, A. Victims of “Adaptation”: Climate change, sacred mountains, and perverse resilience. J. Political Ecol. 2019, 26, 704–719. [Google Scholar] [CrossRef]
- Hopkins, D. The sustainability of climate change adaptation strategies in New Zealand’s ski industry: A range of stakeholder perceptions. J. Sustain. Tour. 2014, 22, 107–126. [Google Scholar] [CrossRef]
- Scott, D.; Knowles, N.L.B.; Steiger, R. Is snowmaking climate change maladaptation? J. Sustain. Tour. 2022, 34, 282–303. [Google Scholar] [CrossRef]
- OntheSnow. Alberta and BC Snow Reports. 2022. Available online: https://www.onthesnow.com/alberta/skireport (accessed on 15 March 2023).
- Environment and Climate Change Canada. Changes in Snow. 2022. Available online: https://www.canada.ca/en/environment-climate-change/services/climate-change/canadian-centre-climate-services/basics/trends-projections/changes-snow.html (accessed on 15 March 2023).
- Knowles, N. Can the North American Ski Industry Attain Climate Resiliency? A modified Delphi survey on transformations towards sustainable tourism. J. Sustain. Tour. 2019, 27, 380–397. [Google Scholar] [CrossRef]
- Knowles, N.; Scott, D. Advancing ski tourism transformations to climate change. Ann. Tour. Res.-Empir. Insights, 2023; under review. [Google Scholar]
- Meteorological Service of Canada. Historical Climate Data Portal. 2017. Available online: http://climate.weather.gc.ca/historical_data/search_historic_data_e.html (accessed on 15 March 2023).
- National Oceanic and Atmospheric Administration. Data Tools: Local Climatological Data (LCD). 2018. Available online: https://www.ncdc.noaa.gov/cdo-web/datatools/lcd (accessed on 15 March 2023).
- Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Raftery, A.; Zimmer, A.; Frierson, D.; Startz, R.; Liu, R. Less than Less than 2 °C warming by 2100 unlikely. Nat. Clim. Chang. 2020, 7, 637–641. [Google Scholar] [CrossRef]
- United Nations Environment. The Emissions Gap Report. 2022. Available online: https://www.unenvironment.org/resources/ (accessed on 15 March 2023).
- Semenov, M.; Stratonovitch, P. Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim. Res. 2010, 41, 1–14. [Google Scholar] [CrossRef]
- Mehan, S.; Guo, T.; Gitau, M.; Flanagan, D. Comparative Study of Different Stochastic Weather generators for Long-term Climate Data Simulation. Climate 2017, 5, 26. [Google Scholar] [CrossRef]
- Qian, B.; Gameda, S.; Hayhoe, H.; De Jong, R.; Bootsma, A. Comparison of LARS-WG and AAFC-WG stochastic weather generators for diverse Canadian climates. Clim. Res. 2004, 26, 175–191. [Google Scholar] [CrossRef]
- Fauve, M.; Rhyner, H.; Schneebeli, M. Pistenpreparation und Pistenpflege: Das Handbuchfurden Praktiker; SLF: Davos, Switzerland, 2002. [Google Scholar]
- Floyd, C. Checking in on Ski Season: Alberta Resort Opens Earlier than Ever. The Weather Network. 2022. Available online: https://www.meteomedia.com/ca/nouvelles/article/alberta-nakiska-ski-resorts-plans-earliest-opening-ever-after-impressive-early-season-snows (accessed on 15 March 2023).
- Abegg, B.; Frosch, R. Climate change and winter tourism: Impact on transport companies in the Swiss canton of Graubünden. In Mountain Environments in Changing Climates; Beniston, M., Ed.; Routledge: London, UK, 1994; pp. 328–340. [Google Scholar]
- Elsasser, H.; Bürki, R. Climate change as a threat to tourism in the Alps. Clim. Res. 2002, 20, 253–257. [Google Scholar] [CrossRef]
- SnowPak. Ski Resort Opening and Closing Dates 2022/23. 2022. Available online: https://www.snowpak.com/opening-and-closing-dates (accessed on 15 March 2023).
- Environment and Climate Change Canada. Climate Trends and Variations Bulletin—Winter 2019/2020; Winter Regional Temperature Departures. Government of Canada. 2020. Available online: https://www.canada.ca/content/dam/eccc/documents/csv/climate-trends-variations/winter2020/Winter_2020_regional_temp_table_e.csv (accessed on 15 March 2023).
- National Ski Areas Association. The Economic Impact of Skiing and Snowboarding. NSAA, Denver, USA. 2021. Available online: https://nsaa.org/webdocs/Media_Public/IndustryStats/Economic_Impact_2020-21.pdf (accessed on 15 March 2023).
- Burch, S. Interjecting Politics into Business-Led Sustainability Innovation: New Data from Small Businesses in Canada; Centre for International Governance Innovation: Waterloo, ON, Canada, 2019; p. 153. [Google Scholar]
- Gössling, S.; Lyle, C. Transition policies for climatically sustainable aviation. Transp. Rev. 2021, 41, 643–658. [Google Scholar] [CrossRef]
- Lemelin, H.; Whipp, P. Last chance tourism: A decade in review. In Handbook of Globalization and Tourism; Dallen, T., Ed.; Edward Elgar Publishing: Cheltenham, UK, 2019; pp. 316–321. [Google Scholar]
- Rice, H.; Cohen, S.; Scott, D. Sweden as a last resort for European skiing? An outbound market perspective. Curr. Issues Tour. 2024. [Google Scholar] [CrossRef]
Region | Baseline (Days %Δ) | 2050s RCP 4.5 (%) | SSP 245 (%) | SSP 370 (%) | RCP 8.5 (%) | SSP 585 (%) | 2080s RCP 4.5 (%) | SSP 245 (%) | SSP 370 (%) | RCP 8.5 (%) | SSP 585 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Alberta | 153 | 138 (−10) | 140 (−8) | 134 (−13) | 132 (−14) | 128 (−16) | 133 (−13) | 132 (−14) | 118 (−23) | 114 (−26) | 107 (−30) |
British Columbia | 156 | 130 (−17) | 131 (−16) | 131 (−16) | 123 (−21) | 122 (−21) | 123 (−21) | 119 (−23) | 108 (−30) | 98 (−36) | 94 (−39) |
Western Canada | 155 | 134 (−14) | 135 (−13) | 133 (−14) | 127 (−18) | 126 (−18) | 126 (−18) | 125 (−19) | 115 (−26) | 105 (−32) | 103 (−33) |
Region | Baseline (cm) | 2050s RCP 4.5 (%) | SSP 245 (%) | SSP 370 (%) | RCP 8.5 (%) | SSP 585 (%) | 2080s RCP 4.5 (%) | SSP 245 (%) | SSP 370 (%) | RCP 8.5 (%) | SSP585 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Alberta | 76 | +96% | +121% | +75% | +79% | +102% | +127% | +234% | +111% | +150% | +218% |
British Columbia | 55 | +154% | +199% | +138% | +146% | +193% | +208% | +401% | +214% | +287% | +401% |
Western Canada | 64 | +126% | +161% | +108% | +114% | +149% | +169% | +321% | +164% | +221% | +313% |
Region | Baseline AC = Acre Days L = Seasonal Lift Capacity | 2050s RCP 4.5 (%) | SSP 245 (%) | SSP 370 (%) | RCP 8.5 (%) | SSP 585 (%) | 2080s RCP 4.5 (%) | SSP 245 (%) | SSP 370 (%) | RCP 8.5 (%) | SSP 585 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Alberta | AC = 2,947,653 L = 121,948,271 | −6% −3% | −12% −7% | −4% −1% | −6% −3% | −11% −6% | −11% −7% | −31% −22% | −12% −7% | −19% −13% | −30% −21% |
British Columbia | AC = 8,425,237 L = 262,941,173 | −3% −1% | −7% −5% | −3% −1% | −4% −2% | −8% −6% | −7% −5% | −23% −20% | −9% −7% | −16% −14% | −25% −22% |
Western Canada | AC = 11,394,386 L = 385,621,227 | −4% −2% | −9% −6% | −4% −2% | −5% −2% | −9% −6% | −8% −6% | −25% −21% | −10% −7% | −17% −14% | −26% −22% |
Western Canada Average | Baseline Skier Intensity | 2050s RCP 4.5 | SSP 245 | SSP 370 | RCP 8.5 | SSP 585 | 2080s RCP 4.5 | SSP 245 | SSP 370 | RCP 8.5 | SSP 585 |
---|---|---|---|---|---|---|---|---|---|---|---|
Current Skier Visits (8.2 million) | 0.67 | 0.7 | 0.74 | 0.7 | 0.71 | 0.74 | 0.73 | 0.9 | 0.75 | 0.81 | 0.9 |
Projected Skier Visit (9.3 million) | 0.76 | 0.8 | 0.84 | 0.79 | 0.8 | 0.84 | 0.83 | 1 | 0.85 | 0.92 | 1 |
Region | Baseline (Meeting Criteria/Total) | 2050s RCP 4.5 (%) | SSP 245 (%) | SSP 370 (%) | RCP 8.5 (%) | SSP 585 (%) | 2080s RCP 4.5 (%) | SSP 245 (%) | SSP 370 (%) | RCP 8.5 (%) | SSP 585 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
Alberta | 26/26 | 88 | 88 | 88 | 88 | 85 | 88 | 85 | 85 | 85 | 81 |
British Columbia | 39/40 | 85 | 85 | 83 | 83 | 83 | 83 | 83 | 75 | 70 | 65 |
Western Canada | 65/66 | 86 | 86 | 85 | 83 | 83 | 85 | 83 | 79 | 76 | 71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knowles, N.L.B.; Scott, D.; Steiger, R. Climate Change and the Future of Ski Tourism in Canada’s Western Mountains. Tour. Hosp. 2024, 5, 187-202. https://doi.org/10.3390/tourhosp5010013
Knowles NLB, Scott D, Steiger R. Climate Change and the Future of Ski Tourism in Canada’s Western Mountains. Tourism and Hospitality. 2024; 5(1):187-202. https://doi.org/10.3390/tourhosp5010013
Chicago/Turabian StyleKnowles, Natalie L. B., Daniel Scott, and Robert Steiger. 2024. "Climate Change and the Future of Ski Tourism in Canada’s Western Mountains" Tourism and Hospitality 5, no. 1: 187-202. https://doi.org/10.3390/tourhosp5010013